JPS60173485A - Position measurement system - Google Patents

Position measurement system

Info

Publication number
JPS60173485A
JPS60173485A JP2853384A JP2853384A JPS60173485A JP S60173485 A JPS60173485 A JP S60173485A JP 2853384 A JP2853384 A JP 2853384A JP 2853384 A JP2853384 A JP 2853384A JP S60173485 A JPS60173485 A JP S60173485A
Authority
JP
Japan
Prior art keywords
positioning method
light
moving body
hyperboloid
waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2853384A
Other languages
Japanese (ja)
Inventor
Mitsutaka Kosaka
小坂 満隆
Katsumi Kono
克己 河野
Shoji Miyamoto
宮本 捷二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2853384A priority Critical patent/JPS60173485A/en
Priority to US06/696,077 priority patent/US4713768A/en
Publication of JPS60173485A publication Critical patent/JPS60173485A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/30Determining absolute distances from a plurality of spaced points of known location
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/22Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements

Abstract

PURPOSE:To measure the position of a moving body with high precision by proper position measurement systems by estimating the transmission time of an acoustic wave, light, or electromagnetic wave from the moving body by a hyperboloid position measurement system, and then employing a spherical position measurement system. CONSTITUTION:Sensors S1-Sn receive the acoustic wave, light, or electric wave, etc., from the moving body 1 and a moving body position calculation system 2 calculates the position of the moving body 1 by the hyperboloid position measurement system. Then, the transmission time of the acoustic wave, light, or electromagnetic wave from the moving body 1 is estimated from said calculation result, and this is used by the system 2 to calculate the position of the moving body 1 by the spherical position measurement system. Therefore, even when the transmission time of the acoustic wave, light, or electromagnetic wave from the moving body is known, the position measurement arithmetic is carried out by the spherical position measurement system and the position of the moving body is measured with high precision by the proper distance measurement systems according to the state.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は複数のセンサを用いて音辣、光(熱)あるいは
電磁等のエネルギ放射を発する移動体からの音波あるい
は電磁波等を受信し、各センサにおける受信時刻を基に
、上記移動体の位置を正確に決定するだめの測位方式に
関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention uses a plurality of sensors to receive sound waves, electromagnetic waves, etc. from a moving object that emits energy radiation such as sound, light (heat), or electromagnetic energy. The present invention relates to a positioning method for accurately determining the position of the moving body based on the reception time at the sensor.

〔発明の背景〕[Background of the invention]

従来、測位方式としては、双曲面測位方式と、球面測位
方式とが知られている。
Conventionally, as positioning methods, a hyperboloid positioning method and a spherical positioning method are known.

双曲面測位方式とは、複数のセンサ間の音波。Hyperboloid positioning method uses sound waves between multiple sensors.

光(熱)あるいは電磁波等の受信時刻の差を利用して、
受信時刻差が一定となる、空間内の複数の双曲面の交わ
る点を移動体位置とする方式であるこの方式においては
、計算した移動体位置が伺時の時点のものであるかを正
確に知ることが難かしぐ、また、位置計算のだめの処理
時間が長くかかるという問題があった。
Utilizing the difference in reception time of light (heat) or electromagnetic waves,
In this method, the location of the moving object is determined by the intersection of multiple hyperboloids in space, where the reception time difference is constant. In this method, it is difficult to accurately determine whether the calculated location of the moving object is at the time of the visit. There are problems in that it is difficult to know and it takes a long time to process the position calculation.

一万、球面測位方式とは、移動体の音波、光(熱)ある
いは′電磁波等の発信時刻が既知であるという仮定の下
で、各センサから、音波あるいは電磁波等の伝播時間が
同一となる球面を描き、複数の球面の父わる点を移動体
位置とする方式である。この方式においては、計算時間
は短くなるが、移動体の音波あるいは電磁波等の発信時
刻がわからないと用いることができないという別の問題
がおった。
The spherical positioning method is based on the assumption that the transmission time of sound waves, light (heat), or electromagnetic waves from a moving object is known, and the propagation time of sound waves or electromagnetic waves from each sensor is the same. This is a method in which a spherical surface is drawn and the positions of the moving object are determined by points on multiple spherical surfaces. Although this method shortens the calculation time, there is another problem in that it cannot be used unless the time of transmission of the sound waves or electromagnetic waves from the moving body is known.

