JPS60173516A - Optical system for coupling light source - Google Patents

Optical system for coupling light source

Info

Publication number
JPS60173516A
JPS60173516A JP3011384A JP3011384A JPS60173516A JP S60173516 A JPS60173516 A JP S60173516A JP 3011384 A JP3011384 A JP 3011384A JP 3011384 A JP3011384 A JP 3011384A JP S60173516 A JPS60173516 A JP S60173516A
Authority
JP
Japan
Prior art keywords
lens
light source
optical system
lenses
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3011384A
Other languages
Japanese (ja)
Other versions
JPH055081B2 (en
Inventor
Yuji Ueno
裕司 上野
Hisami Nishi
壽巳 西
Minoru Toyama
遠山 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP3011384A priority Critical patent/JPS60173516A/en
Publication of JPS60173516A publication Critical patent/JPS60173516A/en
Publication of JPH055081B2 publication Critical patent/JPH055081B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To execute easily a polish-working and an assembly, and to execute a mass-production at a low cost by arranging two self-focusing type lenses consisting of a cylindrical transparent body having a specified refractive index n(r) in a distance of (r) from the center, in the optical axis direction, and making a numerical aperture of a light source side of an optical system larger than a numerical aperture of an emitting side. CONSTITUTION:An optical system 1 is constituted by placing two self-focusing type lenses 2, 3 so that the axes are made to coincide and each end face is made to adhere tightly. The self-focusing type lenses 2, 3 consist of a transparent cylindrical body of glass, synthetic resin, etc., and all end faces of both the lenses 2, 3 form a plane vertical to the optical axis. Also, as for both the lenses 2, 3, a refractive index n(r) in a distance of (r) from the optical axis has a refractive index distribution as shown in the equation. Particulars of the lens are selected so that numerical apertures NA1, NA2 of both the lenses 2, 3 become a relation of NA1>NA2. Also, with regard to a biquadratic term coefficient h4 in the equation of the lenses 2, 3, h4 of the first lens 2 of the light source side is made smaller than h4 of the second lens 3.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は光源からの拡散光束を光伝送ファイバに入射さ
せる光学系に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an optical system that makes a diffused light beam from a light source enter an optical transmission fiber.

〔発明の技術的背景〕[Technical background of the invention]

半導体レーザ等の光源から放射される特定波長の拡散光
を径の小さい光伝送ファイバ、特にシングルモードファ
イバに入射させる場合、波光損失を可及的に小さく抑え
るために低収差で効率良く入射させることが必要である
When making diffused light of a specific wavelength emitted from a light source such as a semiconductor laser enter a small-diameter optical transmission fiber, especially a single-mode fiber, it must be made to enter efficiently with low aberrations in order to keep wave light loss as low as possible. is necessary.

特に組み立て誤差に起因する軸外入射でも使用できるよ
うにコマ収差を充分に補正しておく必要がある。また光
学系は小型、軽量であることが要求される。
In particular, it is necessary to sufficiently correct coma aberration so that it can be used even with off-axis incidence caused by assembly errors. Further, the optical system is required to be small and lightweight.

従来この種の光源結合用光学系の典型的なものとしては
、光源と光伝送ファイバとの間に単一の自己集束型レン
ズを配置したものが知られている。
Conventionally, a typical optical system for coupling light sources of this type is one in which a single self-focusing lens is disposed between a light source and an optical transmission fiber.

