JPS60173992A - Subordinate address switching system in subordinate synchronizing network - Google Patents

Subordinate address switching system in subordinate synchronizing network

Info

Publication number
JPS60173992A
JPS60173992A JP2901384A JP2901384A JPS60173992A JP S60173992 A JPS60173992 A JP S60173992A JP 2901384 A JP2901384 A JP 2901384A JP 2901384 A JP2901384 A JP 2901384A JP S60173992 A JPS60173992 A JP S60173992A
Authority
JP
Japan
Prior art keywords
station
circuit
subordinate
dependent
asynchronous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2901384A
Other languages
Japanese (ja)
Inventor
Haruo Tsuda
津田 春生
Takayuki Okino
沖野 孝之
Akio Morimoto
昭雄 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2901384A priority Critical patent/JPS60173992A/en
Publication of JPS60173992A publication Critical patent/JPS60173992A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/04Selecting arrangements for multiplex systems for time-division multiplexing

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)

Abstract

PURPOSE:To obtain a subordinate address switching system in a subordinate synchronizing network which enables improvement in transmitting data quality by changing over the subordinate address according to received results of information on a transmitting channel condition and on a subordinate intra-station device. CONSTITUTION:When clock signals CL1-CLn transferred from a high-order station and an asynchronous clock signal are reproduced, the system detects them by an asynchronous detecting circuit 17 and outputs asynchronous alarm signals SALM1-SALMn to an alarm multiplex circuit 20. The circuit 20 multiplies and transfers them to a low-order subordinate station by using them as fault information of signals CL1-CLn due to abnormality of the intra-station system device. The low-order station takes OR of line alarm signals LALM1- LALMn by an OR circuit 16 and adds them to a subordinate address changeover controlling circuit 4. The circuit 4 decides that a clock distributing channel transferring the signals SALM1-SALMn is abnormal and designates a subordinate address changeover circuit 5 to change over to other clock distributing channels.

Description

【発明の詳細な説明】 (a)発明の技術分野 本発明は、主局からのクロック信号に同期したクロック
信号を再生し下位の従属局へ転送する複数の従局からな
る従属同期網に関し、特にクロック分配路網の同期状態
を維持するための従属光切替方式に関する。
Detailed Description of the Invention (a) Technical Field of the Invention The present invention relates to a slave synchronization network consisting of a plurality of slave stations that regenerates a clock signal synchronized with a clock signal from a master station and transfers it to lower slave stations, and particularly relates to This invention relates to a dependent optical switching system for maintaining the synchronization state of a clock distribution network.

(b)技術の背景 伝送路を通して音声2画像及びデータ等を伝送するディ
ジタル伝送システムにおける従属同期方式は、網を構成
している局の中の1局を主局(マスク局)、他の総ての
局を従局(スレーブ局)とし、従局には主局からのクロ
ック信号の周波数に関する情報を伝達し、各従局ではそ
の情報にもとすいて主局からのクロック信号に同期した
各種のクロック信号を再生する方式である。
(b) Technical Background The dependent synchronization method in a digital transmission system that transmits audio, images, data, etc. through a transmission path is such that one of the stations making up the network is the master station (mask station) and all other All stations are slave stations, and information regarding the frequency of the clock signal from the master station is transmitted to the slave stations, and each slave station uses various clocks synchronized with the clock signal from the master station as part of this information. This is a method of reproducing signals.

従って、従属同期方式では主局からのクロック信号の周
波数に関する情報を総ての従局に直接又は他の従局を介
して伝達することが必要であり。
Therefore, in the slave synchronization method, it is necessary to transmit information regarding the frequency of the clock signal from the master station to all slave stations either directly or via other slave stations.

これをクロック分配路と呼ぶ。This is called a clock distribution path.

伝送路の障害等によってクロック分配路が異常状態とな
るとクロック信号の周波数に関する情報が伝達出来なく
なるため複数のクロック分配路を用意し、現用のクロッ
ク分配路が異常となった場合には予備のクロック分配路
に切替えることによって主局と総ての従局の間のクロッ
ク分配路を維持する方法が取られている。
If the clock distribution path becomes abnormal due to a failure in the transmission path, information about the frequency of the clock signal cannot be transmitted, so multiple clock distribution paths are prepared, and if the current clock distribution path becomes abnormal, a backup clock can be used. A method is used to maintain a clock distribution path between the master station and all slave stations by switching to a distribution path.

