JPS6017370A - Magnetic resonance apparatus - Google Patents

Magnetic resonance apparatus

Info

Publication number
JPS6017370A
JPS6017370A JP58124486A JP12448683A JPS6017370A JP S6017370 A JPS6017370 A JP S6017370A JP 58124486 A JP58124486 A JP 58124486A JP 12448683 A JP12448683 A JP 12448683A JP S6017370 A JPS6017370 A JP S6017370A
Authority
JP
Japan
Prior art keywords
electromagnetic
horns
microwave
lens
horn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58124486A
Other languages
Japanese (ja)
Inventor
Hiroaki Ooya
大矢 博昭
Shigeyuki Sugito
杉戸 重行
Hiroshi Makino
牧野 弘史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58124486A priority Critical patent/JPS6017370A/en
Publication of JPS6017370A publication Critical patent/JPS6017370A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To furthermore improve a signal-noise ratio and to make a local excitation possible by fitting a dielectric body electromagnetic lens of single or biconvex lens shape, in which the refracting surface is such as rotating hyperboloid, into at least one opening part of electromagnetic horns. CONSTITUTION:A pair of electromagnetic horns 13, 18 for transmission and reception are provided, a microwave supplied through a circulator 39 is outputted from the transmitting horn 13 and is received by the receiving horn 18, sent to a magic T circuit 41, and the microwave absorption is detected. Electromagnetic lenses are attached directly at the opening parts of the horns 13 and 18. The microwave emitted from the transmitting horn is propagated while spreading into air usually as a spherical wave. Since the spherical wave becomes a plane wave by using the electromagnetic lens, and the spatial spreading becomes constant, the microwave leakage is eliminated, the microwave can be irradiated effectively to a sample mounted between the horns, and the detecting sensitivity is improved.

Description

【発明の詳細な説明】 本発明はマイクロ波を用いる電子スピン磁気共鳴もしく
は強磁性(フェリ磁性を含む)共鳴装置iこ関し、さら
に詳しくは、空胴共振器の代りに一対の電磁ホーンを用
いた磁気共鳴測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electron spin magnetic resonance or ferromagnetic (including ferrimagnetic) resonance device using microwaves, and more specifically, to an electron spin magnetic resonance or ferromagnetic (including ferrimagnetic) resonance device using microwaves. This article relates to magnetic resonance measurement equipment.

電子スピン磁気共鳴装置(以下ESR装置と称する)は
、対象とする測定物質が、強磁性体、又はフ異す磁性体
である場合、強磁性共鳴装置(FME装置と称する)と
も呼ばれるが、これらの装置は常磁性イオン、常磁性物
質、ラジカル、強磁性体、フ、−リ磁性体(例えば、磁
気バブル素子用ガーネット薄膜)などの磁気的性質を調
べるための分光学的手法として広く用いられ、現在では
市販の装置を入手することが可能である。
An electron spin magnetic resonance apparatus (hereinafter referred to as an ESR apparatus) is also called a ferromagnetic resonance apparatus (hereinafter referred to as an FME apparatus) when the target substance to be measured is a ferromagnetic substance or a different magnetic substance. This device is widely used as a spectroscopic method to investigate the magnetic properties of paramagnetic ions, paramagnetic substances, radicals, ferromagnetic substances, and magnetic substances (e.g., garnet thin films for magnetic bubble devices). , it is now possible to obtain commercially available equipment.

従来の装置では、空胴共振器を用いることが一般的であ
った。すなわち、石英管、石英棒、テフロン管、テフロ
ン棒など、マイクロ波に対する誘電損失の比較的少ない
材質から成る試料ホルダーに測定試料を装着して空胴共
振器内に入れESB又はFMRを測定している。 この
方法では、(1)空胴内に試料を挿入するため、試料の
大きさが制約されへ(2)試料によるlI誘電損失空胴
共振器のQ値を著しく低下させる場合があり、このため
からも。
Conventional devices commonly use cavity resonators. That is, the measurement sample is mounted on a sample holder made of a material with relatively low dielectric loss against microwaves, such as a quartz tube, quartz rod, Teflon tube, or Teflon rod, and placed inside a cavity resonator to measure ESB or FMR. There is. In this method, (1) the sample is inserted into the cavity, which limits the size of the sample; (2) the sample may significantly reduce the Q value of the lI dielectric loss cavity resonator; From too.