自己集束型レンズは周知のように屈折率が中心軸上で最
大で半径方向にパラポリツクに漸減し外周で最小となる
屈折率分布をもつ透明円柱体からなる。上記のような単
一の自己集束型レンズの場合軸上収差を小さくするため
には屈折率分布の制御が極めて鑓しく、また仮りに軸上
収差を満足できる程度まで小さくし得たとしても、軸外
収差、特にコマ収差が大きいまま残るため、例えば組み
立て時の誤差等に起因して光源がレンズ光軸からずれた
ときに収差が太き(なり、ファイバに入射されない波光
損失が急激に増大するという問題がある。−例として最
も一般的に使用されているコア径10μmのシングルモ
ードファイバに、光軸に対し直角方向に0.1mmずれ
て光源からの光線を従来の単一の自己集束型レンズを介
して入射させたときのスポットダイアダラムを第3図に
示す。
As is well known, a self-focusing lens consists of a transparent cylindrical body having a refractive index distribution where the refractive index is maximum on the central axis, gradually decreases parapolitically in the radial direction, and is minimum at the outer periphery. In the case of a single self-focusing lens as described above, controlling the refractive index distribution is extremely difficult in order to reduce the axial aberration, and even if the axial aberration can be reduced to a satisfactory level, Off-axis aberrations, especially comatic aberrations, remain large, so when the light source is shifted from the optical axis of the lens due to an error during assembly, the aberrations become thicker (and the loss of light that is not incident on the fiber increases rapidly). - For example, in the most commonly used single mode fiber with a core diameter of 10 μm, there is a problem of conventional single self-focusing of the light beam from a light source with a deviation of 0.1 mm perpendicular to the optical axis. FIG. 3 shows a spot diaphragm when the light is incident through a molded lens.

同図において7はシングルモードファイバのコアを示し
、黒点ざはファイバ端面を含む平面を光線が横切る位置
を示す。
In the figure, 7 indicates the core of the single mode fiber, and the black dots indicate the positions where the light ray crosses the plane including the fiber end face.

第3図からレンズに入射した光線は一点に集まらず非常
に大きく拡散し、ファイバコア7に入射しない光線が相
当量存在することがわかる。
It can be seen from FIG. 3 that the light rays incident on the lens do not converge at one point but are greatly diffused, and that there is a considerable amount of light rays that do not enter the fiber core 7.

上記のような収差を補正した光学系は屈折率の一様な通
常の球面レンズ3ないし1枚で構成することは可能であ
るが、光学系がかなり大きなものになり、またレンズの
研磨加工、組立てに手間ががかりコストアップになると
いう問題がある。
An optical system that corrects the aberrations described above can be constructed from three or one ordinary spherical lens with a uniform refractive index, but the optical system would be quite large and would require lens polishing and polishing. There is a problem that assembly is time consuming and costs increase.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記従来の欠点を解消し、軸上収差の
みならず軸外1収差も小さく、シがもレンズ端面がすべ
て平面でよいため研磨加工組み立てが極めて容易で安価
に量産できるd\型、軽量の光源結合用光学系を提供す
ることである。
The purpose of the present invention is to eliminate the above-mentioned conventional drawbacks, to reduce not only the axial aberration but also the off-axis aberration, and because all lens end faces can be flat, polishing and assembly are extremely easy and mass production is possible at low cost. An object of the present invention is to provide a lightweight light source coupling optical system.

〔発明の構成〕[Structure of the invention]

上記目的を達成する本発明の光学系は、中心からrの距
離における屈折率n(r)が、中心軸上の屈折率をno
として n2(r)=no2C/−(gr)2+h4(gr)4
+h6(gr)6+11s(gr)s+・・・〕で表わ
される円柱状の透明体からなる2つの自己集束型レンズ
を光軸方向に並べ、光源側のレンズ(第1レンズ)の開
口数を他方のレンズ(第2レンズ)の開口数よりも大と
するとともに、前記係数h4について第1レンズの方を
第2レンズよりも小さくしたことを特徴としている。
In the optical system of the present invention that achieves the above object, the refractive index n(r) at a distance r from the center is no greater than the refractive index on the central axis.
As n2(r)=no2C/-(gr)2+h4(gr)4
+h6(gr)6+11s(gr)s+...] Two self-focusing lenses made of cylindrical transparent bodies are arranged in the optical axis direction, and the numerical aperture of the lens on the light source side (first lens) is set to the other side. The lens is characterized in that the numerical aperture is larger than that of the lens (second lens), and the coefficient h4 of the first lens is smaller than that of the second lens.