しかし、上記従属同期方式における障害時の対応策は伝
送路の障害を主体とした対応策であり。
However, the countermeasures against failures in the dependent synchronization method are mainly countermeasures against failures in the transmission line.

必ずしも同期系端局装置等の異常によるクロック信号の
周波数に関する情報異常を含めた対応策とはなってない
のが現状である。これらの対応策も考處した従属同期方
式の実現が要望される。
Currently, countermeasures do not necessarily include information abnormalities regarding the frequency of clock signals due to abnormalities in synchronous system terminal equipment, etc. It is desired to realize a dependent synchronization method that takes these countermeasures into consideration.

と (c)従来技術の問題点 次に上記に関連する従来の従属同期方式について2図面
を参照して説明する。
and (c) Problems with the Prior Art Next, a conventional slave synchronization system related to the above will be explained with reference to two drawings.

第1図は伝送システムにおける従来の従属同期方式を示
す。
FIG. 1 shows a conventional slave synchronization scheme in a transmission system.

図において、1は網同期装置、2,3は同期系端局装置
、4は従属光切替制御回路、5は従属光切替回路、6は
網同期回路、7,8.9は周波数変換回路、10.24
はPCl’l信号送信部、11゜15はPロ信7号受信
部、12はクロック受信回路。
In the figure, 1 is a network synchronization device, 2 and 3 are synchronous system terminal devices, 4 is a dependent optical switching control circuit, 5 is a dependent optical switching circuit, 6 is a network synchronization circuit, 7, 8.9 are frequency conversion circuits, 10.24
11 is a PCl'l signal transmitting section, 11.15 is a Plo signal 7 receiving section, and 12 is a clock receiving circuit.

工3はタイミング発生回路をそれぞれ示す。Figure 3 shows a timing generation circuit.

尚aは上位局向は伝送路、bは下位局向は伝送路、 L
A!、MI 〜LALMnはラインアラーム信号、 C
LI〜CLnは上位局からのクロック信号、 PI、l
’2.F3は網同期装置]で再生変換したクロック信号
、Floはタイミング発生回路13の出力信号周波数を
それぞれ示す。
Note that a is the transmission line for the upper station, b is the transmission line for the lower station, and L
A! , MI ~ LALMn is the line alarm signal, C
LI~CLn are clock signals from the upper station, PI, l
'2. F3 indicates the clock signal reproduced and converted by the network synchronizer, and Flo indicates the output signal frequency of the timing generation circuit 13, respectively.

