JP2007003445A - Fabry-perot resonator for esr, and esr device - Google Patents

Fabry-perot resonator for esr, and esr device Download PDF

Info

Publication number
JP2007003445A
JP2007003445A JP2005186240A JP2005186240A JP2007003445A JP 2007003445 A JP2007003445 A JP 2007003445A JP 2005186240 A JP2005186240 A JP 2005186240A JP 2005186240 A JP2005186240 A JP 2005186240A JP 2007003445 A JP2007003445 A JP 2007003445A
Authority
JP
Japan
Prior art keywords
fabry
esr
perot resonator
magnetic field
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005186240A
Other languages
Japanese (ja)
Other versions
JP4721784B2 (en
Inventor
Takayuki Suzuki
鈴木貴之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2005186240A priority Critical patent/JP4721784B2/en
Publication of JP2007003445A publication Critical patent/JP2007003445A/en
Application granted granted Critical
Publication of JP4721784B2 publication Critical patent/JP4721784B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Fabry-Perot resonator that is compatible with a temperature adjustable device, is also compatible with a magnet device for generating a static magnetic field in the Y-axial direction, and can improve the degree of freedom of a measured sample, and to provide an ESR (electron spin resonance) device using such a Fabry-Perot resonator. <P>SOLUTION: A pair of reflectors that are bent in a concave shape and have a shape obtained by cutting a concave section in a cylindrical inner wall with planes parallel with a cylindrical axis are arranged so as to face the concave surfaces to each other while matching the axial directions. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高周波を共振させるファブリ・ペロー共振器と、該共振器を使用した高磁場・高周波ESR装置に関する。 The present invention relates to a Fabry-Perot resonator that resonates a high frequency, and a high magnetic field / high frequency ESR device using the resonator.

ESR装置は、静磁場中に置かれた被測定試料にマイクロ波を照射すると共に、照射したマイクロ波が被測定試料によって吸収される様子をスペクトルとして記録するようにした磁気共鳴装置の一種である。被測定試料中にフリーラジカルが存在すると、静磁場の掃引に伴ってマイクロ波の吸収が起こり、フリーラジカルの分子構造を反映した吸収スペクトルが記録計に記録される。この吸収スペクトルを解析することにより、フリーラジカルの分子構造に関する情報を得ることができる。   An ESR apparatus is a type of magnetic resonance apparatus that irradiates a sample to be measured placed in a static magnetic field with microwaves and records the state in which the irradiated microwave is absorbed by the sample to be measured as a spectrum. . When free radicals are present in the sample to be measured, microwave absorption occurs as the static magnetic field is swept, and an absorption spectrum reflecting the free radical molecular structure is recorded in the recorder. By analyzing this absorption spectrum, information on the molecular structure of the free radical can be obtained.

近年、ESR装置の感度および分解能を飛躍的に向上させる目的で、被測定試料に印加する静磁場の強度を高めるとともに、共鳴に用いる電磁波をマイクロ波帯域からミリ波帯域にまで高める試みが行なわれている。   In recent years, in order to dramatically improve the sensitivity and resolution of an ESR apparatus, attempts have been made to increase the strength of the static magnetic field applied to the sample to be measured and to increase the electromagnetic wave used for resonance from the microwave band to the millimeter wave band. ing.

図1は、高磁場ESR装置の基本構成を示したものである。図中5は、強い静磁場を発生させる、例えば超伝導磁石などの磁石装置である。円筒ドーム状の磁石装置5の中心軸(Y軸)に沿った縦穴の内部には、測定対象物質を収納した検出器1が配置されている。   FIG. 1 shows a basic configuration of a high magnetic field ESR apparatus. In the figure, reference numeral 5 denotes a magnet device that generates a strong static magnetic field, such as a superconducting magnet. Inside the vertical hole along the central axis (Y axis) of the cylindrical dome-shaped magnet device 5, a detector 1 containing a substance to be measured is disposed.

一般的には、この磁石装置5の磁場を掃引しながら、高周波回路ユニット2より一定周波数の電磁波を検出器1に供給し続ける。掃引中、ある磁場の強さで測定物質の共鳴条件が成立すると、検出器1から反射されてくる電磁波の量が変化する。このときの反射波の変化を高周波回路ユニット2で検波し、信号処理ユニット3を通してスペクトルに変換し、スペクトル表示装置4に表示する。   In general, an electromagnetic wave having a constant frequency is continuously supplied from the high-frequency circuit unit 2 to the detector 1 while sweeping the magnetic field of the magnet device 5. During the sweep, when the resonance condition of the measurement substance is satisfied with a certain magnetic field strength, the amount of electromagnetic waves reflected from the detector 1 changes. The change of the reflected wave at this time is detected by the high frequency circuit unit 2, converted into a spectrum through the signal processing unit 3, and displayed on the spectrum display device 4.