まだ、移動体とセンサ群との幾何学的位置関係により、
上記両側位方式のうち、いずれかが良い位置推定精度を
もたらすことになるが、前述の如く、両方式に槌々の制
約条件があるため、この制約条件に応じてどちらかの測
位方式を選択せざるを得ないのが実情である。これは、
音波あるいは電磁波等の伝播誤差の誤差要因の少ないシ
ステムにおいては問題にならないが、伝播誤差の誤差要
因の多いシステムにおいては精度の点で重大な問題とな
るものであった。
However, due to the geometric positional relationship between the moving object and the sensor group,
Either of the above two lateral methods will provide good position estimation accuracy, but as mentioned above, both methods have certain constraints, so select one of the positioning methods according to these constraints. The reality is that we have no choice but to do so. this is,
This is not a problem in systems with few propagation error factors such as acoustic waves or electromagnetic waves, but in systems with many propagation error factors, it becomes a serious problem in terms of accuracy.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてガされたもので、その目的と
するところは、従来の測位方式における上述の如き問題
を解消17、高精度の測位方式を提供することにある。
The present invention has been developed in view of the above circumstances, and its purpose is to solve the above-mentioned problems in conventional positioning methods17 and to provide a highly accurate positioning method.

〔発明の概を〕[Outline of the invention]

本発明の要点は、双曲面測位方式によシ移動体の音波、
光(熱)あるいは電磁波等の発信時刻を推定し、これを
用いて球面測位方式を使用可能とすることにより両側位
方式の使用を可能とし、更に、両側位方式の位置推定誤
差を推定していずれの方式を用いるべきかを選択可能と
した点にある。
The main point of the present invention is to use the hyperboloid positioning method to detect sound waves of a moving object.
By estimating the transmission time of light (heat) or electromagnetic waves, etc., and using this to enable the use of the spherical positioning method, it is possible to use the bilateral method.Furthermore, the position estimation error of the bilateral method can be estimated. The point is that it is possible to select which method to use.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面に基づいて詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例を示す電波測位システムの構
成図である。図において、1は移動体、Sl + S2
 +・・・・・・S、は上記移動体1からの電波を受信
するためのセンサ、2は移動体位置計算システムを示し
ている。移動体位置計算システム2は、記憶装置3.処
理装置4および表示装ff 5から構成されている。ま
た、do、d2119.10.、。
FIG. 1 is a configuration diagram of a radio wave positioning system showing an embodiment of the present invention. In the figure, 1 is a moving body, Sl + S2
+...S represents a sensor for receiving radio waves from the mobile object 1, and 2 represents a mobile object position calculation system. The mobile object position calculation system 2 includes a storage device 3. It consists of a processing device 4 and a display device ff5. Also, do, d2119.10. ,.

は上記移動体lと各センサとの間の距離を示している。indicates the distance between the moving body l and each sensor.

移動体1から発信された電波は、距離do離れたセ/す
Slで受信される。該センサS+は電波を受信した時刻
1.を移動体位置計算システム2に送信する。上記受信
時刻1.は、電波の伝播速度をV、とすると、 t + =d +/V、+T+n + なる方程式を満たす。ここで、Tは上記移動体1からの
電波の発信時刻、nIはさまざまな要因による雑音であ
る。
Radio waves emitted from the mobile body 1 are received at a station Sl that is a distance do away from the mobile body 1. The sensor S+ receives the radio wave at the time 1. is transmitted to the mobile body position calculation system 2. Above reception time 1. If the propagation speed of radio waves is V, then the following equations are satisfied: t + =d + /V, +T+n + . Here, T is the transmission time of the radio wave from the mobile object 1, and nI is noise due to various factors.