第1図の従属同期方式は、上位局(図示してない)から
の複数のクロック信号CLI〜CLnを受りて同期系端
局装置3で必要なりロック信号(PI 、 F2、F3
等)に再生変換し出力する網同期装置1.上位局(図示
してない)からのデータにより」二位局向は伝送路aの
異常を検出した場合対応したラインアラーム信号(LA
LMI −LALMn )を送出する同期系端局装置2
.網同期装置1からのクロック信号(Fl、F2.F3
等)を基準にしてデータを多重変換して出力する同期系
端局装置3.同期系端局装置2からのラインアラーム信
号(1,八LMI 〜LALMn )の状態から選択す
べきクロック信号(CLI〜CLn)を決める従属光切
替制御回路4.網同期装置1内にあり従属光切替制御回
路4の制御で上位局(図示してない)からの複数のクロ
ック信号(CLI〜G[、n )を切替え選択する従属
光切替回路5.従属先切替回路5で選択したクロック信
号(CLI〜CLnの内の1つ)に同期した新規の周波
数を持つクロック信号を再発生ずる網同期回路6.Il
i!!同期回路6で再生したクロック信号を周波数変換
して複数のクロック信号(Fl、F2.I’3等)を作
成する周波数変換回路7,8,9.上位局(図示してな
い)へI”CM信号(データをパルス符号変調した信号
)を送出するPCM信号送出部10.上位局(図示して
ない)からのPCM信号を受信するPCM信号受信部1
13周波数変換回路(7,8,9)の複数のクロック信
号(PI、F2.F3等)の内1つの所定クロック信号
(第1図ではFl)を受信するクロック受信回路12.
クロック受信回路12で受信したクロック信号F1によ
りデータ処理に必要なタイミング信号周波数FIOを作
成するタイミング発生回路13.タイミング発生回路1
3からのタイミング信号(周波数F10)にもとすきP
CM信号を多重変換して下位局(図示してない)へ出力
するl”CM信号送信部14.下位局(図示してない)
からの “1”CM信号を受信するPCM信号受信部1
5からf+17成されている。
In the slave synchronization method shown in FIG. 1, the synchronization system terminal device 3 receives a plurality of clock signals CLI to CLn from an upper station (not shown) and generates necessary lock signals (PI, F2, F3).
network synchronization device that regenerates, converts, and outputs 1. Based on data from the upper station (not shown), the second station sends a corresponding line alarm signal (LA
Synchronous terminal device 2 that sends out LMI-LALMn)
.. Clock signal from network synchronizer 1 (Fl, F2.F3
Synchronous terminal equipment that multiplex-converts and outputs data based on 3. 4. Dependent optical switching control circuit that determines the clock signal (CLI to CLn) to be selected from the state of the line alarm signal (1,8 LMI to LALMn) from the synchronous system terminal device 2. A slave optical switching circuit 5, which is located in the network synchronizer 1 and switches and selects a plurality of clock signals (CLI to G[, n) from a higher-level station (not shown) under the control of the slave optical switching control circuit 4. A network synchronization circuit 6 for regenerating a clock signal with a new frequency synchronized with the clock signal (one of CLI to CLn) selected by the dependent switching circuit 5. Il
i! ! Frequency conversion circuits 7, 8, 9, . A PCM signal sending unit 10 that sends an I''CM signal (a signal obtained by pulse code modulating data) to an upper station (not shown). A PCM signal receiving unit that receives a PCM signal from an upper station (not shown). 1
13. A clock receiving circuit 12 that receives one predetermined clock signal (Fl in FIG. 1) among a plurality of clock signals (PI, F2, F3, etc.) of the frequency conversion circuits (7, 8, 9).
A timing generation circuit 13 that generates a timing signal frequency FIO necessary for data processing using the clock signal F1 received by the clock reception circuit 12. Timing generation circuit 1
I also like the timing signal (frequency F10) from 3.
CM signal transmitter 14 that multiplex converts the CM signal and outputs it to the lower station (not shown).Lower station (not shown)
PCM signal receiving unit 1 that receives the “1” CM signal from
5 to f+17.

第1図で示す従来の従属同期網方式においては。In the conventional dependent synchronous network system shown in FIG.

上位局(図示してない)からのクロック分配路の障害等
を検出する方法としては伝送路aの異常によるI”CM
信号異常(データフレームの先頭にある同期信号未検出
による同期外れやクロック信号CI。
A method for detecting a failure in the clock distribution path from the upper station (not shown) is to detect I"CM due to an abnormality in the transmission path a.
Signal abnormality (out of synchronization due to undetected synchronization signal at the beginning of the data frame or clock signal CI).

1〜CLn断等)をPCM信号受信部11で監視ずφの
みであった。
1 to CLn disconnection, etc.) was not monitored by the PCM signal receiving unit 11, and only φ was monitored.

従来、この方式では周波数変換器7の出力周波数FO,
周波数変換器8の出力周波数Fl、タイミング発生回路
13の出力周波数F10に′れはr’cM信号送信部1
4の出力PcM信号の周波数となる)等が同じ周波数、
即ち網同期回路6以外には周波数を変換する機能がなか
ったので、伝送路aの異常のみを監視していれば問題な
かった。
Conventionally, in this method, the output frequency FO of the frequency converter 7,
The difference between the output frequency Fl of the frequency converter 8 and the output frequency F10 of the timing generation circuit 13 is r'cM signal transmitter 1.
4) are the same frequency,
That is, since there was no frequency conversion function other than the network synchronization circuit 6, there would be no problem if only abnormalities in the transmission line a were monitored.

しかし、同期系の発展に伴い多種の周波数(例えば、1
次群、2次群周波数1.544Mb /s、6.312
M+1/S等)が必要になると複数の周波数変換器7゜
8.9 (これらは一般的にフェーズロックドループ回
路を使用している)が必要となって来た。この場合は、
伝送路aは正常であるが上位局(図示してない)の網同
期装置1や同期系端局装置3で非同期クロック信号(C
1,1〜CLnの非同期の信号)が作成され送出されて
来てもPCM信号受信部11では正常と判定し、実質、
現用のクロック分配路異常であっても予備のクロック分
配路に切替えることが出来ないと言う欠点があった。
However, with the development of synchronization systems, various frequencies (for example, 1
Next group, second order group frequency 1.544Mb/s, 6.312
(M+1/S, etc.), a plurality of frequency converters 7°8.9 (these typically using phase-locked loop circuits) became necessary. in this case,
Transmission path a is normal, but an asynchronous clock signal (C
Even if an asynchronous signal of
There is a drawback that even if there is an abnormality in the current clock distribution path, it is not possible to switch to the backup clock distribution path.