高磁場・高周波を用いたESR測定を行なう場合、磁石装置5中に配置される検出器1は、主に空胴共振器やファブリ・ペロー共振器が用いられる。共振器の性能は、一般に、Q値と発生する高周波磁場の強度B1とで評価される。 When performing ESR measurement using a high magnetic field and a high frequency, the detector 1 disposed in the magnet device 5 is mainly a cavity resonator or a Fabry-Perot resonator. The performance of the resonator is generally evaluated by the Q value and the intensity B 1 of the generated high frequency magnetic field.

空胴共振器は、高いQ値と強いB1強度を有することから、ESR測定用の検出器として広く用いられている。しかし、空胴共振器の場合、測定周波数が高周波領域になると、周波数の平方根に比例してQ値は低下してしまう。さらに、共振器の体積が小さくなり、利用できる測定試料の体積に厳しい制限がかかる。 The cavity resonator is widely used as a detector for ESR measurement because it has a high Q value and a strong B 1 intensity. However, in the case of a cavity resonator, when the measurement frequency is in a high frequency region, the Q value is reduced in proportion to the square root of the frequency. Furthermore, the volume of the resonator is reduced, and the volume of the measurement sample that can be used is severely limited.

例えば、95GHzで共振するTE011型の円筒モード共振器の場合、直径も高さも4mmの大きさになる。測定試料は、直径1mm以下のガラス管などに充填して、この共振器内に挿入することになるので、寸法が小さく、きわめて扱いにくい。共振周波数がさらに高くなると、共振器の寸法と試料の体積は、周波数の上昇に反比例してますます小さくならざるを得ないので、空胴共振器の利用は実用上不利である。 For example, in the case of a TE 011 type cylindrical mode resonator that resonates at 95 GHz, both the diameter and height are 4 mm. Since the measurement sample is filled in a glass tube having a diameter of 1 mm or less and inserted into the resonator, the dimensions are small and extremely difficult to handle. As the resonance frequency is further increased, the use of a cavity resonator is practically disadvantageous because the resonator dimensions and sample volume must be made smaller and smaller in inverse proportion to the increase in frequency.

一方、ファブリ・ペロー共振器は、2枚の反射板で構成され、ミリ波以上の高周波領域において、空胴共振器よりも高いQ値と大きな測定部体積を有することから、高磁場・高周波を用いたESR測定に広く用いられている(特許文献1)。   On the other hand, a Fabry-Perot resonator is composed of two reflectors, and has a higher Q value and a larger measurement volume than a cavity resonator in a high-frequency region above millimeter waves. Widely used for the ESR measurement used (Patent Document 1).

図2と図3に2種類の代表的なファブリ・ペロー共振器を示す。まず、図2に示したタイプのファブリ・ペロー共振器は、図1の磁石装置5が発生する静磁場がY軸方向を向いている場合に用いられる。基本構成は、球面加工された凹面鏡7と平面の板から成る反射鏡10とから成り、導波路6から供給された高周波磁界8(および90度の位相差で電界も)が図のように多重反射する。このとき、測定試料9は、反射鏡10の中央に置かれる(非特許文献1)。高周波磁界8は、静磁場方向Yとは垂直なZX平面上に成分を持つので、磁気共鳴を起こすことができる。   2 and 3 show two typical Fabry-Perot resonators. First, the Fabry-Perot resonator of the type shown in FIG. 2 is used when the static magnetic field generated by the magnet device 5 of FIG. 1 is oriented in the Y-axis direction. The basic configuration is composed of a concave mirror 7 processed with a spherical surface and a reflecting mirror 10 made of a flat plate, and a high-frequency magnetic field 8 (and an electric field with a phase difference of 90 degrees) supplied from the waveguide 6 is multiplexed as shown in the figure. reflect. At this time, the measurement sample 9 is placed at the center of the reflecting mirror 10 (Non-Patent Document 1). Since the high frequency magnetic field 8 has a component on the ZX plane perpendicular to the static magnetic field direction Y, magnetic resonance can occur.

一方、図3に示したタイプのファブリ・ペロー共振器は、球面加工された1対の凹面鏡12から成り、導波路11から供給された高周波磁界13(および90度の位相差で電界も)は、図のように凹面鏡間で多重反射する。このとき、測定試料14は、1対の凹面鏡12のちょうど中間位置に置かれる。高周波磁界13は、XY平面上に成分を持つので、磁気共鳴を起こすためには、図1の磁石装置5が発生する静磁場は、Z軸方向であることが望ましい。   On the other hand, a Fabry-Perot resonator of the type shown in FIG. 3 is composed of a pair of spherically processed concave mirrors 12, and a high-frequency magnetic field 13 (and an electric field with a phase difference of 90 degrees) supplied from the waveguide 11 is obtained. As shown in the figure, multiple reflections are made between concave mirrors. At this time, the measurement sample 14 is placed at an exactly middle position between the pair of concave mirrors 12. Since the high-frequency magnetic field 13 has a component on the XY plane, in order to cause magnetic resonance, the static magnetic field generated by the magnet device 5 in FIG. 1 is desirably in the Z-axis direction.

