JPS616615A - Distributed refractive index type lens - Google Patents

Distributed refractive index type lens

Info

Publication number
JPS616615A
JPS616615A JP12673684A JP12673684A JPS616615A JP S616615 A JPS616615 A JP S616615A JP 12673684 A JP12673684 A JP 12673684A JP 12673684 A JP12673684 A JP 12673684A JP S616615 A JPS616615 A JP S616615A
Authority
JP
Japan
Prior art keywords
refractive index
lens
end surface
optical axis
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12673684A
Other languages
Japanese (ja)
Other versions
JPH043850B2 (en
Inventor
Yuji Ueno
裕司 上野
Hisami Nishi
壽巳 西
Minoru Toyama
遠山 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP12673684A priority Critical patent/JPS616615A/en
Publication of JPS616615A publication Critical patent/JPS616615A/en
Publication of JPH043850B2 publication Critical patent/JPH043850B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To obtain the distributed refractive index type lens which has sufficiently small spherical and coma aberrations and is easily polished and assembled by allowing the lens to meet specific requirements. CONSTITUTION:The lens 1 is made of a transparent medium, such as glass and synthetic resin, having a refractive index N(Z) at distance Z from and end surface along an optical axis; one end surface 2 which is comprised of transparent medium expressed by the equation: N(Z)=Noo+No1Z is plane and the other end surface is an axially symmetrical surface with a radius 1/C1 of curvature. This lens has a refractive index distribution wherein the refractive index varies from the center 4 of the spherical end surface 3 to the optical axis 5 continuously according to expressions (1)-(3) and is constant in the surface perpendicular to an optical axis. When parallel luminous flux 6 is made incident from the side of the spherical end surface 3 of the lens 1 the flux is converted on a point 7 with small aberrations and a light source such as a semiconductor laser is arranged at the point 7 to obtain high-precision parallel projection luminous flux. In the expression, Noo and No1 are distribution constants, and C1 and C2 are curvature values of both lens surfaces; the surface is convex when C1>0 or concave when C1<0. Further, N1 and N2 are a maximum refractive index and a minimum refractive index on the optical axis respectively and Z is the distance on the basis of the curved surface side of the lens.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は軸方向屈折率分布型レンズに関し、特に低収差
で半導体レーザー等の発光素子からの光をコリメートし
たり、平行光束を集光するレンズに関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an axial gradient index lens, and particularly to a lens that collimates light from a light emitting element such as a semiconductor laser or condenses parallel light beams with low aberration. Regarding.

〔発明の技術的背景と問題点〕[Technical background and problems of the invention]

上記のような用途に用いられるレンズは単色収差が非常
に低いこと、特に球面収差とコマ収差が小さいことと安
価であることが要求される。従来この種の用途には明折
率の一様な球面レンズ3〜グ枚で構成した光学系が知ら
れている。
Lenses used for the above applications are required to have very low monochromatic aberration, especially spherical aberration and coma aberration, and to be inexpensive. Conventionally, for this type of use, an optical system composed of three to five spherical lenses having a uniform bright refractive index is known.

しかし、上記の従来の球面レンズは研磨面が6〜g面と
多く研磨加工および組立てに手間がかかりコストが高く
つくため非常に高価である。
However, the above-mentioned conventional spherical lens has a large number of polished surfaces, ie, 6 to G surfaces, and is very expensive because polishing and assembly are time-consuming and costly.

上記の問題を改善したものとして軸方向に屈折率分布を
与えた単一のレンズが提案されており、例えば米国特許
第3,729.2!;3号には三次の球面収差、コマ収
差を減少させた軸方向屈折率分布型レンズが記載されて
いる。しかしながら上記特許に開示されているレンズの
場合五次の球面収差が大きすぎるために回折限界での光
学系としては実用的ではない。この点については特開昭
SZ−/2.23/、2 号にも記述されている。
A single lens with a refractive index distribution in the axial direction has been proposed to improve the above problem, for example, US Pat. No. 3,729.2! No. 3 describes an axial gradient index lens that reduces third-order spherical aberration and coma aberration. However, in the case of the lens disclosed in the above-mentioned patent, the fifth-order spherical aberration is so large that it is not practical as an optical system at the diffraction limit. This point is also described in Japanese Unexamined Patent Application Publication No. 2003-222232.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上述の問題点を解決し、十分に球面収差
とコマ収差が小さく、シかも研磨加工、組立てが容易で
安価な屈折率分布型レンズを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and provide a gradient index lens that has sufficiently small spherical aberration and comatic aberration, is easy to polish and assemble, and is inexpensive.