〔実施例〕〔Example〕

以下本発明を図面にした実施例について詳細に説明する
Embodiments of the present invention illustrated in the drawings will be described in detail below.

第1図においてlは本発明に係る光学系であり、半導体
レーザ等の光源グからの拡散出射光Sは上記光学系/を
通して集束され、シングルモードファイバ乙のコア中に
入射する。
In FIG. 1, reference numeral 1 denotes an optical system according to the present invention, and diffused emitted light S from a light source such as a semiconductor laser is focused through the optical system and enters the core of a single mode fiber B.

上記光学系/は2つの自己集束型レンズ石3を軸線を一
致させ端面同士を密着させて配置して構成されている。
The optical system/ is constructed by arranging two self-focusing lens stones 3 with their axes aligned and their end surfaces in close contact with each other.

自己集束型レンズλ、3はガラス、合成樹脂等の透明な
円柱体からなり、両レンズ2,3の全ての端面ハ光軸に
垂直な平面である。また、両レンズ2,3はいずれも光
軸からrの距離における屈折率n (r)が、n、2(
r)−no2 (/−(gr)2+h4(gr)’+h
6(gr)6十+hs(gr)8+・・・〕 ・・・(
1)の式で表わされる屈折率分布を有している。
The self-focusing lens λ, 3 is made of a transparent cylindrical body made of glass, synthetic resin, etc., and all end faces of both lenses 2, 3 are planes perpendicular to the optical axis. In addition, both lenses 2 and 3 have refractive indexes n (r) at a distance r from the optical axis of n, 2(
r)-no2 (/-(gr)2+h4(gr)'+h
6 (gr) 60 + hs (gr) 8 +...] ... (
It has a refractive index distribution expressed by the formula 1).

上記(1)式において、noは光軸上の屈折率、L11
4+h6.haは屈折率分布定数である。
In the above equation (1), no is the refractive index on the optical axis, L11
4+h6. ha is a refractive index distribution constant.

そして両レンズ2,3の開口@NA、11 NA2がN
AI>NA2の関係となるようにレンズ諸元が選ばれて
いる。
And the aperture of both lenses 2 and 3 @NA, 11 NA2 is N
Lens specifications are selected so that AI>NA2.

上記の開口数の関係により、光源lから比較的大きな拡
散角で放射される光束は、大きな開口数をもつ第7レン
ズ2によって効率良く捕捉され、また開口数が相対的に
小さい第2レンズ3によって光源からの入射時よりも緩
やかな角度で出射し集束されるので、開口数が相対的に
小さいシングルモードファイバに対しても効率良く光源
光を入射させることができる。
Due to the above numerical aperture relationship, the light beam emitted from the light source l at a relatively large diffusion angle is efficiently captured by the seventh lens 2, which has a large numerical aperture, and the second lens 3, which has a relatively small numerical aperture. Since the light is emitted and focused at a gentler angle than when it enters from the light source, the light source light can be efficiently entered into a single mode fiber with a relatively small numerical aperture.

また、上記レンズ2,3の(])式における1次項係数
h4に関し、光源側の第1レンズのh4を第2レンズの
h4よりも小にしである。
Regarding the linear term coefficient h4 in the equation ( ]) for the lenses 2 and 3, h4 of the first lens on the light source side is made smaller than h4 of the second lens.

この係数h4についてさらに詳しく述べる。This coefficient h4 will be described in more detail.