移動体1から発信される信号は、第2図に示す如く、パ
ルス状の信号であり、各パルス間の時間間隔Toは一定
であるとする。更に、上記時間間隔Toは電波伝播時間
に比べて充分長いものと仮定する。
It is assumed that the signal transmitted from the moving object 1 is a pulse-like signal, as shown in FIG. 2, and the time interval To between each pulse is constant. Furthermore, it is assumed that the time interval To is sufficiently long compared to the radio wave propagation time.

移動体位置計算システム2においては、人力データを、
一旦、記憶装置3に貯え、処理装置4で移動体位置を計
算し、計算結果を表示装置5に出力する。ここで、処理
装置4には、予め測定したセンサ位置(X+ 、3’l
、 z+ )が利用可能に格納されているものとする。
In the mobile object position calculation system 2, human data is
The data is temporarily stored in the storage device 3, the processing device 4 calculates the position of the moving object, and the calculation result is output to the display device 5. Here, the processing device 4 has a sensor position (X+, 3'l) measured in advance.
, z+) are stored in a usable manner.

ところで、双曲面測位方式においては、移動体の位置を
(x、y、z)とすると、 t+−11=u (X X+)’+(y)’+)’+(
Z Zl)2■。
By the way, in the hyperboloid positioning method, if the position of the moving object is (x, y, z), t+-11=u (X X+)'+(y)'+)'+(
Z Zl)2■.

” (Xx+)”±(y Vj)2+(z”+)2+n
+ J■6 なる非線形方程式が得られる。これから、最小2乗法に
よって、 −」ン冒四不〒問]、〕2+(z−2j)2)2〕■。
” (Xx+)”±(y Vj)2+(z”+)2+n
+J■6 A nonlinear equation is obtained. From this, by the method of least squares, we obtain -''n ex4 unquestioned], 2+(z-2j)2)2)■.

となる(X、y、z)がめられる。また、球面測位方式
においては、発信時刻Tが既知であると仮定した場合、 というn個の方程式が得られ、これから、の問題を最小
2乗法を用いて解き、(Xl ”jr z)がめられる
It can be seen that (X, y, z) becomes. In addition, in the spherical positioning method, if it is assumed that the transmission time T is known, n equations such as .

以下、本発明の第1のポイントである、双曲面測位方式
から移動体1の発信時刻を推定する方法について説明す
る。
Hereinafter, a method of estimating the transmission time of the mobile object 1 from the hyperboloid positioning method, which is the first point of the present invention, will be explained.

あるパルスが発信された時刻をT”とする。このパルス
の受信時刻1.−1.を利用して、双曲面測位方式によ
p移動体1の位置(X+y+z)が計算できる。従って
、発信時刻T は、n個のセンサの情報を利用して、 と推定できる。しかし、単一のパルスについての′ヒの
推定値ではさまざまな誤差要因により、真値T と犬き
く異なる可能性がある。ところでノぐルス時間間隔はT
oで一定としたので、上記T1以降ノパルス発信時間は T +”To (In=11 21 ・・暑によシ決定
できる。すなわち、T からmパルス目のパルス発信時
刻T (m)は、mパルス目の移動体位置推定データか
ら Δ餐 養 T (” ) = T (” ) + m T 。
Let T'' be the time when a certain pulse is transmitted.Using the reception time 1.-1. of this pulse, the position (X+y+z) of the p mobile body 1 can be calculated by the hyperboloid positioning method. The time T can be estimated using information from n sensors as . However, the estimated value of T for a single pulse may be significantly different from the true value T due to various error factors. .By the way, the Nogurus time interval is T
o, so that the no-pulse transmission time after T1 can be determined by the heat. In other words, the pulse transmission time T (m) of the mth pulse from T is m From the mobile object position estimation data of the pulse, ΔT('') = T('') + mT.