〔発明の概要〕[Summary of the invention]

上記の目的を達成する本発明の屈折率分布型レンズは、
端面から光軸に沿って2の距離における屈折率N (Z
)がN(Z)−NOO+N0IZで表わされる透明媒質
からなり、以下の条件を満たすことを特徴とする。
The gradient index lens of the present invention that achieves the above object has the following features:
The refractive index N (Z
) is made of a transparent medium represented by N(Z)-NOO+NOIZ, and is characterized by satisfying the following conditions.

(,21G 2− 。(,21G 2-.

(3)  N1≧ハロ/ざ≧Nま ただしNOO,NOIは分布定数、C1・C2はレンズ
両端面の曲率で01>0は凸、C1〈0は凹の球面を表
わす。またN1+N2は光軸上でのそれぞれ最大屈折率
、最小屈折率であ腫zはレンズの晶面側を基準とした゛
距離である。上記(1)〜(3)の条件のうち条件(1
)、(2)はレンズの片端面が平面で他端面が球面であ
ることを示しており、このように片面が平面であるため
研磨加工が容易である。条件(1)は正弦条件不満足量
の絶対値が小さくなる条件であり、この範囲を越えると
コマ収差が増大し軸外光に対して収差が大きくなってし
まう。条件(3)は光軸上の最大屈折率、最小屈折率の
範囲を示している。条件0)の範囲を越えると球面収差
か正弦条件不満足量の絶対値の少くとも一方が大きくな
り最適なレンズが得られなくなる。レンズ両端面の曲率
、屈折率分布定数No O+ No ]−1光軸上の最
大屈折率N1、最小屈折率N2を条件(1)ないしくl
I)に規定した範囲内に選定することにより後述の数値
実施例に示されるように球面収差およびコマ収差を十分
小さくおさえることができる。
(3) N1≧Halo/Za≧N where NOO and NOI are distribution constants, C1 and C2 are the curvatures of both end surfaces of the lens, 01>0 represents a convex spherical surface, and C1<0 represents a concave spherical surface. Further, N1+N2 are the maximum refractive index and minimum refractive index on the optical axis, respectively, and the distance z is the distance with the crystal surface side of the lens as a reference. Among the conditions (1) to (3) above, condition (1)
) and (2) indicate that one end surface of the lens is a flat surface and the other end surface is a spherical surface, and since one end surface is thus flat, polishing is easy. Condition (1) is a condition in which the absolute value of the amount of unsatisfactory sine condition becomes small; if this range is exceeded, comatic aberration increases and aberration becomes large for off-axis light. Condition (3) indicates the range of the maximum refractive index and minimum refractive index on the optical axis. If the range of condition 0) is exceeded, at least one of the absolute values of the spherical aberration and the amount of unsatisfactory sine condition will become large, making it impossible to obtain an optimal lens. Curvature of both lens end surfaces, refractive index distribution constant No O+ No ]-1 Maximum refractive index N1 and minimum refractive index N2 on the optical axis are conditions (1) or l
By selecting within the range specified in I), spherical aberration and comatic aberration can be kept sufficiently small as shown in numerical examples described later.