自己集束型レンズ2,3の中心屈折率noおよび分布定
数gの典型的な数値例としてno=八gへg。
A typical numerical example of the central refractive index no and the distribution constant g of the self-focusing lenses 2 and 3 is no=8g.

g=0.22ざ4Zm m−1を選び一方のレンズの分
布係数h4を決めて収差の計算から球面収差をOにする
ような他方のレンズの分布係数h4をめる。そして両レ
ンズ2,3の組み合せ光学系lの正弦条件不満足量を計
算してこの不満足量がほぼOvcならない場合は当初設
定の分布係数h4の値を変えて上記計算を正弦条件不満
足量がほぼOKなるまで繰り返して両レンズのh4の最
適組み合せをめた。その結果を第2図に示す。出射側レ
ンズ3の開口数NA2については、シングルモードファ
イバの最適スポットサイズからめてNl2=0.10ざ
とし、また入射側レンズ2の開口数NA1は光源からの
入射時における損失が/db以下となるようNl1=0
.39としている。第2図のグラフにおいて横軸は組み
合せ光学系の全レンズ長Zと第1レンズのレンズ長z1
との比をあられし、たて軸は(1)式における1次項係
数h4の値である。またパラメータのSlは光源と第1
レンズ!の入射面2人との距離である。
Select g=0.22×4Zm m-1, determine the distribution coefficient h4 of one lens, and calculate the distribution coefficient h4 of the other lens such that the spherical aberration is O from the aberration calculation. Then, calculate the amount of unsatisfactory sine condition of the combined optical system l of both lenses 2 and 3, and if this unsatisfactory amount is not approximately Ovc, change the value of the initially set distribution coefficient h4 and repeat the above calculation until the amount of unsatisfactory sine condition is approximately OK. I repeated this process until I found the optimal combination of h4 for both lenses. The results are shown in FIG. Regarding the numerical aperture NA2 of the exit side lens 3, it is assumed that Nl2 = 0.10 considering the optimum spot size of the single mode fiber, and the numerical aperture NA1 of the input side lens 2 is such that the loss at the time of incidence from the light source is /db or less. So that Nl1=0
.. It is set at 39. In the graph of Figure 2, the horizontal axis is the total lens length Z of the combined optical system and the lens length z1 of the first lens.
The vertical axis is the value of the linear term coefficient h4 in equation (1). Also, the parameter Sl is the light source and the first
lens! is the distance between the plane of incidence and the two people.

第2図のグラフにおいて下方にある三本の曲線A 11
 A2 、 A3はそれぞれ5l=o、ざmm、/。3
63mmT2゜ommにおける光源側レンズ2のh4の
値を示し、上方にある三本の曲線Bl、B!i、B3は
上記曲線AI、A2.A3上のh4の値に対応する最適
(正弦条件不満足量がほぼO)なファイバ側レンズ3の
h4の数値を示す。
Three curves A11 at the bottom of the graph in Figure 2
A2 and A3 are respectively 5l=o, zamm, /. 3
It shows the value of h4 of the light source side lens 2 at 63mmT2゜omm, and the three curves Bl and B! above are shown. i, B3 are the curves AI, A2. The value of h4 of the optimal fiber-side lens 3 (the amount of unsatisfactory sine condition is approximately O) corresponding to the value of h4 on A3 is shown.

第2図から明らかなように両レンズ2,3の組み合せ光
学系においては光源側レンズ2のh4の値ヲファイバ側
レンズ3のh4の値よりも小さくすることにより広範囲
な条件下で収差を充分に小さい値にすることができる。
As is clear from Fig. 2, in the combined optical system of both lenses 2 and 3, aberrations can be sufficiently suppressed under a wide range of conditions by making the h4 value of the light source side lens 2 smaller than the h4 value of the fiber side lens 3. Can be set to a small value.

そしてグラフに示されるように光源側レンズ2のh4の
望ましいh4の値の範囲は一2≦h4≦0.2であり、
またファイバ側レンズ3の望ましいh4の範囲はO5ざ
≦h4≦2.0である。
As shown in the graph, the desirable range of h4 of the light source side lens 2 is -2≦h4≦0.2,
Further, the desirable range of h4 of the fiber-side lens 3 is O5≦h4≦2.0.