とめられる。これから、T を Δ昔 l m A餐 T=−〔Σ(T (i) 1Tol) In l=0 によシ計算する。これによりめたT の発信時へ畳 刻推定誤差と、パルスを使ったT 推定回数の関係を定
性的に示すと、第3図に示すようになる。
It can be stopped. From this, T is calculated as Δl m A meal T=−[Σ(T (i) 1Tol) In l=0. The relationship between the error in estimating the timing of T at the time of transmission and the number of times T is estimated using pulses is qualitatively shown in FIG. 3.

すなわち、発信時刻推定誤差が充分小さくなる回数Mを
設定し、M回以降のT の推定値を利用する。この場合
、T 以後に回目のパルス発信時間は、 T (J =T +k T+1 と推定できる。これにより、球面測位方式が利用可能に
なる。
That is, the number of times M at which the transmission time estimation error becomes sufficiently small is set, and the estimated value of T after M times is used. In this case, the pulse transmission time after T can be estimated as T (J = T + k T+1. This makes it possible to use the spherical positioning method.

次に、双曲面測位方式と球面測位方式のいずれを用いる
べきかを決定するための推定予測誤差指標(Geome
tric Delution of Precisio
n、以下、「GDOP」という)Kついて説明する。こ
のGDOPについては、衛星航法における衛星選択法、
例えば、村田:全世界測位衛星システムNAV STA
几/GPS、計測と制御、21巻247頁(1982)
 、あるいは、H、B 、 Lee :A Novel
procedure for Assessing t
be Accuracyof Hyperbolic 
MulBIateration Systems。
Next, the estimated prediction error index (Geome
tric Delution of Precision
n, hereinafter referred to as "GDOP") will be explained. Regarding this GDOP, the satellite selection method in satellite navigation,
For example, Murata: Global positioning satellite system NAV STA
几/GPS, Measurement and Control, Vol. 21, p. 247 (1982)
, or H, B, Lee: A Novel
procedure for Assessing
Be Accuracy of Hyperbolic
MulBIateration Systems.

I E E ETransac t 1ons O’n
 Aerospace andElectron7cs
 Systems、VOI 、AES 11. A I
(1975)の記載を参照されたい。
I E E E Transac t 1ons O'n
Aerospace and Electron7cs
Systems, VOI, AES 11. AI
(1975).

上記GDOPは、位置推定誤差を、移動体とセンサとの
幾何学的関係と、誤差との関数として与えるものであシ
、球面測位方式の場合は P k= (HTkI(、−: Hb ) −’で与え
られる行列の対角要素の2乗和で与えられる。ここで、
Rhはnxn行列で と与えられ、σI2はセンサiの受信時刻測定の誤差の
分散を示している。また、Hhは で与えられる、センサと移動体の幾何学的関係から決ま
る値である。ここで、11′は移動体からセンサへの単
位方向ベクトルである。
The above GDOP gives the position estimation error as a function of the geometric relationship between the moving object and the sensor and the error, and in the case of the spherical positioning method, P k = (HTkI (, -: Hb) - It is given by the sum of squares of the diagonal elements of the matrix given by ', where:
Rh is given by an nxn matrix, and σI2 indicates the variance of the error in the reception time measurement of sensor i. Further, Hh is a value determined from the geometrical relationship between the sensor and the moving object, which is given by . Here, 11' is a unit direction vector from the moving body to the sensor.

また、双曲面測位方式の場合、上記()DOPはPkH
=((LHk)(L RkL)−’ (LHk))−’
で与えられる行列の対角要素の2乗和である3、ここで
、Hk、Rkは前記球面測位方式の場合と同様であるが
、Lは の行列で与えられる。LH双曲面測位方式におけるセン
サの組合わせに起因する行列で、この場合センサiの時
刻観測方程式からセンサ!+1の時刻観測方程式を引い
て、センサiとセンサi+1に関する双曲面を作るもの
としている。
In addition, in the case of the hyperboloid positioning method, the above ()DOP is PkH
=((LHk)(L RkL)-'(LHk))-'
3, which is the sum of squares of the diagonal elements of the matrix given by , where Hk and Rk are the same as in the spherical positioning method, but L is given by the matrix of . A matrix caused by the combination of sensors in the LH hyperboloid positioning method. In this case, from the time observation equation of sensor i, sensor! It is assumed that the time observation equation of +1 is subtracted to create a hyperboloid regarding sensor i and sensor i+1.