特開平10-123072号公報Japanese Patent Laid-Open No. 10-123072 発明協会公開技報2005-501662Japan Society for Invention and Innovation Technical Report 2005-501662

ところで、図2に示すタイプのファブリ・ペロー共振器の場合、温度可変装置などの密閉された空間にこの共振器を設置すると、通常、温度可変装置の測定部は、Y軸方向に細長い形状をしているので、測定試料の交換が困難になるという問題があった。また、図2に示すタイプのファブリ・ペロー共振器は、共振器の対称性が悪く、高周波の定在波が歪みやすいので、測定試料に印加される高周波磁界B1の強度が弱くなり、感度が悪くなる。また、反射鏡の上に直接測定試料を置くため、試料角度の回転を行なうような実験はできない。 By the way, in the case of a Fabry-Perot resonator of the type shown in FIG. 2, when this resonator is installed in a sealed space such as a temperature variable device, the measurement unit of the temperature variable device usually has a shape elongated in the Y-axis direction. Therefore, there is a problem that it is difficult to replace the measurement sample. Further, since the Fabry-Perot resonator of the type shown in FIG. 2 has poor symmetry of the resonator and the high-frequency standing wave is easily distorted, the strength of the high-frequency magnetic field B 1 applied to the measurement sample becomes weak, and the sensitivity Becomes worse. In addition, since the measurement sample is placed directly on the reflecting mirror, an experiment in which the sample angle is rotated cannot be performed.

一方、図3に示すタイプのファブリ・ペロー共振器の場合、球面鏡を採用しているので、高周波磁界はX、Yどちらの方向にも成分を持ち得る。したがって、Y軸方向に静磁場が発生する磁石装置5を用いたとき、X軸方向に高周波磁界が発生しなければ、ESR信号が得られないという欠点がある。したがって、Y軸方向に静磁場が発生する磁石装置5を用いる実験では、確実にX軸方向に高周波磁界が発生するような特別な工夫が必要となる。また、X、Yどちらの方向の高周波磁界も共鳴検出に利用する場合には、Z軸方向の磁石装置が必要となるが、高磁場になればなるほど、Z軸方向に静磁場が発生するような磁石装置は入手困難となるので、この方式は不利である。   On the other hand, since the Fabry-Perot resonator of the type shown in FIG. 3 employs a spherical mirror, the high-frequency magnetic field can have components in both the X and Y directions. Therefore, when the magnet device 5 that generates a static magnetic field in the Y-axis direction is used, there is a disadvantage that an ESR signal cannot be obtained unless a high-frequency magnetic field is generated in the X-axis direction. Therefore, in an experiment using the magnet device 5 that generates a static magnetic field in the Y-axis direction, a special device is required to reliably generate a high-frequency magnetic field in the X-axis direction. When a high-frequency magnetic field in either X or Y direction is used for resonance detection, a magnet device in the Z-axis direction is required. However, as the magnetic field becomes higher, a static magnetic field is generated in the Z-axis direction. This method is disadvantageous because it is difficult to obtain a magnet device.

本発明の目的は、上述した点に鑑み、温度可変装置との相性が良く、Y軸方向に静磁場を発生する磁石装置とも相性が良く、測定試料の自由度を向上できるようなファブリ・ペロー共振器、および、そのようなファブリ・ペロー共振器を用いたESR装置を提供することにある。   In view of the above points, the object of the present invention is a Fabry-Perot that is compatible with a temperature variable device, is compatible with a magnet device that generates a static magnetic field in the Y-axis direction, and can improve the degree of freedom of a measurement sample. It is an object of the present invention to provide a resonator and an ESR device using such a Fabry-Perot resonator.

この目的を達成するため、本発明にかかるファブリ・ペロー共振器は、
円筒内壁の凹部を円筒軸と平行な平面で切り取った形状を持つ凹状に湾曲した1対の反射板を、軸方向を一致させながら凹面同士で対向配置させたESR用ファブリ・ペロー共振器であって、
該反射板の片側より高周波を導入し、1対の反射板の間隙中心付近に測定試料をセットして使用することを特徴としている。
In order to achieve this object, a Fabry-Perot resonator according to the present invention includes:
A Fabry-Perot resonator for ESR in which a pair of reflecting plates curved in a concave shape having a shape obtained by cutting a concave portion of a cylindrical inner wall along a plane parallel to a cylindrical axis are arranged to face each other with the concave surfaces facing each other while matching the axial direction. And
A high frequency is introduced from one side of the reflecting plate, and a measurement sample is set near the center of the gap between the pair of reflecting plates.