7つの数値例を示すと、レンズ2の入射面2Aまでの距
1IIS1−/、3乙3mmルンズ3の出射面3Aがら
ファイバ端面までの距離52=10.399mm 、両
レンズ2,3の中心屈折率no=ハtSざ、(1)式の
定数g−0,22ざllmm’−’9レンズ長zl=Z
2=2.9110mmとしたとき、光源側レングスの分
布係数をh4=−〇、7.h6=O1h8−Oとし、フ
ァイバ側レンズ3の各係数をh4=/、 / t 、 
h6=0. /2 、 h6=/、、 4’7 K選べ
ば組み合せ光学系の収差を極小にすることができる。
To give seven numerical examples, the distance to the incident surface 2A of lens 2 is 1IIS1-/, 3mm, the distance from the exit surface 3A of lens 3 to the fiber end face is 52=10.399mm, and the central refraction of both lenses 2 and 3. Rate no = HatSza, constant g-0 of equation (1), 22zallmm'-'9 Lens length zl = Z
2=2.9110mm, the distribution coefficient of the light source side length is h4=-〇, 7. Let h6=O1h8-O, and each coefficient of the fiber side lens 3 is h4=/, /t,
h6=0. /2, h6=/, 4'7K By selecting K, the aberration of the combined optical system can be minimized.

上記数値例の光学系lで光源が光軸と垂直方向に0.1
mmずれたときのシングルモードファイバ端面上でのス
ポットダイアダラムを第1図に示す。
In the optical system l in the numerical example above, the light source is 0.1 in the direction perpendicular to the optical axis.
Figure 1 shows the spot diaphragm on the end face of the single mode fiber when it is shifted by mm.

第3図と第1図の比較から明らかなように、本発明に係
る光学系は軸外収差が極めて小さく、シたがって光源位
置が光学系光軸から多少ずれていても光源光が確実にフ
ァイバコア内に入射し、結合効率が非常に高い。
As is clear from a comparison between FIG. 3 and FIG. 1, the optical system according to the present invention has extremely small off-axis aberrations, so even if the light source position is slightly deviated from the optical axis of the optical system, the light source light can be reliably transmitted. It enters the fiber core and has very high coupling efficiency.

〔発明の効果〕〔Effect of the invention〕

以上実施例で説明したように本発明の光学系は軸外収差
が非常に小さく、シたがって組み立て誤差等に起因して
光源と光学系光軸との間に多少のずれを生じたとしても
、波光損失をほとんど生じることなくシングルモードフ
ァイバの微小なコア内に効率良く伝送される。同時に光
源と光学系光軸との軸合せの許容誤差が拡大するので、
組み立て作業もそれだけ容易化する。
As explained above in the embodiments, the optical system of the present invention has very small off-axis aberrations, so even if there is some misalignment between the light source and the optical axis of the optical system due to assembly errors, etc. , the wave is efficiently transmitted within the tiny core of a single-mode fiber with almost no optical loss. At the same time, the tolerance for alignment between the light source and the optical axis of the optical system increases, so
The assembly work becomes easier as well.

さらに、2個の自己集束型レンズの組み合せであるため
レンズ面の研磨加工は平面加工で良<、シたがって微小
径のレンズであっても極めて容易に加工することができ
、球面レンズの組み合せ光学系に比して製作が容易であ
る。
Furthermore, since it is a combination of two self-focusing lenses, the polishing of the lens surface can be done by plane processing. Therefore, even lenses with minute diameters can be processed extremely easily. It is easier to manufacture than optical systems.