ここで、球面測位方式を用いる場合のGD OPをGs
、双曲面測位方式を用いる場合のGl)OPをGRとす
ると、Gg >Gnのときは双曲面測位方式を、また、
GH>Gsのときは球面測位方式を用いることが望まし
いことになる。以上述べた処理は、前記移動体位置計算
シスτム2内の処理装置4で実行でれる。この処理のフ
ローチャートを第4図に示す。
Here, GD OP when using the spherical positioning method is Gs
, Gl when using the hyperboloid positioning method) If OP is GR, when Gg > Gn, the hyperboloid positioning method is used;
When GH>Gs, it is desirable to use the spherical positioning method. The processing described above can be executed by the processing device 4 in the mobile body position calculation system τ system 2. A flowchart of this process is shown in FIG.

第4図に示す処理はある時間間隔で繰り返し起動される
処理である。まず、双曲面測位方式と球面測位方式とに
ついてGDOPを計算する。Gn) G sの場合、双
曲面測位方式を実行し、移動体位置(X+y+ z)を
める。更に、移動体からの電波発信時刻T の推定を行
う。
The process shown in FIG. 4 is a process that is repeatedly activated at certain time intervals. First, GDOP is calculated for the hyperboloid positioning method and the spherical positioning method. Gn) In the case of Gs, execute the hyperboloid positioning method and find the moving object position (X+y+z). Furthermore, the radio wave transmission time T from the mobile object is estimated.

また、Gs>Onの場合、球面測位方式が実行できるか
否かをチェックする。すなわち、上記処理でめたT の
推定値が使用可能か否かをチェックし、使用可能の場合
には球面測位方式を実行する。T の推定値が使用不可
能の場合には双曲面測位方式を実行することになる。
Furthermore, if Gs>On, it is checked whether the spherical positioning method can be executed. That is, it is checked whether the estimated value of T obtained in the above process can be used, and if it is usable, the spherical positioning method is executed. If the estimated value of T is not available, a hyperboloid positioning method will be implemented.

なお、前記電波の発信時刻T の推定処理においては、
T の推定処理を所定回数たけ実行すると、T の推定
値が使用可能であるというフラグを立てるようにすると
良い。
In addition, in the estimation process of the transmission time T of the radio wave,
It is preferable to set a flag indicating that the estimated value of T is usable after the estimation process of T is executed a predetermined number of times.

上記実施例においては、双曲面測位方式と球面測位方式
とのいずれを選択するかを、GDOPの直によって決定
しているが、本発明はこれに限定されるものではなく、
他の適切な指標の使用を妨げるものではないことは言う
までもない。また、上記実施例においては、本発明を、
電波側位システムに適用した例を示しだが、電波の代り
に、音波、光等を用いることが可能であることは前述の
辿りである。
In the above embodiment, which of the hyperboloid positioning method and the spherical positioning method is selected is determined directly by GDOP, but the present invention is not limited to this.
It goes without saying that this does not preclude the use of other appropriate indicators. In addition, in the above embodiments, the present invention is
Although an example in which the present invention is applied to a radio wave side system is shown, it is possible to use sound waves, light, etc. instead of radio waves, as described above.