(d)発明の目的 本発明は、上記欠点を解消した新規な従属同期網におけ
る従属先切替方式を提供することを目的とし、特に伝送
データ品質のより一層の向上が可能となる従属同期網に
おける従属先切替方式を実現することにある。
(d) Purpose of the Invention The object of the present invention is to provide a new dependent switching method in a dependent synchronous network that eliminates the above-mentioned drawbacks, and in particular, in a dependent synchronous network that enables further improvement of transmission data quality. The objective is to realize a dependent switching method.

(e)発明の構成 従属する総ての局にクロック借りを分配する主局と、前
記主局からの前記クロック信号に同期したクロック信号
を再生し下位の従属局へ転送する複数の従局からなる従
属同期網において、前記各従属局の上位局と該従属局と
の間の伝送路の状態を監視する手段と、前記主局及び前
記各従属局から送出されるクロック信号が前記主局では
主発振器に対して非同期状態、前記各従属局では該従属
局の網同期用位相同期発振器に対して非同期状態である
ことを検出する手段と、前記非同期状態検出信号を該下
位の従属局に伝送する手段と、該従属局の上位局からの
前記非同期状態信号を選択する手段とを設け、前記伝送
路の状態情報と該従属局内装置の状態情報との受信結果
によって従属光を切替えることにより、伝送データ品質
のより一層の向上が可能となることを特徴とする従属同
期網における従属先切替方式により達成することが出来
る。
(e) Structure of the invention Consists of a master station that distributes clock debt to all subordinate stations, and a plurality of slave stations that reproduce clock signals synchronized with the clock signal from the master station and transfer them to lower subordinate stations. In the dependent synchronous network, means for monitoring the state of a transmission path between an upper station of each of the dependent stations and the dependent station, and a clock signal sent from the main station and each of the dependent stations are transmitted to the main station. means for detecting that the oscillator is in an asynchronous state, and each of the dependent stations is in an asynchronous state with respect to the network synchronization phase synchronization oscillator of the dependent station, and transmitting the asynchronous state detection signal to the lower subordinate station. and means for selecting the asynchronous state signal from an upper station of the dependent station, and switching the dependent light depending on the reception result of the state information of the transmission path and the state information of the device in the dependent station, This can be achieved by a dependent switching method in a dependent synchronous network, which is characterized by the ability to further improve data quality.

(f)発明の実施例 以下本発明を図面を参照して説明する。(f) Examples of the invention The present invention will be explained below with reference to the drawings.

第2図は本発明に係る従属同期網の一実施例を示す。FIG. 2 shows an embodiment of a dependent synchronous network according to the present invention.

図において、16は論理和回路、17〜19は非同期検
出回路、20はアラーム多重化回路をそれぞれ示す。尚
第1図と同一記号は同一内容を示し、又SAL旧〜SA
LMnはアラーム多重化回路20からの非同期アラーム
信号をそれぞれ示す。
In the figure, 16 is an OR circuit, 17 to 19 are asynchronous detection circuits, and 20 is an alarm multiplexing circuit. The same symbols as in Figure 1 indicate the same contents, and SAL old to SA
LMn indicates an asynchronous alarm signal from the alarm multiplexing circuit 20, respectively.