〔発明の効果〕〔Effect of the invention〕

本発明に係る屈折率分布型レンズは後述の数値実施例か
ら明らかなように球面収差、コマ収差が非常に小さく、
シたがって低収差で半導体レーザー等の発光素子からの
光をコリメートしたり平行光束を集光させることができ
る。
The gradient index lens according to the present invention has very small spherical aberration and comatic aberration, as is clear from the numerical examples described below.
Therefore, it is possible to collimate light from a light emitting element such as a semiconductor laser or to condense a parallel beam of light with low aberration.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明に係る軸方向屈折率分布型レンズを示し
、ガラス・合成樹脂等の透明媒質からなるレンズ/は一
方の端面λが平面であり、他方の端面3は曲率半径が/
/C1の軸対称球面のレンズで、球面端面3の中心グか
ら光軸jの方向に前述式に従い連続的に変化する屈折率
分布が付与されており、光軸Sに垂直な面内では屈折率
が一定である。上記のレンズlの球面端面3側から平行
光束乙を入射させると7の点に低収差で集光し、また7
0点に半導体レーザー等の光源を配置すると高精度の平
行出射光束を得ることができる。
FIG. 1 shows an axially graded refractive index lens according to the present invention, in which one end surface λ of the lens made of a transparent medium such as glass or synthetic resin is flat, and the other end surface 3 has a radius of curvature of /.
/C1 is an axisymmetric spherical lens, which is given a refractive index distribution that changes continuously from the center of the spherical end surface 3 in the direction of the optical axis j according to the above formula, and in the plane perpendicular to the optical axis S, there is no refraction. rate is constant. When parallel light beam B is incident from the spherical end surface 3 side of the above lens L, it is focused on point 7 with low aberration, and
If a light source such as a semiconductor laser is placed at the zero point, a highly accurate parallel emitted light beam can be obtained.

第1表に本発明の数値例を示す。第1表においてcl、
C2はレンズ端面の曲率(mm−1)+ tはレンズの
中心厚み(mm)、NOO+NO1は分布定数、Fb 
ハハックフォーカス(mm)、N15N2は光軸上での
それぞれ最大屈折率、最小屈折率である。
Table 1 shows numerical examples of the present invention. In Table 1, cl,
C2 is the curvature of the lens end surface (mm-1) + t is the center thickness of the lens (mm), NOO+NO1 is the distribution constant, Fb
Hahac focus (mm) and N15N2 are the maximum refractive index and minimum refractive index on the optical axis, respectively.

第1表の実施例&l−&乙に対応する収差図を第2図な
いし第7図に示す。図中、実線は球面収差を、点線は正
弦条件不満足量を示す。
Aberration diagrams corresponding to Examples &l-&B in Table 1 are shown in Figs. 2 to 7. In the figure, the solid line indicates spherical aberration, and the dotted line indicates the amount of unsatisfactory sine condition.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図ないし
第7図は本発明に係るレンズの数値実施例に対応する収
差図である。 第1図 手  続  補  正  書 昭和59年7月lb口
FIG. 1 is a sectional view showing one embodiment of the present invention, and FIGS. 2 to 7 are aberration diagrams corresponding to numerical examples of the lens according to the present invention. Figure 1 Procedures Amendment Book July 1981 lb.

Claims (1)

【特許請求の範囲】 端面から光軸に沿ってZの距離における屈折率N(Z)
がN(Z)=N_0_1+N_0_1Zで表わされる透
明媒質からなり、以下の条件を満たすことを特徴とする
屈折率分布型レンズ (1)0.95<1/C_1・(N_0_0N_0_1
)/(1−N_0_0<1.05(2)C_2=0 (3)N_1≧1.618≧N_2 ただしN_0_0、N_0_1は分布定数、C_1、C
_2はレンズ両端面の曲率でC_1>0は凸、C_2<
0は凹の球面を表わし、N_1・N_2は光軸上でのそ
れぞれ最大屈折率、最小屈折率またZは曲面側からの距
離を表わす。
[Claims] Refractive index N(Z) at a distance Z from the end face along the optical axis
is made of a transparent medium represented by N(Z)=N_0_1+N_0_1Z, and satisfies the following conditions (1) 0.95<1/C_1・(N_0_0N_0_1
)/(1-N_0_0<1.05 (2) C_2=0 (3) N_1≧1.618≧N_2 However, N_0_0, N_0_1 are distribution constants, C_1, C
_2 is the curvature of both end surfaces of the lens, C_1>0 is convex, C_2<
0 represents a concave spherical surface, N_1 and N_2 represent the maximum refractive index and minimum refractive index on the optical axis, respectively, and Z represents the distance from the curved surface side.
JP12673684A 1984-06-20 1984-06-20 Distributed refractive index type lens Granted JPS616615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12673684A JPS616615A (en) 1984-06-20 1984-06-20 Distributed refractive index type lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12673684A JPS616615A (en) 1984-06-20 1984-06-20 Distributed refractive index type lens