上述の如き処理により、移動体位置の推定誤差は、双曲
面測位方式による誤差と球面側位方式による誤差との、
少ない方に略等しくなる。
Through the processing described above, the estimation error of the moving object position is divided into the error due to the hyperboloid positioning method and the error due to the spherical lateral positioning method.
It will be approximately equal to the smaller one.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明によれば、双曲面測位方式によ
シ移動体の音波、光(熱)あるいは電磁波等の発信時刻
を推定し、これを用いて球面測位方式を使用可能とする
ことによシ両測位方式の使用を可能とし、更に、両側位
方式の位置推定誤差を推定していずれの方式を用いるべ
きがを選択可能としたので、高精度の測位方式を実現で
きるという顕著な効果を奏するものである。
As described above, according to the present invention, it is possible to estimate the transmission time of sound waves, light (heat), electromagnetic waves, etc. from a moving object using the hyperboloid positioning method, and use this to make it possible to use the spherical positioning method. This makes it possible to use both positioning methods, and furthermore, it is possible to select which method should be used by estimating the position estimation error of both methods, making it possible to achieve a highly accurate positioning method. It is effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す電波測位システムの構
成図、第2図は移動体から発信される信号の一例を示す
図、第3図は発信時刻推定誤差曲線を示すグラフ、第4
図は側位処理のフローチャートである。 1・・・移動体、2・・・移動体位置計算システム、3
・・・記憶装置、4・・・処理装置、5・・・表示装置
、SH〜S、・・・センサ。 第2 図 第3 図 第 4− 旧
FIG. 1 is a configuration diagram of a radio positioning system showing an embodiment of the present invention, FIG. 2 is a diagram showing an example of a signal transmitted from a moving object, FIG. 3 is a graph showing a transmission time estimation error curve, and FIG. 4
The figure is a flowchart of lateral position processing. 1... Mobile object, 2... Mobile object position calculation system, 3
...Storage device, 4.Processing device, 5.Display device, SH-S, ...Sensor. Figure 2 Figure 3 Figure 4- Old

Claims (1)

【特許請求の範囲】 1、音波、光あるいは電磁波を発信する移動体から、複
数のセンサによシ上記音波、光あるいは電磁波を受信し
、これらの受信時刻の相異に基づいて前記移動体の位置
を決定する測位システム、あるいは、複数の移動体から
の音波、光あるいは電磁波を1つのセンサで受信し、こ
の受信時刻の相異に基づいて前記センサの位置を決定す
る測位システムにおいて、双曲面測位方式により前記移
動体の音波、光あるいは電磁波の発信時刻を推定し、球
面測位方式をも利用可能にしたことを特徴とする測位方
式。 2、音波、光あるいは電磁波を発信する移動体から、複
数のセンサによシ上記音波あるいは電磁波を受信し、こ
れらの受信時刻の相異に基づいて前記移動体の位置を決
定する測位システム、あるいは、複数の移動体からの音
波、光あるいは電磁波を1つのセンサで受信し、この受
信時刻の相異に基づいて前記センサの位置を決定する測
位システムにおいて、双曲面測位方式によシ前記移動体
の音波、光あるいは電磁波の発信時刻を推定するととも
に、双曲面測位方式を用いる場合と球面測位方式を用い
る場合との位置推定誤差を計算し、選択すべき測位方式
を決定することを特徴とする測位方式。
[Claims] 1. A plurality of sensors receive sound waves, light, or electromagnetic waves from a moving body that emits sound waves, light, or electromagnetic waves, and based on the difference in reception time, the sound waves, light, or electromagnetic waves of the mobile body are determined. In a positioning system that determines a position, or a positioning system that receives sound waves, light, or electromagnetic waves from multiple moving objects with one sensor and determines the position of the sensor based on the difference in reception time, a hyperboloid A positioning method characterized in that the transmission time of the sound wave, light, or electromagnetic wave of the mobile body is estimated by a positioning method, and a spherical positioning method can also be used. 2. A positioning system that receives sound waves or electromagnetic waves from a mobile body that emits sound waves, light, or electromagnetic waves using a plurality of sensors, and determines the position of the mobile body based on the difference in the reception times; , a positioning system in which a single sensor receives sound waves, light, or electromagnetic waves from a plurality of moving objects, and determines the position of the sensor based on the difference in reception time, in which the moving objects are determined by a hyperboloid positioning method. The present invention is characterized by estimating the transmission time of a sound wave, light, or electromagnetic wave, and calculating the position estimation error between using a hyperboloid positioning method and using a spherical positioning method, and determining the positioning method to be selected. Positioning method.
JP2853384A 1984-02-20 1984-02-20 Position measurement system Pending JPS60173485A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2853384A JPS60173485A (en) 1984-02-20 1984-02-20 Position measurement system
US06/696,077 US4713768A (en) 1984-02-20 1985-01-29 Method of localizing a moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2853384A JPS60173485A (en) 1984-02-20 1984-02-20 Position measurement system