また、前記1対の反射板は、円筒の曲率半径が互いに等しいことを特徴としている。   The pair of reflectors is characterized in that the radii of curvature of the cylinders are equal to each other.

また、前記1対の反射板は、凹部側が鏡面であることを特徴としている。   The pair of reflectors is characterized in that the concave side is a mirror surface.

また、本発明にかかるESR装置は、円筒内壁の凹部を円筒軸と平行な平面で切り取った形状を持つ凹状に湾曲した1対の反射板を、軸方向を一致させながら凹面同士で対向配置させて成るファブリ・ペロー共振器を検出部に備えたことを特徴としている。   Further, the ESR device according to the present invention has a pair of reflecting plates curved in a concave shape having a shape obtained by cutting a concave portion of a cylindrical inner wall along a plane parallel to a cylindrical axis, and opposingly arranges the concave surfaces with each other while matching the axial direction. The detection unit is provided with a Fabry-Perot resonator.

また、前記ファブリ・ペロー共振器の共振器軸を静磁場軸と一致させてESR装置を構成することを特徴としている。   In addition, the ESR device is configured such that the resonator axis of the Fabry-Perot resonator coincides with the static magnetic field axis.

本発明のファブリ・ペロー共振器によれば、円筒内壁の凹部を円筒軸と平行な平面で切り取った形状を持つ凹状に湾曲した1対の反射板を、軸方向を一致させながら凹面同士で対向配置させたESR用ファブリ・ペロー共振器であって、
該反射板の片側より高周波を導入し、1対の反射板の間隙中心付近に測定試料をセットして使用することを特徴としているので、
温度可変装置との相性が良く、Y軸方向に静磁場を発生する磁石装置とも相性が良く、測定試料の自由度を向上できるようなファブリ・ペロー共振器を提供することが可能になった。
According to the Fabry-Perot resonator of the present invention, a pair of reflecting plates curved in a concave shape having a shape obtained by cutting a concave portion of a cylindrical inner wall along a plane parallel to the cylindrical axis are opposed to each other while matching the axial direction. An ESR Fabry-Perot resonator disposed,
Since a high frequency is introduced from one side of the reflector and a measurement sample is set near the center of the gap between the pair of reflectors,
It has become possible to provide a Fabry-Perot resonator that is compatible with a temperature variable device, is compatible with a magnet device that generates a static magnetic field in the Y-axis direction, and can improve the degree of freedom of a measurement sample.

また、本発明のESR装置によれば、円筒内壁の凹部を円筒軸と平行な平面で切り取った形状を持つ凹状に湾曲した1対の反射板を、軸方向を一致させながら凹面同士で対向配置させたESR用ファブリ・ペロー共振器であって、
該反射板の片側より高周波を導入し、1対の反射板の間隙中心付近に測定試料をセットして使用するファブリ・ペロー共振器を検出部に備えたので、
温度可変装置との相性が良く、Y軸方向に静磁場を発生する磁石装置とも相性が良く、測定試料の自由度を向上できるようなESR装置を提供することが可能になった。
Further, according to the ESR apparatus of the present invention, a pair of reflecting plates curved in a concave shape having a shape obtained by cutting out the concave portion of the cylindrical inner wall along a plane parallel to the cylindrical axis are arranged opposite to each other while matching the axial direction. A Fabry-Perot resonator for ESR,
Since a high frequency is introduced from one side of the reflecting plate, and a Fabry-Perot resonator that is used by setting a measurement sample in the vicinity of the center of the gap between the pair of reflecting plates,
It has become possible to provide an ESR device that has good compatibility with a temperature variable device, good compatibility with a magnet device that generates a static magnetic field in the Y-axis direction, and can improve the degree of freedom of a measurement sample.

以下、図面に基づいて、本発明の実施例について説明する。図4は、本発明にかかるファブリ・ペロー共振器を説明した図である。図中21は、円筒内壁の凹部を円筒軸と平行な平面で切り取った形状を持つ凹状に湾曲した1対の反射板である。この反射板は、竹筒を縦に割って向かい合わせに並べたような半円筒型の形状を持つ。円筒軸方向を一致させながら凹面同士で対向配置させることにより、導波路22を通って反射板21の片側より供給される高周波磁界23(および90度の位相差で電界も)を、1対の反射板21間で共振させることができる。共振周波数は、反射板21間の距離を変えることで変化させることができる。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 4 is a diagram illustrating a Fabry-Perot resonator according to the present invention. In the figure, reference numeral 21 denotes a pair of reflecting plates curved in a concave shape having a shape obtained by cutting out the concave portion of the cylindrical inner wall along a plane parallel to the cylindrical axis. This reflector has a semi-cylindrical shape in which bamboo cylinders are divided vertically and arranged face to face. By arranging the concave surfaces to face each other while matching the cylindrical axis direction, a high-frequency magnetic field 23 (and an electric field with a phase difference of 90 degrees) supplied from one side of the reflecting plate 21 through the waveguide 22 is also paired. Resonance between the reflecting plates 21 can be achieved. The resonance frequency can be changed by changing the distance between the reflecting plates 21.