試料体積(#膜試料のときは面積)が制約される(3)
大面積のウスバーから破壊して小サンプル片を準備しな
ければならないなどの問題点や欠点を有していた。又、
同じく空胴共振器を用いる方法でも空胴共振器の一箇所
乃至数箇所に直径数tm程度の穴を開け、空胴共振器よ
り洩れ出てくるマイクロ波を利用してBSR,FMRを
測定する方法が例えば、マテリアルズ侮り寸−チ拳ビュ
レティン(Matar、Res、Eu11.)第12巻
53ページ(1977年)アプライド・フィジックス(
Appl、Phys、)第12巻261ページ(197
7年)、或いは、第21回PXsa討論会濃演要旨集(
1’982年10月)134ページなどに記載されてい
る。これら空胴共振器に穴を開けて磁気共鳴を測定する
方法は利用するマイクロ波のごく一部分のパワーしか用
いないため感度が悪く、また、ポールピース(磁極)間
隙内の空胴共振器の外側とポールピース面の間の狭い空
間に試料ホルダーを設けなければならないため、やはり
治具設計の困難さが伴うなどの制約がある。このように
空胴共振器内に試料を挿入する方法でもまた、空胴共振
器に開けられた穴に試料を押しつける方法で61いずれ
も、試料に応力を加えたりする機工部を設けるには、ス
ペースの制約が大きい欠点となっていた。空胴共振器は
、一般にQ値が高く高感度であるが、その反面マイクロ
波の位相・周波a膚塾に時間がかかることも欠点のひと
つとなっていた。又、空胴共振器は固有振動数(fo)
をもつ共振回路であるため、観fAI+8波数は、この
fOに固定される。従って、試料の周波数依存性を自由
に測定できないことも大きな欠点となっている。
Sample volume (#area for membrane samples) is restricted (3)
This method has problems and drawbacks, such as the need to prepare small sample pieces by destroying large-area samples. or,
Similarly, in the method using a cavity resonator, a hole with a diameter of several tm is made in one or several places in the cavity resonator, and the BSR and FMR are measured using the microwaves leaking from the cavity resonator. For example, methods are described in Applied Physics (Matar, Res, Eu11.), Vol. 12, p. 53 (1977).
Appl, Phys,) Volume 12, page 261 (197
7 years), or the collection of summaries of the 21st PXsa debate (
1'982 (October 1982), page 134, etc. These methods of measuring magnetic resonance by drilling a hole in a cavity resonator have poor sensitivity because they use only a small portion of the power of the microwaves used, and they also Since the sample holder must be provided in a narrow space between the pole piece surface and the pole piece surface, there are still restrictions such as difficulties in jig design. In both the method of inserting the sample into the cavity resonator and the method of pressing the sample into a hole drilled in the cavity,61 both require the provision of a mechanical part that applies stress to the sample. Space constraints were a major drawback. Cavity resonators generally have a high Q value and high sensitivity, but one of their drawbacks is that it takes time to adjust the phase and frequency of microwaves. Also, the cavity resonator has a natural frequency (fo)
Since it is a resonant circuit with , the fAI+8 wave number is fixed to this fO. Therefore, the inability to freely measure the frequency dependence of the sample is also a major drawback.

本発明者らは空胴共振器を用いるE8几、 FMR装置
の、かかる欠点を克服するために、特願昭57−215
075に詳しく述べたように発信用電磁ホーンと受信用
電磁ホーンと、仁れら2つの電磁ホーンの間に試料を保
持するための試料保持部を備えてなる磁気共鳴装置をす
でに提案した。
In order to overcome the drawbacks of the E8 FMR device using a cavity resonator, the present inventors filed a patent application filed in 1983-215.
As described in detail in Section 075, a magnetic resonance apparatus has already been proposed which includes a transmitting electromagnetic horn, a receiving electromagnetic horn, and a sample holding section for holding a sample between the two electromagnetic horns.

本発明はこのような電磁ホーン方式の磁気共鳴装置の%
(信号雑音比)をさらに改豊し、該た試料の一部分にマ
イクロ波を集中させて局所励起させ測定箇所を変えるこ
とのできる電磁レンズを備えた磁気共鳴装置を提供する
ことを目的とする。
The present invention improves the performance of such an electromagnetic horn type magnetic resonance apparatus.
It is an object of the present invention to provide a magnetic resonance apparatus equipped with an electromagnetic lens that can further improve the (signal-to-noise ratio), concentrate microwaves on a part of the sample, locally excite it, and change the measurement location.