Publications (1)

Publication Number Publication Date
JPS60173485A true JPS60173485A (en) 1985-09-06

Family

ID=12251304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2853384A Pending JPS60173485A (en) 1984-02-20 1984-02-20 Position measurement system

Country Status (1)

Country Link
JP (1) JPS60173485A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100390379B1 (en) * 2000-07-28 2003-07-07 김인광 Automatic direction detecting apparatus and method thereof
JP2007507718A (en) * 2003-10-01 2007-03-29 エス5 ワイヤレス、インコーポレイテッド Time difference of arrival (TDOA) positioning service method and system
WO2011114531A1 (en) * 2010-03-19 2011-09-22 スカパーJsat株式会社 Positioning system for geostationary artificial satellite
JP2014531597A (en) * 2011-09-30 2014-11-27 マイクロソフト コーポレーション Sonic-based localization

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100390379B1 (en) * 2000-07-28 2003-07-07 김인광 Automatic direction detecting apparatus and method thereof
JP2007507718A (en) * 2003-10-01 2007-03-29 エス5 ワイヤレス、インコーポレイテッド Time difference of arrival (TDOA) positioning service method and system
WO2011114531A1 (en) * 2010-03-19 2011-09-22 スカパーJsat株式会社 Positioning system for geostationary artificial satellite
US9638785B2 (en) 2010-03-19 2017-05-02 Sky Perfect Jsat Corporation Position measurement system for geostationary artificial satellite
JP2014531597A (en) * 2011-09-30 2014-11-27 マイクロソフト コーポレーション Sonic-based localization

Similar Documents

Publication Publication Date Title
US11733119B2 (en) Systems and methods for determining when to calibrate a pressure sensor of a mobile device
US7679561B2 (en) Systems and methods for positioning using multipath signals
US7532158B2 (en) Wireless network assisted GPS system
Sun et al. Underwater acoustic localization of the black box based on generalized second-order time difference of arrival (GSTDOA)
US8824325B2 (en) Positioning technique for wireless communication system
JPH0470584A (en) Satellite navigation system
US9664770B2 (en) Method and system for simultaneous receiver calibration and object localisation for multilateration
US20060063537A1 (en) Method and apparatus for determining position of mobile communication terminal
KR20040067468A (en) Method and apparatus for estimating position utilizing GPS satellite signal
Arnold et al. Target parameter estimation using measurements acquired with a small number of sensors
JPS636414A (en) Data processing system for hybrid satellite navigation
JPS60173485A (en) Position measurement system
KR20060022244A (en) Self surveying radio location method
EP0661553A2 (en) Method for determining positions on the earth corresponding to an observed rate of change of satellite range
US7535420B2 (en) Method and apparatus for signal tracking utilizing universal algorithm
KR101480834B1 (en) Target motion analysis method using target classification and ray tracing of underwater sound energy
KR100331182B1 (en) System for locating sound generation source
US20040150560A1 (en) Positioning system and method
US7151999B2 (en) Passive terrain navigation
JPH095417A (en) Gps receiving device
JP3019719B2 (en) Position measurement method
JP2009139342A (en) Acceleration measuring apparatus
JPS636478A (en) Satellite navigation system
US11194012B2 (en) Radio source position estimation system
JPS62285085A (en) Satellite navigator