Publications (2)

Publication Number Publication Date
JPS616615A true JPS616615A (en) 1986-01-13
JPH043850B2 JPH043850B2 (en) 1992-01-24

Family

ID=14942620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12673684A Granted JPS616615A (en) 1984-06-20 1984-06-20 Distributed refractive index type lens

Country Status (1)

Country Link
JP (1) JPS616615A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170015086A (en) 2014-06-04 2017-02-08 히타치가세이가부시끼가이샤 Film-like epoxy resin composition, method of producing film-like epoxy resin composition, and method of producing semiconductor device
KR20170113571A (en) 2015-02-03 2017-10-12 히타치가세이가부시끼가이샤 Epoxy resin composition, film type epoxy resin composition, cured product and electronic device
KR20190010560A (en) 2016-05-25 2019-01-30 히타치가세이가부시끼가이샤 An encapsulating structure, a manufacturing method thereof,
KR20190132401A (en) 2017-03-31 2019-11-27 히타치가세이가부시끼가이샤 Sealing film, manufacturing method of electronic component device and electronic component device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170015086A (en) 2014-06-04 2017-02-08 히타치가세이가부시끼가이샤 Film-like epoxy resin composition, method of producing film-like epoxy resin composition, and method of producing semiconductor device
KR20170113571A (en) 2015-02-03 2017-10-12 히타치가세이가부시끼가이샤 Epoxy resin composition, film type epoxy resin composition, cured product and electronic device
KR20190010560A (en) 2016-05-25 2019-01-30 히타치가세이가부시끼가이샤 An encapsulating structure, a manufacturing method thereof,
KR20190132401A (en) 2017-03-31 2019-11-27 히타치가세이가부시끼가이샤 Sealing film, manufacturing method of electronic component device and electronic component device

Also Published As

Publication number Publication date
JPH043850B2 (en) 1992-01-24

Similar Documents

Publication Publication Date Title
US4103989A (en) Unit-power concentric optical systems
JPH01305587A (en) Semiconductor laser beam source
US4950041A (en) Lens systems comprising plastic and liquid lens elements
JPS62119512A (en) Lens for optical disc
US5682263A (en) Broad-band ultraviolet lens systems well-corrected for chromatic aberration
JPS616615A (en) Distributed refractive index type lens
US4572623A (en) Objective lens for optical disc
JPS61194416A (en) Distributed index lens
JPH02269303A (en) Chromatic aberration correction lens for optical disk
EP0156453B1 (en) Lens for an optical recording/reproducing apparatus
JPH0638130B2 (en) Gradient index lens
US4668055A (en) Lens for an optical recording/reproducing apparatus and optical recording/reproducing apparatus using same
JPS61277913A (en) Image forming lens
JPH0359407B2 (en)
JPH02101416A (en) Objective lens for optical memory
US4964703A (en) Image-forming lens
US4693565A (en) Collimator lens
US5087990A (en) Collimator lens of erasable and re-recordable magneto-optical disk system
US4643535A (en) Optical information recording/reproducing element
RU2017178C1 (en) Monochromatic lens
JPH01161308A (en) Lens for optical recording and reproducing device
JPH01244421A (en) Anamorphic single lens and optical disk device
JP2511275B2 (en) Optical system for recording / reproducing optical information media
JPH0576606B2 (en)
JPH07111513B2 (en) Collimate optical system

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term