すなわち、本発明は発信用電磁ホーンと受信用電磁ホー
ンを、これら2つの電磁ポーンの間lζ試料を保持する
試料保持部とを有する磁気共鳴装置において、屈折面が
回転双曲面であるような片面レンズもしくは両凸レンズ
状の誘電体電磁レンズが上記2つの電磁ホーンのうち少
くとも1つの電磁ホーンの開り部にはめ込才れているζ
きを特徴とする磁気共鳴装置である。 。
That is, the present invention provides a magnetic resonance apparatus having a transmitting electromagnetic horn and a receiving electromagnetic horn with a sample holder that holds a lζ sample between these two electromagnetic horns. A dielectric electromagnetic lens in the form of a lens or a biconvex lens is fitted into the opening of at least one of the two electromagnetic horns.
This is a magnetic resonance device with the following characteristics. .

以下に本発明の構成を、さらに具体的に説明する。第1
図は、本発明を構成する具体例の一例である。11は、
マイクロ波搬送用同軸ケーブルであり、マイクロ波ユニ
ットと総称される回路系力1ら特定の周波数をもつマイ
クロ波が供給される。12は同軸導波管変換器、13は
発信用ポーンである。
The configuration of the present invention will be explained in more detail below. 1st
The figure is an example of a specific example constituting the present invention. 11 is
This is a coaxial cable for carrying microwaves, and microwaves having a specific frequency are supplied from a circuit system 1 collectively called a microwave unit. 12 is a coaxial waveguide converter, and 13 is a transmission pawn.

14、15が本発明の特徴である電磁レンズである。14 and 15 are electromagnetic lenses that are a feature of the present invention.

16は試料ボルダ−であり、この上に測定試料17が保
持される。試料は固体の場合、セル中ζこ入れられた液
体の場合、セル中lこ入れられた気体の場合などである
。18は受信用ホーンであり同卯1導波管変換器19を
経て同軸ケーブル加に送られ九マイクロ波検出系で、試
料17によるマイクロ波の吸収が検出される。 発信用
及び受信用の電磁ホーンは、いずれもレール21の上に
載っており、ホーン間隔を調節することができる。22
が電磁石、羽はポールピースである。同軸ケーブル11
、同軸導波管12を用いる代りに導波管を直接ポーンに
接続することもできる。
16 is a sample boulder, on which a measurement sample 17 is held. The sample may be a solid, a liquid placed in a cell, a gas placed in a cell, etc. Reference numeral 18 denotes a receiving horn, which is sent to a coaxial cable via a waveguide converter 19, and absorption of the microwave by the sample 17 is detected by a microwave detection system. The electromagnetic horns for transmitting and receiving are both mounted on the rail 21, and the distance between the horns can be adjusted. 22
is an electromagnet, and the wings are pole pieces. Coaxial cable 11
, instead of using a coaxial waveguide 12, the waveguide can also be connected directly to the pawn.

以下に本発明の構成を具体例をもって説明する。The configuration of the present invention will be explained below using specific examples.

第2図は電磁ホーンと、その先端の開口部にはめこんで
使用する1!磁レンズの具体例の一例である。14は本
発明の特徴である電磁レンズであり、13又は18のホ
ーン先端に矢印の如くはめこんで使用する。14は片面
凸レンズの例である。14の表面状は近似的に nd ” y”=c11)Cx−)〜♂□ n+] n+1 (z=y) を満たす回転双曲面とした。ここにnは屈折率、dはレ
ンズの焦点距離である。荒い近似としては球面形状でも
よい。電磁レンズの材質はポリエチレン、ポリスチレン
、テフロン、パラフィンなど低誘電損失材料を用いた。
Figure 2 shows an electromagnetic horn and 1! which is used by fitting it into the opening at its tip! This is an example of a specific example of a magnetic lens. Reference numeral 14 denotes an electromagnetic lens, which is a feature of the present invention, and is used by fitting it into the tip of the horn 13 or 18 as shown by the arrow. 14 is an example of a single-sided convex lens. The surface shape of No. 14 was made to be a hyperboloid of rotation that approximately satisfies nd ``y''=c11)Cx-)~♂□n+]n+1 (z=y). Here, n is the refractive index and d is the focal length of the lens. A spherical shape may be used as a rough approximation. The electromagnetic lens was made of low dielectric loss materials such as polyethylene, polystyrene, Teflon, and paraffin.