(9)(9)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図は本発
明の光学系における第1レンズと第2レンズの1次項係
数h4の最適組み合せ範囲を示すグラフ、第3図、第を
図は光源光をレンズ光軸から偏位させて入射させた場合
のファイバ端面上でのスポットダイアダラムを示し、第
3図は従来の単一の自己集束型レンズを使用した場合で
あり、第q図は本発明の光学系を使用した場合を示す。 / 光学結合用光学系 2.3 自己集束型レンズl 
光源 ′ ご ファイバ 第1図 會 第2図 す中i oω 手続補正書 昭和59年3月7日 特許庁長官 殿 昭和59年2月20日提出の特許願(2)2 発明。名
称 、ro−少・・1.−・光源結合用光学系 3 補正をする者 事件との関係 特許出願人 住 所 大阪府大阪市東区道修町グ丁目ざ番地名 称 
(IIoo )日本板硝子株式会社代表者 刺 賀 信
 雄 グ代理人 住所 東京都港区新橋S丁目//番3号新橋住友ビル 自 発 6 補正の対象 明細書 7、補正の内容 (1) 明細書第1頁の特許請求の範囲全文を別紙の通
り補正する。 (2)明細書第1頁第1g行ないし第S頁第1行に「光
源側のレンズ(第1レンズ)・・・第2レンズよりも小
さくした」とあるのを [該光学系の光源側の開口数を出射側開口数よりも大と
するとともに、前記係数h4について光源側に位置する
レンズ(第1レンズ)の方を他方のレンズ(第2レンズ
)よりも小さくした。」と補正する。 (3)明細書第6頁第1行および第2行に[両レンズ2
.3の・・・レンズ諸元が選ばれている。]とあるのを [光学系lの光源側開口数NA1および出射側開口数N
A2がNAl>NA2の関係となるように光学系諸元が
選ばれている。」と補正する。 (4)明細書画ぶ頁第5行ないし第乙行K[第1レンズ
によって・・・第2レンズ3によって」とあるのを 「光学系/の入射面において効率良く捕捉され、正する
。 (5)明細書第7頁第S行に「出射側レンズ3」とある
のを「光学系/の出射側」と補正する。 (6)同7頁第7行ないし第g行に「入射側レンズ2」
とあるのを1光学系lの入射側」と補正する。 (7)同7頁第9行K「/db」とあるのをl/dBJ
と補正する。 (8)明細書簡ざ頁第73行に[レンズ長Z1=22=
Jとあるのを「第1レンズの長さz1=第2レンズの長
さz2=」 と補正する。 (9)明細書第10貫第10行K[/、光学結合用光学
系」とあるのを「/、光源結合用光学系」と補正する。 2、特許請求の範囲 (1)中心からrの距離における屈折率n(r)が、n
”(r)=nO” (/−(gr)”十h4(gr)4
+h6(gr)6+hs) (gr)”十・・・翫で表わされる円柱状の透明体から
なる2つの自己集束型レンズを光軸方向に並べ、該光学
系の光源側の開口数を出射側開口数よりも大とするとと
もに、前記係数h4について光源側に位置するレンズ(
第7レンズ)の方を他方のレンズ(第2レンズ)よりも
小さくしたことを特徴とする光源結合用光学系。 (2、特許請求の範囲第1項において、第1レンズの前
記係数h4は一2≦h4≦0.2 の範囲内である光源
結合用光学系。 (3)特許請求の範囲第1項において、第2レンズのh
4は0.ざ≦h4≦2.0の範囲内である光源結合用光
学系。 (3) (別紙l)
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is a graph showing the optimum combination range of the linear term coefficient h4 of the first lens and the second lens in the optical system of the present invention, and FIG. The figure shows the spot diaphragm on the fiber end face when the source light is incident with a deviation from the lens optical axis, and Figure 3 shows the case when a conventional single self-focusing lens is used. FIG. q shows the case where the optical system of the present invention is used. / Optical system for optical coupling 2.3 Self-focusing lens
Light source ' The fiber Figure 1 Figure 2 I oω Procedural amendment March 7, 1980 Commissioner of the Patent Office Patent application filed February 20, 1980 (2) 2 Invention. Name: ro-small...1. -・Optical system for light source coupling 3 Relationship with the case of the person making the correction Patent applicant address Name of Doshomachi Gu-chomeza, Higashi-ku, Osaka-shi, Osaka Prefecture Name
(IIoo) Nippon Sheet Glass Co., Ltd. Representative Nobuo Sagara Agent address Shinbashi Sumitomo Building, No. 3 Shinbashi S-chome, Minato-ku, Tokyo Sponsored by 6 Specification subject to amendment 7, Contents of amendment (1) Specification The entire claims on page 1 are amended as shown in the attached sheet. (2) In the specification, page 1, line 1g to page S, line 1, the statement "Lens on the light source side (first lens)... made smaller than the second lens" has been changed to [the light source of the optical system]. The numerical aperture on the side is made larger than the numerical aperture on the exit side, and the coefficient h4 of the lens located on the light source side (first lens) is made smaller than the other lens (second lens). ” he corrected. (3) In the 1st and 2nd lines of page 6 of the specification [Both lenses 2
.. 3... Lens specifications are selected. ] is [The light source side numerical aperture NA1 and the output side numerical aperture N of optical system l
The optical system specifications are selected so that A2 satisfies the relationship NAl>NA2. ” he corrected. (4) In the specification, page 5, line 5 to line 2, K [by the first lens... by the second lens 3] is replaced with "Efficiently captured and corrected at the incident surface of the optical system." 5) Correct the phrase "output side lens 3" on page 7, line S of the specification to read "output side of optical system/." (6) “Incidence side lens 2” on page 7, line 7 to line g.
Correct it to read "Incidence side of 1 optical system l". (7) On page 7, line 9, K “/db” should be changed to l/dBJ.
and correct it. (8) On page 73 of the specification letter, [lens length Z1=22=
J is corrected as "Length of first lens z1=Length of second lens z2=". (9) Correct the phrase ``/, Optical system for optical coupling'' to ``/, Optical system for light source coupling'' in Line 10 of Part 10 of the specification. 2. Claims (1) The refractive index n(r) at a distance r from the center is n
"(r)=nO"(/-(gr)"10h4(gr)4
+h6(gr)6+hs) (gr)" Two self-focusing lenses made of cylindrical transparent bodies represented by cylindrical rods are arranged in the optical axis direction, and the numerical aperture on the light source side of the optical system is set on the output side. A lens having a numerical aperture larger than the numerical aperture and located on the light source side with respect to the coefficient h4 (
A light source coupling optical system characterized in that a seventh lens (seventh lens) is smaller than the other lens (second lens). (2. In claim 1, the coefficient h4 of the first lens is within the range of -2≦h4≦0.2. (3) In claim 1, , h of the second lens
4 is 0. An optical system for light source coupling that satisfies the relationship h4≦2.0. (3) (Attachment l)