導波路22には、導波管や誘電体導波路が用いられる。同軸ケーブルの使用も不可能ではないが、95GHz帯域では損失が大き過ぎて好ましくない。導波路22と反射板21との結合は、導波路22が導波管である場合は、導波管壁と反射板21を共にアースに落とすとともに、反射板21に結合孔を開けることにより行ない、スタブと呼ばれる結合度調整ピンやショート・プランジャーと呼ばれる移動壁で結合度の微調節を図る。一方、導波路22が誘電体導波路である場合の結合は、導波路壁と反射板21を共にアースに落とすとともに、反射板21に結合孔を開け、誘電体の芯をファブリ・ペロー共振器内に突き出させることにより行ない、芯の突き出し方を加減することで結合度の微調節を図る。これらの結合孔の位置は、反射板21の中心付近であることが好ましいが、中心からずれていても結合は不可能ではない。   For the waveguide 22, a waveguide or a dielectric waveguide is used. Although it is not impossible to use a coaxial cable, the loss is too large in the 95 GHz band, which is not preferable. When the waveguide 22 is a waveguide, the waveguide 22 and the reflection plate 21 are coupled by dropping both the waveguide wall and the reflection plate 21 to the ground and opening a coupling hole in the reflection plate 21. The degree of coupling is finely adjusted by a coupling degree adjusting pin called a stub and a moving wall called a short plunger. On the other hand, when the waveguide 22 is a dielectric waveguide, the waveguide wall and the reflection plate 21 are both dropped to the ground, a coupling hole is opened in the reflection plate 21, and the dielectric core is a Fabry-Perot resonator. The degree of coupling is finely adjusted by adjusting the way of protruding the core. The positions of these coupling holes are preferably near the center of the reflector 21, but coupling is not impossible even if they are deviated from the center.

このファブリ・ペロー共振器の特徴は、図1の磁石装置5が発生する静磁場がY軸方向を向いている場合と相性が良いことである。高周波磁界23は、導波路22から1対の反射板21間に送られ、静磁場方向Yとは直交するX軸方向に成分を持つように発生する。これにより、本発明にかかるファブリ・ペロー共振器の共振器軸(円筒軸)を静磁場軸(Y軸)と一致させてESR装置を構成すれば、測定試料24のESR現象を感度良く捉えることができる。また、試料空間がY軸方向に細長いため、温度可変装置との相性も良く、角度回転や試料の出し入れが容易である。なお、測定試料は、前記1対の反射板21の間隙中心付近にセットされる。   The feature of this Fabry-Perot resonator is that it is compatible with the case where the static magnetic field generated by the magnet device 5 of FIG. 1 is oriented in the Y-axis direction. The high-frequency magnetic field 23 is sent from the waveguide 22 between the pair of reflecting plates 21 and is generated so as to have a component in the X-axis direction orthogonal to the static magnetic field direction Y. Thus, if the ESR device is configured by aligning the resonator axis (cylindrical axis) of the Fabry-Perot resonator according to the present invention with the static magnetic field axis (Y axis), the ESR phenomenon of the measurement sample 24 can be captured with high sensitivity. Can do. Further, since the sample space is elongated in the Y-axis direction, compatibility with the temperature variable device is good, and angular rotation and sample insertion and removal are easy. The measurement sample is set near the center of the gap between the pair of reflecting plates 21.

本発明にかかるファブリ・ペロー共振器の特徴を明確にするために、従来の球面鏡から成るファブリ・ペロー共振器と本案との電磁界計算による比較を行なった。ファブリ・ペロー共振器の共振条件は、図5に示すように、下記の近似式によって定義される。   In order to clarify the characteristics of the Fabry-Perot resonator according to the present invention, a comparison between the Fabry-Perot resonator composed of a conventional spherical mirror and the present plan by electromagnetic field calculation was performed. The resonance condition of the Fabry-Perot resonator is defined by the following approximate expression as shown in FIG.

Figure 2007003445
ここで、Lはミラー間距離、λは共振波長、qは高周波電界のノードの数、Rはミラーの曲率半径である。計算に当たっては、図6に示すように、L=R=6.3mm、λ=3.156mm(95GHzにおける自由空間波長)、q=4というパラメータ設定を行なった。その他に、球面鏡の直径H=7.26mm、半円筒鏡の高さH=10.0mmとした。
Figure 2007003445
Here, L is the distance between the mirrors, λ is the resonance wavelength, q is the number of nodes of the high-frequency electric field, and R is the radius of curvature of the mirror. In the calculation, as shown in FIG. 6, parameters were set such that L = R = 6.3 mm, λ = 3.156 mm (free space wavelength at 95 GHz), and q = 4. In addition, the diameter H of the spherical mirror was 7.26 mm, and the height H of the semi-cylindrical mirror was 10.0 mm.