第3図に示すように(a)タイプの片面凸レンズの他に
(blタイプの両面凸レンズも可能である。(blの場
合両側の焦点距離は必ずしも等しくする必要はない。
As shown in FIG. 3, in addition to the (a) type single-sided convex lens, a (bl type double-convex lens) is also possible. (In the case of bl, the focal lengths on both sides do not necessarily have to be equal.

本発明に用いたマイクロ波回路系のブロックダイヤグラ
ムを第4図に示す。発信用・受信用の電磁ボーン13.
18を1対設置し、サーキーレータ39を経由して供給
されるマイクロ波を発信用ホーン13がら出力し、受信
用ホーン18で受け、マジック1回路41に送り、マイ
クロ波吸収を検知した。
FIG. 4 shows a block diagram of the microwave circuit system used in the present invention. Electromagnetic bones for sending and receiving 13.
A pair of 18 were installed, and microwaves supplied via the circulator 39 were outputted from the transmitting horn 13, received by the receiving horn 18, and sent to the Magic 1 circuit 41 to detect microwave absorption.

電磁レンズは発信用ホーン13及び受信用ホーン18の
開口部に直接とりつけた。
The electromagnetic lenses were attached directly to the openings of the transmitting horn 13 and the receiving horn 18.

発信用ホーンから放出されるマイクロ波は通常球面波と
して空中に広がっていきながら伝播する。
Microwaves emitted from a transmitting horn usually propagate as they spread through the air as spherical waves.

電磁レンズを用いることにより球面波は平面波となり、
空間的広がりが一定となるためマイクロ波の洩れがなく
なりホーン間に置かれた試料に有効にマイクロ波を照射
することができ、検出感度が向上する。
By using an electromagnetic lens, a spherical wave becomes a plane wave,
Since the spatial spread is constant, there is no microwave leakage, and the sample placed between the horns can be effectively irradiated with microwaves, improving detection sensitivity.

次に電熱レンズを使用した場合の効果を9c施例をもっ
て詳しく説明する。
Next, the effect of using an electrothermal lens will be explained in detail using Example 9c.

実施例1゜ d=150wm の両凸レンズを発信用、受信用ホーン
両方に♂りつけ、ホーン間隔を45順としたとき、ホー
ン間におかわた直径23閣のGGG基板上に成長させた
(YS、mLuB1Ca ) m (FeGe九〇工意
カーネッl−Lpg膜のESR(FMR)信号強度は電
磁レンズを用いない場合に比べ約3倍になった。
Example 1 A double-convex lens of d = 150 wm was attached to both the transmitting and receiving horns, and when the horn spacing was arranged in the order of 45, growth was made on a GGG substrate with a diameter of 23 cm between the horns (YS , mLuB1Ca) m (The ESR (FMR) signal intensity of the FeGe 90K Carnet-Lpg film was approximately three times that of the case without using an electromagnetic lens.

実施例2゜ d=150雪の片側凸レンズを発信用・受信用ホーンの
両方にとりつけ、ホーン間隔を45so+としたときホ
ーン間におかれた直径231111のGGG基板上に成
長さ騒た( YSmLuCa )s (FeGe )s
owsガーネッ) LPFi膜のMAR(FMR)信号
強度は電磁レンズを用いない場合の約2倍となった。
Example 2 When a one-sided convex lens of d = 150 snow was attached to both the transmitting and receiving horns, and the distance between the horns was set to 45so+, noisy growth (YSmLuCa) was observed on a GGG substrate with a diameter of 231111 placed between the horns. s(FeGe)s
The MAR (FMR) signal intensity of the LPFi film was approximately twice that of the case without using an electromagnetic lens.

実施例38 d = 100調の両凸レンズを発信用ホーンのみにと
つつけ同様にEAR(FMR)信号強度を測定したとこ
ろ電磁レンズを用いない場合の約2.5倍となった。用
いた両凸レンズの片側をd ’:: 150Wmsもう
一方の片側を+1=ioo瓢の焦点距離を用いたがほと
んど効果は同じであった。
Example 38 When the EAR (FMR) signal strength was similarly measured using a d = 100 tone biconvex lens only for the transmitting horn, it was approximately 2.5 times as high as when no electromagnetic lens was used. One side of the biconvex lens used had a focal length of d':: 150 Wms and the other side had a focal length of +1=ioo, but the effect was almost the same.