Claims (1)

【特許請求の範囲】 (1)中心からrの距離における屈折率n(r)が、n
2(r)=no2 (/−(gr)”+h4(gr)4
+h6(gr)6+h6(gr)8+・・・〕で表わさ
れる円柱状の透明体からなるλつの自己集束型レンズを
光軸方向に並べ、光源側のレンズ(第1レンズ)の開口
数を他方のレンズ(第2レンズ)の開口数よりも大とす
るとともに、前記係数h4VCついて第7レンズの方を
第2レンズよりも小さくしたことを特徴とする光源結合
用光学系。 (2、特許請求の範囲第1項において、第1レンズの前
記係数h4は一2≦h4≦0.2 の範囲内である光源
結合用光学系。 (3)特許請求の範囲第1項において、第一レンズのh
4はOoす≦h4≦2.0の範囲内である光源結合用光
学系。
[Claims] (1) The refractive index n(r) at a distance r from the center is n
2(r)=no2 (/-(gr)”+h4(gr)4
+h6(gr)6+h6(gr)8+...] λ self-focusing lenses made of cylindrical transparent bodies are arranged in the optical axis direction, and the numerical aperture of the lens on the light source side (first lens) is set to the other side. An optical system for light source coupling, characterized in that the numerical aperture of the seventh lens (second lens) is larger than that of the second lens, and the coefficient h4VC of the seventh lens is smaller than the second lens. (2. In claim 1, the coefficient h4 of the first lens is within the range of -2≦h4≦0.2. (3) In claim 1, , h of the first lens
4 is a light source coupling optical system within the range of OoS≦h4≦2.0.
JP3011384A 1984-02-20 1984-02-20 Optical system for coupling light source Granted JPS60173516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3011384A JPS60173516A (en) 1984-02-20 1984-02-20 Optical system for coupling light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3011384A JPS60173516A (en) 1984-02-20 1984-02-20 Optical system for coupling light source