本実施例は第1図の構成部分と、上位局(図示してない
)から送出して来るアラーム信号^LMI〜ALMnと
非同期アラーム信号SALM1〜SALMnとの論理和
を取り従属光切替制御回路4−出力する論理和回路16
.網同期回路6の非同期状態を検出する非同期検出回路
172周波数変換回路(7,’8゜9)の非同期状態を
検出する非同期検出回路18゜タイミング発生回路13
の非同期状態を検出する非同期検出回路19.非同期検
出回路(17〜19)からの非同期アラーム信号SAL
M1〜5ALIIInを多重化して下位の従属局に送出
するアラーム多重化回路20とから構成されている。
This embodiment consists of the components shown in FIG. 1, and a subordinate optical switching control circuit 4 which calculates the logical sum of the alarm signals ^LMI to ALMn sent from the upper station (not shown) and the asynchronous alarm signals SALM1 to SALMn. - Output OR circuit 16
.. Asynchronous detection circuit 172 that detects the asynchronous state of the network synchronization circuit 6; Asynchronous detection circuit 18° that detects the asynchronous state of the frequency conversion circuit (7, '8°9); Timing generation circuit 13
an asynchronous detection circuit 19 for detecting an asynchronous state of . Asynchronous alarm signal SAL from the asynchronous detection circuit (17-19)
It is comprised of an alarm multiplexing circuit 20 that multiplexes M1 to 5ALIIIn and sends it to lower dependent stations.

次に本実施例の動作を説明する。Next, the operation of this embodiment will be explained.

複数あるルートの内3通常該当局に対して最優先ルート
となっている上位局(図示してない)からのデータとク
ロック信号(CLI〜CI、n)をPCM信号受信部1
1.網同期装置1の従属光切替回路5経出で受け入れる
The PCM signal receiving unit 1 receives data and clock signals (CLI to CI, n) from upper stations (not shown), which are usually the highest priority routes for the corresponding station, among the multiple routes.
1. It is accepted at the output of the slave optical switching circuit 5 of the network synchronizer 1.

尚本実施例の場合は、伝送路aの障害がなく正常なデー
タが転送されて来たものとI”CM信号受信部12ば1
′す定したものとする。
In the case of this embodiment, if there is no fault in the transmission path a and normal data is transferred,
' shall be determined.

PLL (フェーズ1コツクドループ回路)で構成され
ている網同期回路6は、従属光切替回路5で上位局(図
示してない)から転送されて来た複数のクロック信号(
CLI〜CLn )の内1つを選択し。
The network synchronization circuit 6 composed of a PLL (phase 1 closed loop circuit) receives a plurality of clock signals (
CLI~CLn).

選択された1つのクロック信号(CLI〜CLn )と
同期した任意の周波数を持つクロック信号に再生し2周
波数変換回路(7〜9)へ出力する。この時もし転送さ
れて来たクロック信号(CLI 〜CLn)と非同期の
クロック信号が再生された場合、非同期検出回路17で
検出して非同期アラーム信号SALMI〜SALMnを
アラーム多重化回路20に出力する。
It reproduces a clock signal having an arbitrary frequency synchronized with the selected one clock signal (CLI to CLn) and outputs it to the two-frequency conversion circuit (7 to 9). At this time, if a clock signal asynchronous to the transferred clock signal (CLI to CLn) is reproduced, the asynchronous detection circuit 17 detects it and outputs asynchronous alarm signals SALMI to SALMn to the alarm multiplexing circuit 20.

次に網同期回路6で再生されたクロック信号は周波数変
換回路(7〜9)で同期系端局装置3で必要とする周波
数(Fl、F2.F3)に変換してそれぞれの同期系端
局装置3に送出される。尚第2図で示す同期系端局装置
3では周波数F1を受信した場合を示す。又もし周波数
変換回路(7〜9)で同期崩れ等が発生ずれば非同期検
出回路18で検出して非同期アラーム信号SAL旧〜S
ALMnをアラーム多重化回路20に出力する。
Next, the clock signal regenerated by the network synchronization circuit 6 is converted to the frequency (Fl, F2, F3) required by the synchronization system terminal equipment 3 in the frequency conversion circuit (7 to 9), and is transmitted to each synchronization system terminal station. It is sent to device 3. Note that the case where the synchronous system terminal device 3 shown in FIG. 2 receives the frequency F1 is shown. If synchronization loss occurs in the frequency conversion circuits (7 to 9), the asynchronous detection circuit 18 detects it and issues an asynchronous alarm signal SAL to S.
ALMn is output to the alarm multiplexing circuit 20.