実施例4゜ d==100m の両側凸レンズを発信用−受信用ホー
ンにとりつけ、ホーン間隔を200闘とし、ホーン間に
直径50m+のガーネットLPE膜を置いた。この膜は
ウェハー内で異方性磁場の変動のあるものであったが、
試料位置を移動させると共鳴磁場が変動した。これはウ
ェハー内の一部にマイクロ波が集中(集光)したため局
所励起できたためである。
Example 4 Double-sided convex lenses with a diameter of 100 m were attached to the transmitting and receiving horns, the distance between the horns was 200 m, and a garnet LPE film with a diameter of 50 m+ was placed between the horns. This film had an anisotropic magnetic field fluctuation within the wafer, but
When the sample position was moved, the resonant magnetic field varied. This is because the microwaves were concentrated (condensed) in a part of the wafer, allowing local excitation.

実施例5゜ 50m1径ウエハーに真空チャックをとりつけ、ウェハ
ーを反らせる機構をとりつけて実施例1.〜3、の方法
が測定した結果、ウェハーの反り量に比例して共鳴磁場
が変化した。この現象を用いて磁歪定数を測定すること
ができた。
Example 5 A vacuum chuck was attached to a 50 m1 diameter wafer, and a mechanism for warping the wafer was attached. As a result of measurement using method 3, the resonant magnetic field changed in proportion to the amount of warpage of the wafer. Using this phenomenon, we were able to measure the magnetostriction constant.

本発明の磁気共鳴装置は特願餡57−215075号に
述べた優れた特徴を有しており、さらに本発明の特徴で
ある電磁レンズの効果により%が向上し、局所励起が可
能となり、適用範囲が広がった。
The magnetic resonance apparatus of the present invention has the excellent features described in Japanese Patent Application No. 57-215075, and furthermore, the effect of the electromagnetic lens, which is a feature of the present invention, improves the % and enables local excitation. The range has expanded.

以上の通り本発明は数多くの%徴を有し、その工業的効
果は太きい。
As mentioned above, the present invention has many characteristics and its industrial effects are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の構成の要素を示す図。 第1図において、11.20・・・・・・・・・マイク
ロ波同軸ケーブル、12.19・・・・・・・・同軸等
波型変換器、]、3. 18・・・・・・・・電磁ホー
ン、14.15・・・・−・・・・電磁レンズ、16・
・・・・・・・・試料、ホルダー、17・・・・・・・
・試料、21・・・・・・・・・、レール〜22−・・
・・・・・電mE、23・・・・・・・・・ポールピー
ス。 第2図は本発明の電磁レンズと電磁ホーンの外観図。 第3図は電磁レンズの側面図であり、(a)は片側凸レ
ンズ、(b)は両側凸レンズ。 第4図は本発明に用いたマイクロ波回路禾のブロックダ
イヤグラムである。 第4図1ζおいて、 31・・・・・・・・・ガン電源、32・・・・・・・
・・ガン発振器、33・・・・・・・・・早向舌、34
・・・・・・・・・方向性結合器、35・・・・・・・
・・シャッター、36・・・・・・・・・位相器、37
・・・・・・・・・遅延ライン、38・・・・・・・・
・回転型減衰器、39・・・・・・・・・サーキ溪レー
タ、40・・・・・・・・・クリスタル検出器、41・
・・・・・・・・マジックT、42・・・・・・・・・
入カドランス、43・・・・・・・・・前置増幅器、4
4・・・・・・・・・増幅器、45・・・・・・・・・
変調回路、4&・・・・・・・・発振器、47・・・・
・・・・・位相器・ オ 3 図 ((2) (−e−) 第4−図
FIG. 1 is a diagram showing elements of the configuration of the present invention. In FIG. 1, 11.20......Microwave coaxial cable, 12.19...Coaxial equal wave type converter, ], 3. 18... Electromagnetic horn, 14.15...- Electromagnetic lens, 16.
......Sample, holder, 17...
・Sample, 21......, rail~22-...
...Electric mE, 23...Pole piece. FIG. 2 is an external view of the electromagnetic lens and electromagnetic horn of the present invention. Figure 3 is a side view of an electromagnetic lens, where (a) is a one-sided convex lens, and (b) is a double-sided convex lens. FIG. 4 is a block diagram of the microwave circuit used in the present invention. In Fig. 4 1ζ, 31...Gun power supply, 32...
・・Gun oscillator, 33・・・・・・・Hayamuki tongue, 34
...... Directional coupler, 35...
...Shutter, 36... Phaser, 37
・・・・・・・・・Delay line, 38・・・・・・・・・
・Rotary attenuator, 39... Circulator, 40... Crystal detector, 41...
・・・・・・・・・Magic T, 42・・・・・・・・・
Input quadrangle, 43... Preamplifier, 4
4・・・・・・・・・Amplifier, 45・・・・・・・・・
Modulation circuit, 4 &... Oscillator, 47...
... Phaser O 3 Figure ((2) (-e-) Figure 4