図7は、電磁界計算によって得られた高周波磁界B1の強度分布を図示したものである。図の横軸はX軸方向の位置(単位:mm)、縦軸はY軸方向の位置(単位:mm)を表わしている。高周波磁界B1は、X軸方向すなわち紙面横方向に向けて発生する。その強度分布を球面鏡と半円筒鏡とで比較すると、球面鏡では高周波磁界B1の強度の強い領域が円状に狭く分布しているのに対し、半円筒鏡では高周波磁界B1の強度の強い領域が縦に長い矩形状に広く分布していることが分かる。 FIG. 7 illustrates the intensity distribution of the high-frequency magnetic field B 1 obtained by the electromagnetic field calculation. In the figure, the horizontal axis represents the position in the X-axis direction (unit: mm), and the vertical axis represents the position in the Y-axis direction (unit: mm). The high-frequency magnetic field B 1 is generated in the X-axis direction, that is, in the lateral direction of the paper. Comparing the intensity distribution between the spherical mirror and the semi-cylindrical mirror, the strong area of the high-frequency magnetic field B 1 is narrowly distributed in the circular mirror, whereas the semi-cylindrical mirror has a high intensity of the high-frequency magnetic field B 1. It can be seen that the region is widely distributed in a vertically long rectangular shape.

これをB1強度のグラフで表示すると、図8のようになる。図の縦軸は高周波磁界B1の強度値(単位:gauss/√W)、横軸はY軸方向の位置(単位:mm)である。図から明らかなように、高周波磁界B1の強度値は、球面鏡でも半円筒鏡でも鏡間空間の中心位置で最も強くなり、中心からY方向に遠ざかるにつれて、しだいに弱くなるという分布を示す。 When this is displayed as a graph of B 1 intensity, it is as shown in FIG. The vertical axis represents intensity values of the high frequency magnetic field B 1 of Figure (unit: gauss / √W), the horizontal axis represents the position in the Y-axis direction (unit: mm) is. As is apparent from the figure, the intensity value of the high-frequency magnetic field B 1 shows a distribution that is strongest at the center position of the inter-mirror space in both the spherical mirror and the semi-cylindrical mirror, and gradually decreases as the distance from the center increases in the Y direction.

ただし、その分布の様子には違いがあり、球面鏡では鏡間空間の中心位置において高周波磁界B1の強度値が非常に高く、中心からY方向に離れると急激に強度値が低下するのに対して、半円筒鏡では鏡間空間の中心付近での高周波磁界B1の強度値がさほど高くない代わりに、鏡の中心からY方向に遠ざかっても、高周波磁界B1の強度値は、それほど急激には低下しない。その結果、半円筒鏡では、比較的広い範囲にわたって、高周波磁界B1の強度値の強い領域が分布する結果となった。 However, there is a difference in the state of the distribution. In the spherical mirror, the intensity value of the high-frequency magnetic field B 1 is very high at the center position of the inter-mirror space. Te, instead the intensity value of the high-frequency magnetic field B 1 at the vicinity of the center of the mirror between the space in the semi-cylindrical mirror is not so high, even away from the center of the mirror in the Y direction, the intensity value of the high-frequency magnetic field B 1 represents, very rapidly It will not drop. As a result, in the semi-cylindrical mirror, a region where the intensity value of the high-frequency magnetic field B 1 is strong is distributed over a relatively wide range.

図9は、球面鏡タイプのファブリ・ペロー共振器と半円筒鏡タイプのファブリ・ペロー共振器とで、測定に使用できる試料の有効体積を比較したものである。図から明らかなように、球面鏡タイプのファブリ・ペロー共振器の有効試料体積が、3.63×3.63×1.0mm3であるのに対して、半円筒鏡タイプのファブリ・ペロー共振器の有効試料体積は、7.26×10.0×1.0mm3となり、約7.3倍となる。これにより、本案のファブリ・ペロー共振器では、試料量を増やすことにより、測定感度を向上させることができる。 FIG. 9 compares the effective volume of a sample that can be used for measurement in a spherical mirror type Fabry-Perot resonator and a semi-cylindrical mirror type Fabry-Perot resonator. As is apparent from the figure, the effective sample volume of the spherical mirror type Fabry-Perot resonator is 3.63 × 3.63 × 1.0 mm 3 , whereas the semi-cylindrical mirror type Fabry-Perot resonator is used. The effective sample volume is 7.26 × 10.0 × 1.0 mm 3 , which is about 7.3 times. Thereby, in the Fabry-Perot resonator of the present proposal, the measurement sensitivity can be improved by increasing the sample amount.

高磁場・高周波ESR装置の検出器に広く利用できる。   It can be widely used as a detector for high magnetic field / high frequency ESR devices.