同期系端局装置3では網同期装置1から再生されたクロ
ック信号F1をクロック受信回路12で受信し、クロッ
ク信号F1をもとにしてタイミング発生回路13で作成
したクロック信号周波数FIOをPCM送信部I4から
伝送路す経由下位の従属局に転送する。又もし、タイミ
ング発生回路13で非同期状態等が発生ずれば非同期検
出回路197検出して非同期アラーム信号SALMI〜
SALMnをアラーム多重化回路20に出力する。
In the synchronization system end station device 3, the clock signal F1 reproduced from the network synchronization device 1 is received by the clock reception circuit 12, and the clock signal frequency FIO generated by the timing generation circuit 13 based on the clock signal F1 is sent to the PCM transmission section. It is transferred from I4 to the subordinate station via the transmission line. If an asynchronous state or the like occurs in the timing generation circuit 13, the asynchronous detection circuit 197 detects it and issues an asynchronous alarm signal SALMI~
SALMn is output to the alarm multiplexing circuit 20.

アラーム多重化回路20は非同期検出回路(17〜19
)からの非同期アラーム信号SALMI〜SALMnを
受けると、この非同期アラーム信号SAL旧〜SALM
nを多重化して局内系装置(網同期装置1゜同期系端局
装置3等)の異常によるクロック信号(CI、1〜CL
n )の障害情報として下位の従属局(図示してない)
に転送する。
The alarm multiplexing circuit 20 includes asynchronous detection circuits (17 to 19)
), this asynchronous alarm signal SAL old ~ SALM is received.
Clock signals (CI, 1-CL
n ) failure information as a lower dependent station (not shown).
Transfer to.

向上記のアラーム多重(ヒ回路20の出力は下位の従属
局(図示してない)に直接モデム等を使用して伝送する
方法(第2図の実線で示す)と、第2図の破線で示すよ
うにI’C11送信部14経出で他のデータと共に伝送
する方法とがある。
Alarm multiplexing (indicated by the solid line in Figure 2), in which the output of the circuit 20 is directly transmitted to a lower dependent station (not shown) using a modem, etc. (shown by the solid line in Figure 2); As shown, there is a method of transmitting the data along with other data through the I'C 11 transmitter 14.

」二位局(図示してない)から上記のようにして非同期
アラーム信号S A L M 1〜S A L M n
が送出されて来た場合、下位局(本説明の場合第2図で
示す装置を指す)では論理和回路16でラインアラーム
信号LALM 1〜LALMnと論理和が取られ、従属
光切替制御回路4に加えられるため、従属光切替制御回
路4では非同期アラーム信号SALMI〜S/II、4
nを送出して来たクロック分配路は異常と判定し、他の
クロック分配路への切替えを従属光切替回路5に指示す
る。
” Asynchronous alarm signals SALM1 to SALMn are sent from the second station (not shown) as described above.
is sent out, in the lower station (in this explanation, it refers to the device shown in FIG. 2), the logical sum circuit 16 takes the logical sum with the line alarm signals LALM 1 to LALMn, and the subordinate optical switching control circuit 4 Therefore, the dependent optical switching control circuit 4 outputs asynchronous alarm signals SALMI to S/II, 4
The clock distribution path that has sent out n is determined to be abnormal, and the dependent optical switching circuit 5 is instructed to switch to another clock distribution path.

(g)発明の効果 以」二のような本発明によれば、クロック分配路の障害
を正確に検出し、網同期品質をより高めることが可能な
従属同期網における従属同期方式を提イバ出来ると言う
効果がある。
(g) Effects of the Invention According to the present invention as described in section 2, it is possible to provide a dependent synchronization method in a dependent synchronization network that can accurately detect failures in clock distribution paths and further improve network synchronization quality. It has the effect of saying.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は伝送システムにおける従来の従属同期方式、第
2図は本発明に係る従属同期網の一実施例をそれぞれ示
す。 図において、1は網同期装置、2,3は同期系端局装置
、4は従属光切替制御回路、5は従属光切替回路、6は
網同期回路、7,8.9は周波数変換回路、10.14
はPCM信号送信部、11゜15はPCM信号受信部、
12はクロック受信回路。 13はタイミング発生回路、16は論理和回路。 17〜19は非同期検出回路、20ばアラーム多重化回
路をそれぞれ示す。
FIG. 1 shows a conventional slave synchronization system in a transmission system, and FIG. 2 shows an embodiment of a slave synchronization network according to the present invention. In the figure, 1 is a network synchronization device, 2 and 3 are synchronous system terminal devices, 4 is a dependent optical switching control circuit, 5 is a dependent optical switching circuit, 6 is a network synchronization circuit, 7, 8.9 are frequency conversion circuits, 10.14
is a PCM signal transmitter, 11°15 is a PCM signal receiver,
12 is a clock receiving circuit. 13 is a timing generation circuit, and 16 is an OR circuit. Reference numerals 17 to 19 indicate an asynchronous detection circuit, and numeral 20 indicates an alarm multiplexing circuit.