Claims (1)

【特許請求の範囲】[Claims] 発信用電磁ホーンと受信用電磁ホーンを有し、これら2
つの電磁ホーンの間に試料を保持するための試料保持部
を備えてなる磁気共鳴装置において、屈折面が回転双曲
面であるような片凸レンズもしくは両凸レンズ状の誘電
体11山レンズが上記2つの電磁ホーンのうち少くとも
1つの電磁ホーンの開口部にはめこまれていることを特
徴とする磁気共鳴装置。
It has an electromagnetic horn for transmitting and an electromagnetic horn for receiving, and these two
In a magnetic resonance apparatus equipped with a sample holder for holding a sample between two electromagnetic horns, a dielectric 11-mount lens in the form of a monoconvex lens or a biconvex lens whose refracting surface is a hyperboloid of rotation is used as the two electromagnetic horns. A magnetic resonance apparatus characterized in that the apparatus is fitted into an opening of at least one of the electromagnetic horns.
JP58124486A 1983-07-08 1983-07-08 Magnetic resonance apparatus Pending JPS6017370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58124486A JPS6017370A (en) 1983-07-08 1983-07-08 Magnetic resonance apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58124486A JPS6017370A (en) 1983-07-08 1983-07-08 Magnetic resonance apparatus

Publications (1)

Publication Number Publication Date
JPS6017370A true JPS6017370A (en) 1985-01-29

Family

ID=14886700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58124486A Pending JPS6017370A (en) 1983-07-08 1983-07-08 Magnetic resonance apparatus

Country Status (1)

Country Link
JP (1) JPS6017370A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003445A (en) * 2005-06-27 2007-01-11 Jeol Ltd Fabry-perot resonator for esr, and esr device
JP2019054546A (en) * 2018-12-03 2019-04-04 日立オートモティブシステムズ株式会社 Sensor having flat beam generation antenna

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003445A (en) * 2005-06-27 2007-01-11 Jeol Ltd Fabry-perot resonator for esr, and esr device
JP2019054546A (en) * 2018-12-03 2019-04-04 日立オートモティブシステムズ株式会社 Sensor having flat beam generation antenna

Similar Documents

Publication Publication Date Title
Smith et al. Quasi-optical cw mm-wave electron spin resonance spectrometer
Soohoo A microwave magnetic microscope
EP0570592A1 (en) Electron spin resonator
JPS6017370A (en) Magnetic resonance apparatus
US4290017A (en) Apparatus and method for nondestructive evaluation of surface flaws in conductive materials
CN109891252B (en) Quantum power sensor
US5030914A (en) Electron paramagnetic resonance instrument with superconductive cavity
US6946835B1 (en) Spatially resolved spin resonance detection
Silva et al. Nonlinear magneto-optic measurement of flux propagation dynamics in thin Permalloy films
JPS62132159A (en) Triplate type resonator
JPH0378591B2 (en)
Qian et al. A new approach for measuring permittivity of dielectric materials
Dube et al. Measurement of the permittivity of films at microwave frequencies
JP2967224B2 (en) Cavity resonator for ferromagnetic resonance measurement
JP3239957B2 (en) Thin film cavity resonator with pole piece
MacBean The measurement of complex permittivity and complex tensor permeability of ferrite materials at microwave frequencies
El Rayess et al. Frequency dependence of the ferromagnetic resonance linewidth of barium ferrite
Afsar et al. Complex permittivity and permeability measurements of ferrimagnets at millimeter waves with high power sources
Harvey Ferrite structures for millimetre wavelengths
Standley et al. A technique for measuring the magnetic permeability tensor components and the dielectric constant of microwave ferrites and garnets
Courtney et al. Experimental Studies of Spinwaves Excited by Parallel Pumping
Zhang et al. Ferromagnetic resonance of micrometer-sized samples
Muchmore et al. 10. Microwaves
Ohya-Nishiguchi et al. ESR spectrometers using electromagnetic horns
JP3950759B2 (en) Impedance converter