従来の高磁場ESR装置の基本構成を示す図である。It is a figure which shows the basic composition of the conventional high magnetic field ESR apparatus. 従来のファブリ・ペロー共振器を示す図である。It is a figure which shows the conventional Fabry-Perot resonator. 従来のファブリ・ペロー共振器を示す図である。It is a figure which shows the conventional Fabry-Perot resonator. 本発明にかかるファブリ・ペロー共振器の一実施例を示す図である。It is a figure which shows one Example of the Fabry-Perot resonator concerning this invention. ファブリ・ペロー共振器の共振条件を示す図である。It is a figure which shows the resonance conditions of a Fabry-Perot resonator. ファブリ・ペロー共振器のモデル計算パラメータを示す図である。It is a figure which shows the model calculation parameter of a Fabry-Perot resonator. ファブリ・ペロー共振器のモデル比較結果を示す図である。It is a figure which shows the model comparison result of a Fabry-Perot resonator. ファブリ・ペロー共振器のモデル比較結果を示す図である。It is a figure which shows the model comparison result of a Fabry-Perot resonator. ファブリ・ペロー共振器のモデル比較結果を示す図である。It is a figure which shows the model comparison result of a Fabry-Perot resonator.

符号の説明Explanation of symbols

1:検出器、2:高周波回路ユニット、3:信号処理ユニット、4:スペクトル表示装置、5:磁石装置、6:導波路、7:凹面鏡、8:高周波磁界、9:測定試料、10:反射鏡、11:導波路、12:凹面鏡、13:高周波磁界、14:測定試料、21:反射板、22:導波路、23:高周波磁界、24:測定試料
1: detector, 2: high frequency circuit unit, 3: signal processing unit, 4: spectrum display device, 5: magnet device, 6: waveguide, 7: concave mirror, 8: high frequency magnetic field, 9: measurement sample, 10: reflection Mirror, 11: Waveguide, 12: Concave mirror, 13: High frequency magnetic field, 14: Measurement sample, 21: Reflector, 22: Waveguide, 23: High frequency magnetic field, 24: Measurement sample

Claims (5)

円筒内壁の凹部を円筒軸と平行な平面で切り取った形状を持つ凹状に湾曲した1対の反射板を、軸方向を一致させながら凹面同士で対向配置させたESR用ファブリ・ペロー共振器であって、
該反射板の片側より高周波を導入し、1対の反射板の間隙中心付近に測定試料をセットして使用することを特徴とするESR用ファブリ・ペロー共振器。
A Fabry-Perot resonator for ESR in which a pair of reflecting plates curved in a concave shape having a shape obtained by cutting a concave portion of a cylindrical inner wall along a plane parallel to a cylindrical axis are arranged to face each other with the concave surfaces facing each other while matching the axial direction. And
A Fabry-Perot resonator for ESR, wherein a high frequency is introduced from one side of the reflector and a measurement sample is set near the center of the gap between the pair of reflectors.
前記1対の反射板は、円筒の曲率半径が互いに等しいことを特徴とする請求項1記載のESR用ファブリ・ペロー共振器。 2. The Fabry-Perot resonator for ESR according to claim 1, wherein the pair of reflectors have the same radius of curvature of a cylinder. 前記1対の反射板は、凹部側が鏡面であることを特徴とする請求項1記載のESR用ファブリ・ペロー共振器。 2. The Fabry-Perot resonator for ESR according to claim 1, wherein the pair of reflectors has a mirror surface on the concave side. 請求項1記載のファブリ・ペロー共振器を検出部に備えたESR装置。 An ESR apparatus comprising the Fabry-Perot resonator according to claim 1 in a detection unit. 前記ファブリ・ペロー共振器の共振器軸を静磁場軸と一致させてESR装置を構成することを特徴とする請求項4記載のESR装置。
5. The ESR apparatus according to claim 4, wherein the ESR apparatus is configured such that a resonator axis of the Fabry-Perot resonator coincides with a static magnetic field axis.
JP2005186240A 2005-06-27 2005-06-27 Fabry-Perot resonator for ESR and ESR device Expired - Fee Related JP4721784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005186240A JP4721784B2 (en) 2005-06-27 2005-06-27 Fabry-Perot resonator for ESR and ESR device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005186240A JP4721784B2 (en) 2005-06-27 2005-06-27 Fabry-Perot resonator for ESR and ESR device

Publications (2)

Publication Number Publication Date
JP2007003445A true JP2007003445A (en) 2007-01-11
JP4721784B2 JP4721784B2 (en) 2011-07-13

Family

ID=37689216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005186240A Expired - Fee Related JP4721784B2 (en) 2005-06-27 2005-06-27 Fabry-Perot resonator for ESR and ESR device

Country Status (1)