Claims (1)

【特許請求の範囲】[Claims] 従属する総ての局にクロック信号を分配する主局と、前
記主局からの前記クロック信号に同期したクロック信号
を再生し下位の従属局へ転送する複数の従局からなる従
属同期網において、前記各従属局の上位局と該従属局と
の間の伝送路の状態を監視する手段と、前記主局及び前
記各従属局から送出されるクロック信号が前記主局では
主発振器に対して非同期状態、前記各従属局では該従属
局の網同期用位相同期発振器に対して非同期状態である
ことを検出する手段と、前記非同期状態検出信号を該下
位の従属局に伝送する手段と、該従属局の上位局からの
前記非同期状態信号を選択する手段とを設け、前記伝送
路の状態情報と該従属局内装置の状態情報との受信結果
によって従属光を切替えることを特徴とする従属同期網
における従属光切替方式。
In a dependent synchronization network consisting of a master station that distributes a clock signal to all subordinate stations, and a plurality of slave stations that reproduce a clock signal synchronized with the clock signal from the master station and transfer it to lower subordinate stations, means for monitoring the state of a transmission path between an upper station of each dependent station and the dependent station, and a clock signal sent from the main station and each dependent station is in an asynchronous state with respect to a main oscillator in the main station; , in each of the dependent stations, means for detecting that the dependent station is in an asynchronous state with respect to a phase synchronized oscillator for network synchronization; means for transmitting the asynchronous state detection signal to the subordinate dependent station; means for selecting the asynchronous state signal from an upper station of the slave station, and switching the slave light according to the reception result of the state information of the transmission path and the state information of the device in the slave station. Optical switching method.
JP2901384A 1984-02-17 1984-02-17 Subordinate address switching system in subordinate synchronizing network Pending JPS60173992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2901384A JPS60173992A (en) 1984-02-17 1984-02-17 Subordinate address switching system in subordinate synchronizing network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2901384A JPS60173992A (en) 1984-02-17 1984-02-17 Subordinate address switching system in subordinate synchronizing network

Publications (1)

Publication Number Publication Date
JPS60173992A true JPS60173992A (en) 1985-09-07

Family

ID=12264524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2901384A Pending JPS60173992A (en) 1984-02-17 1984-02-17 Subordinate address switching system in subordinate synchronizing network

Country Status (1)

Country Link
JP (1) JPS60173992A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0509448A2 (en) * 1991-04-15 1992-10-21 Fujitsu Limited Synchronous control method in plurality of channel units and circuit using said method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0509448A2 (en) * 1991-04-15 1992-10-21 Fujitsu Limited Synchronous control method in plurality of channel units and circuit using said method

Similar Documents

Publication Publication Date Title
US5134633A (en) Digital communications synchronization scheme
US5172396A (en) Public service trunking simulcast system
GB1530405A (en) Loop data highway communication system
US6262973B1 (en) SDH wireless transmission apparatus
JPH0267033A (en) Network synchronizing system
US5212578A (en) Selection of transmission facilities using optical wavelength division multiplexing
JPH11127128A (en) Synchronizing device
EP2897312B1 (en) Clock synchronization method, system and device
JPH02266729A (en) Communication control system in duplex loop communication system
JPS60173992A (en) Subordinate address switching system in subordinate synchronizing network
GB2353173A (en) Telecommunications system
JP3104490B2 (en) Dependent synchronization control method for dual loop LAN
JPH06125354A (en) Network synchronization setting system in loop lan
JP7345351B2 (en) wireless communication system
JPH03195144A (en) Clock synchronizing device for ring type local area network
JPH05304508A (en) Clock supply system
JPS60253350A (en) Control system for communication of information
JPH01263566A (en) System for measuring transmission delay difference
EP1004178B1 (en) A teletransmission network, network elements therefor and a method of identifying the synchronization of a network element
JP2776302B2 (en) Auxiliary signal transmission system with redundant configuration
JP2003008597A (en) Clock path changeover method
EP0868783B1 (en) Procedure and circuit for holding lock state in a digital pll
JPH0661986A (en) Clock switching system
JPH04336733A (en) Data transmission system
JPH05235815A (en) Clock switching system in intermediate repeater station