Publications (2)

Publication Number Publication Date
JPS60173516A true JPS60173516A (en) 1985-09-06
JPH055081B2 JPH055081B2 (en) 1993-01-21

Family

ID=12294721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3011384A Granted JPS60173516A (en) 1984-02-20 1984-02-20 Optical system for coupling light source

Country Status (1)

Country Link
JP (1) JPS60173516A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296105A (en) * 1986-06-17 1987-12-23 Nippon Sheet Glass Co Ltd Optical coupler
JP2008152194A (en) * 2006-12-20 2008-07-03 Tecdia Kk Optical transceiver module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5867773B2 (en) 2011-03-18 2016-02-24 株式会社ジェイテクト Manufacturing method of power transmission shaft

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556354A (en) * 1978-06-30 1980-01-17 Agency Of Ind Science & Technol Refractive index distribution type lens
JPS57114101A (en) * 1980-12-30 1982-07-15 Sumitomo Electric Ind Ltd Graded lens plus combined lens using said lens and optical transmission line

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556354A (en) * 1978-06-30 1980-01-17 Agency Of Ind Science & Technol Refractive index distribution type lens
JPS57114101A (en) * 1980-12-30 1982-07-15 Sumitomo Electric Ind Ltd Graded lens plus combined lens using said lens and optical transmission line

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296105A (en) * 1986-06-17 1987-12-23 Nippon Sheet Glass Co Ltd Optical coupler
JPH065332B2 (en) * 1986-06-17 1994-01-19 日本板硝子株式会社 Optical coupler
JP2008152194A (en) * 2006-12-20 2008-07-03 Tecdia Kk Optical transceiver module

Also Published As

Publication number Publication date
JPH055081B2 (en) 1993-01-21

Similar Documents

Publication Publication Date Title
US6438290B1 (en) Micro-aspheric collimator lens
US7068883B2 (en) Symmetric, bi-aspheric lens for use in optical fiber collimator assemblies
US6744566B2 (en) Symmetric, bi-aspheric lens for use in transmissive and reflective optical fiber components
JPH0572444A (en) Multifiber optical connector
US6282347B1 (en) Optical fiber connector
US4744620A (en) Optical coupler
US20150378104A1 (en) Coupling optical system
US5638214A (en) Luneburg lens with a graded index core and homogeneous cladding
JPS60173516A (en) Optical system for coupling light source
US4974947A (en) Refractive index distribution type meniscus lens and optics
JPS5811913A (en) Reflecting and refracting lens
JP2987674B2 (en) Aspheric telecentric lens
JPH09159910A (en) Objective lens
JPS60189714A (en) Light source and optical fiber coupler
JP3333583B2 (en) Focusing lens and focusing lens array
JPS6323118A (en) Distributed index lens
JPS6215513A (en) Optical coupler
RU2114451C1 (en) Telescopic gradient lens
JPS62296105A (en) Optical coupler
JPH068928B2 (en) Optical coupler
JPH01200207A (en) Optical coupling device
JPH10268115A (en) Diffraction optical element and optical system
JPH0534545A (en) Optical fiber coupler
JPS63253320A (en) Cata-dioptric system
JPS60225807A (en) Connecting device for optical fiber