Country Link
JP (1) JP4721784B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008017135A1 (en) * 2008-04-03 2009-11-12 Johann Wolfgang Goethe-Universität Double Resonance Structure and Method for Examining Samples by DNP and / or ENDOR
WO2016194073A1 (en) * 2015-05-29 2016-12-08 株式会社日立製作所 Electron spin resonance measurement method and device therefor
CN116299868A (en) * 2023-05-11 2023-06-23 之江实验室 Dual-resonant-cavity filter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724849A (en) * 1980-06-14 1982-02-09 Burukeru Anariteitsushie Mesut Sample head for measuring electronic spin resonance and electronic paramagnetic resonance
JPS6017370A (en) * 1983-07-08 1985-01-29 Nec Corp Magnetic resonance apparatus
JPS63232386A (en) * 1986-10-06 1988-09-28 Iwatsu Electric Co Ltd Fabry-perot interferometer
JPH05142273A (en) * 1991-10-23 1993-06-08 Yuseisho Tsushin Sogo Kenkyusho Impedance measurement method and device of specimen surface
JPH0666908A (en) * 1992-08-13 1994-03-11 Mitsubishi Electric Corp Esr device
JPH10123072A (en) * 1996-10-25 1998-05-15 Yamagata Pref Gov Techno Porisu Zaidan Resonator with dielectric waveguide and electron spin resonance measuring equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724849A (en) * 1980-06-14 1982-02-09 Burukeru Anariteitsushie Mesut Sample head for measuring electronic spin resonance and electronic paramagnetic resonance
JPS6017370A (en) * 1983-07-08 1985-01-29 Nec Corp Magnetic resonance apparatus
JPS63232386A (en) * 1986-10-06 1988-09-28 Iwatsu Electric Co Ltd Fabry-perot interferometer
JPH05142273A (en) * 1991-10-23 1993-06-08 Yuseisho Tsushin Sogo Kenkyusho Impedance measurement method and device of specimen surface
JPH0666908A (en) * 1992-08-13 1994-03-11 Mitsubishi Electric Corp Esr device
JPH10123072A (en) * 1996-10-25 1998-05-15 Yamagata Pref Gov Techno Porisu Zaidan Resonator with dielectric waveguide and electron spin resonance measuring equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008017135A1 (en) * 2008-04-03 2009-11-12 Johann Wolfgang Goethe-Universität Double Resonance Structure and Method for Examining Samples by DNP and / or ENDOR
DE102008017135B4 (en) * 2008-04-03 2011-06-09 Johann Wolfgang Goethe-Universität Double-resonance structure, spectrometer and method for testing samples by DNP and / or ENDOR
WO2016194073A1 (en) * 2015-05-29 2016-12-08 株式会社日立製作所 Electron spin resonance measurement method and device therefor
JPWO2016194073A1 (en) * 2015-05-29 2017-06-15 株式会社日立製作所 Electron spin resonance measurement method and apparatus
CN116299868A (en) * 2023-05-11 2023-06-23 之江实验室 Dual-resonant-cavity filter

Also Published As

Publication number Publication date
JP4721784B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
RU2263420C2 (en) Microwave heater
US9560699B2 (en) Microwave processing chamber
Kishk et al. Slot excitation of the dielectric disk radiator
JP4072601B2 (en) Apparatus for measuring complex permittivity using cavity resonators
US10353027B2 (en) EPR microwave cavity for small magnet airgaps
US7292035B2 (en) NMR.ESR antennas and spectrometers using these
JP4721784B2 (en) Fabry-Perot resonator for ESR and ESR device
Deshmukh et al. Compact broadband gap‐coupled shorted square microstrip antennas
Sheng Guo et al. Mie-resonance-coupled total broadband transmission through a single subwavelength aperture
US6828789B2 (en) Cavity resonator for electron paramagnetic resonance spectroscopy having axially uniform field
WO2019005922A1 (en) Photonic band-gap resonator for magnetic resonance applications
JP2007520714A (en) High frequency cavity resonator for nuclear magnetic resonance using radio frequency transmission lines
CN110320484B (en) Nuclear magnetic resonance magic angle rotating sample probe and coil block thereof
Starr et al. Angle resolved microwave spectrometer for metamaterial studies
Annino et al. Axially open nonradiative structures: an example of single-mode resonator based on the sample holder
JP2007003444A (en) Cavity resonator for esr
JP4328279B2 (en) Magnetic resonance detector
JP2005274167A (en) Cavity resonator for esr
Furtula et al. 105-GHz Notch Filter Design for Collective Thomson Scattering
Iwasaki et al. Symmetry matching of hybrid modes for dielectric metamaterials
Conciauro et al. Bimodal inductors for ESR spectroscopy
Smith et al. A high performance mm-wave electron spin resonance spectrometer
JPH04252601A (en) Microwave window
Matveichuk Waveguide-dielectric resonator method for accurate measurement of parameters of materials at high frequencies
CN116466141A (en) Liquid crystal complex dielectric constant measuring device and measuring method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4721784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees