US7532158B2 - Wireless network assisted GPS system - Google Patents
Wireless network assisted GPS system Download PDFInfo
- Publication number
- US7532158B2 US7532158B2 US11/682,434 US68243407A US7532158B2 US 7532158 B2 US7532158 B2 US 7532158B2 US 68243407 A US68243407 A US 68243407A US 7532158 B2 US7532158 B2 US 7532158B2
- Authority
- US
- United States
- Prior art keywords
- mobile unit
- gps
- information
- wireless network
- base stations
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 claims abstract description 10
- 238000004891 communication Methods 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- 238000005259 measurement Methods 0.000 abstract description 10
- 230000003190 augmentative effect Effects 0.000 abstract 1
- 238000001514 detection method Methods 0.000 description 8
- 238000012937 correction Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
Definitions
- the present invention relates to GPS technologies, and more particularly, to a hybrid GPS system in which positioning of a mobile unit is realized with the assistance of a wireless network.
- GPS receiver To determine the position of a mobile unit equipped with a GPS receiver, measurements of distance between the GPS receiver and GPS satellites are made at the receiver. In addition to the distance measurements, the time at which the GPS signals are transmitted from GPS satellites should be deduced from the distance measurements for correcting timing errors in the receiver.
- Timing errors may be effectively solved by differential GPS (DGPS) technology, in which the correction information of the timing errors is provided from a stationary reference receiver, which uses its known position to calculate timing.
- DGPS differential GPS
- the reference receiver There are numerous satellites “in sight” (GPS satellite constellation is designed such that four or more satellites can be seen simultaneously at any location on the surface of the earth), and the reference receiver has no way of knowing which of the many available satellites a moving receiver might be using to calculate its position, thus the reference receiver runs through all the visible satellites and computes each of their errors. Then it transmits the correction information to the moving receiver.
- the moving receivers get the complete list of errors and apply the corrections for the satellites they're using.
- the positioning of the GPS receiver in a mobile unit is assisted by a wireless network.
- the land based wireless network has its own source of GPS satellite data, which can be provided to the GPS receiver to assist the detection of the GPS signals.
- the position of the mobile unit is calculated by a location application processor in the wireless network, and the GPS receiver does not need to demodulate the ephemeris information from the received GPS signals, but only needs to decode and transmit a set of parameters (pseudo-ranging measurements and satellite ID) to the base station.
- the signal processing and power consumption at the mobile unit is minimized.
- the position location with partial GPS p-GPS
- the wireless network can help with timing and/or distance information.
- FIG. 1 illustrates of the present invention in which three satellites and two base stations of the wireless network are involved in the positioning of the mobile unit;
- FIG. 2 illustrates of the present invention in which two satellites and three base stations of the wireless network are involved in the positioning of the mobile unit;
- FIG. 3 illustrates an interrogation scenario of the present invention
- FIG. 4 illustrates a status report scenario of the present invention.
- FIG. 1 in which two base stations 2 a , 2 b of the wireless network 2 and three of the satellites are involved in positioning of the targeted mobile unit 3 which is equipped with a GPS receiver 3 a .
- the wireless network 2 maintains communication with a plurality of available satellites in space and collects information from these satellites.
- the wireless network may include timing errors for each satellite.
- the GPS receiver 3 a of the mobile unit 3 receives ephemeris data from the three satellites 1 a , 1 b and 1 c , which are not blocked. According to the present invention, however, the ephemeris data does not need to be extensively processed at the mobile unit 3 because of the fact that the wireless network has its own source of GPS satellite data.
- the mobile unit 3 only needs to decode and transmit a set of GPS parameters (pseudo-ranging measurements and satellite ID) which is needed for the position calculation to a location application processor 4 provided in the wireless network 2 , e.g., at the base station 2 a.
- the position calculation is carried out at the location application processor 4 . Therefore, the signal processing and the computational power at the mobile unit 3 are minimized.
- the wireless network 2 can also assist the GPS receiver 3 a in detection of the GPS signal.
- the wireless network 2 can predict what GPS signals the mobile unit 3 will be receiving at any given time and therefore can provide the information such as the Doppler shift experienced by the GPS signal and the PRN sequence that the mobile unit 3 should use to de-spread C/A signal from a particular satellite 1 a , 1 b or 1 c as well as the information content carried by the GPS signal, the location and identity of the satellite(s) providing the GPS signal, and any other relevant data. In this way, the detectability of the GPS signal at the mobile unit 3 is significantly enhanced, and the speed of such detection is maximized.
- the position location with partial GPS is possible, as explained in detail below.
- ⁇ i ⁇ square root over (( x i ⁇ x u ) 2 +( y i ⁇ y u ) 2 +( z i ⁇ z u ) 2 ) ⁇ square root over (( x i ⁇ x u ) 2 +( y i ⁇ y u ) 2 +( z i ⁇ z u ) 2 ) ⁇ square root over (( x i ⁇ x u ) 2 +( y i ⁇ y u ) 2 +( z i ⁇ z u ) 2 ) ⁇ square root over (( x i ⁇ x u ) 2 +( y i ⁇ y u ) 2 +( z i ⁇ z u ) 2 ) ⁇ + C ⁇ t u (1)
- the satellite clock drift and other delay elements are assumed to be adjusted and therefore not shown in the equation (1) above.
- the pseudorange is measured using the propagation delay of the signal transmitted from GPS satellites.
- the coordinates of the satellites are to be decoded from ephemeris data in the signal, and in the present invention, this can be carried out by the wireless network 2 instead of the mobile unit 3 .
- BS ⁇ ⁇ 1 ( x B ⁇ ⁇ 2 - x u ) 2 + ( y B ⁇ ⁇ 2 - y u ) 2 + ( z B ⁇ ⁇ 2 - z u ) 2 - ( x B ⁇ ⁇ 1 - x u ) 2 + ( y B ⁇ ⁇ 1 - y u ) 2 + ( z B ⁇ ⁇ 1 - z u ) 2 ( 3 )
- ⁇ BS2,BS1 differences of distances between the target and base stations, which is measured at the target. (Notice that the TDOA equation does not have timing information assuming that the target's clock is not synchronized with the wireless network.)
- FIG. 2 shows another example where only two satellites 1 a , 1 b are available to the mobile unit 3 , while three base stations 2 a , 2 b , 2 c are involved in positioning the GPS receiver 3 a .
- the insufficiency in GPS satellite signals can be supported by the information provided from one or more base stations of the wireless network 2 , which may include timing information and distance information.
- First degree support is timing information from a base station of the wireless network 2 .
- three satellites are needed for acquiring a full set of four equations.
- Second degree support is timing information with distance information from a base station (distance from one base station to the target mobile unit). For this degree, two satellites are needed for acquiring a full set of four equations.
- Third degree support is timing information with distance information from two base stations (distance from each base station to the target mobile unit). For this degree, one satellite is needed for acquiring a full set of four equations.
- Fourth degree support is timing information with distance information from three base stations (distance from each base station to the target mobile unit). For this degree, no satellite is needed, and the positioning of the mobile unit 3 can be carried out solely by the wireless network 3 .
- FIG. 3 illustrates a scenario of interrogation where the wireless network 2 initiates a query to locate the mobile unit 3 .
- the wireless network 2 sends a query message to the mobile unit 3 , asking for the mobile's current status and the pseudo-range measurements from GPS signals.
- the query message contains the information for assisting in the detection of the signals from GPS satellites such as Doppler shift and PRN sequence.
- the GPS receiver 3 a of the mobile unit 3 detects the proper satellites for the GPS signals and sends a set of GPS parameters, as well as status information of the mobile unit 3 , back to the base stations of the wireless network 2 for the position calculation processor 4 to determine the position of the mobile unit 3 .
- FIG. 4 illustrates a scenario of an assistance request initiated by the mobile unit 3 .
- the mobile unit 3 that needs to determine its position using GPS sends an assistance request message to a nearby base station, asking for the information for assisting in the detection of the signals from GPS satellites.
- the wireless network 3 Upon receiving the assistance request from the mobile unit 3 , the wireless network 3 provides the information assisting the detection of the signals from GPS satellites. With the detection assistance information provided by the wireless network, the mobile unit 3 will be able to more easily detect the GPS signals from the proper satellites. Again, the pseudo-measurements from the GPS receiver along with the status information of the mobile unit 3 are transmitted to base stations.
- the assistance request message may itself reach plural base stations, each of which provides information.
- the difference in arrival times of the information can itself be utilized as yet further information in detecting the position of the GPS receiver, which further information may be combined with the use of the satellite data that is at least partially specified in the information.
- a status report signal received at multiple base stations may also be used to determine the position of the mobile unit 3 , using TOA, TDOA and/or AOA.
- Base stations determine the received signal properties (e.g., signal propagation delay in case of TOA) that are relevant in determining the position of the mobile unit 3 , and forward these signal properties along with the GPS pseudo-ranging measurement data contained in the status report message to the location application processor where the final position calculation is carried out.
- the mobile unit 3 calculates the position by itself, but more power will be consumed at the mobile unit due to more signal processing requirement.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
A method, apparatus, and/or system for locating mobile devices may use location information received from a mobile device to be located. Such information may include GPS-related information and/or path length information with respect to one or more signals transmitted by network elements. Such information may be augmented by information provided by one or more network elements, which information may include path length measurements based on signals transmitted from the mobile device.
Description
This application is a divisional application of U.S. patent application Ser. No. 10/827,911, entitled WIRELESS NETWORK ASSISTED GPS SYSTEM, filed Apr. 20, 2004, now U.S. Pat. No. 7,215,281 the entire disclosure of which is incorporated by reference, which claims the benefit of U.S. Provisional Patent Application No. 60/465,823, entitled WIRELESS NETWORK ASSISTED GPS SYSTEM, filed Apr. 25, 2003, the entire disclosure of which is hereby incorporated by reference.
The present invention relates to GPS technologies, and more particularly, to a hybrid GPS system in which positioning of a mobile unit is realized with the assistance of a wireless network.
To determine the position of a mobile unit equipped with a GPS receiver, measurements of distance between the GPS receiver and GPS satellites are made at the receiver. In addition to the distance measurements, the time at which the GPS signals are transmitted from GPS satellites should be deduced from the distance measurements for correcting timing errors in the receiver.
Timing errors may be effectively solved by differential GPS (DGPS) technology, in which the correction information of the timing errors is provided from a stationary reference receiver, which uses its known position to calculate timing. This is a result of the facts that, if two receivers are fairly close to each other (compared to the satellites far away in the space), the satellite signals that reach both of the receivers will have traveled through virtually the same slice of atmosphere, and so will have virtually the same errors. There are numerous satellites “in sight” (GPS satellite constellation is designed such that four or more satellites can be seen simultaneously at any location on the surface of the earth), and the reference receiver has no way of knowing which of the many available satellites a moving receiver might be using to calculate its position, thus the reference receiver runs through all the visible satellites and computes each of their errors. Then it transmits the correction information to the moving receiver. The moving receivers get the complete list of errors and apply the corrections for the satellites they're using.
There are, however, several problems in current geolocation technologies. The power consumption at a GPS receiver is always one of the major concerns in view of the portability of the mobile unit. The more data processed at the receiver, the more profound the problem. Having a GPS receiver receive plural signals and then calculate its position requires extensive processing power.
Effective detection of the GPS signals is another issue, since there are numerous satellite signals in space. Furthermore, sometimes there are not enough satellite signals received at the receiver for position calculation purposes, typically when the signals from one or more satellites are blocked from reaching the receiver. This may happen, for example, when the mobile unit is in a subway or in a building. The present invention helps to solve or minimize the above problems.
In the present invention, the positioning of the GPS receiver in a mobile unit is assisted by a wireless network. In particular, the land based wireless network has its own source of GPS satellite data, which can be provided to the GPS receiver to assist the detection of the GPS signals. Furthermore, the position of the mobile unit is calculated by a location application processor in the wireless network, and the GPS receiver does not need to demodulate the ephemeris information from the received GPS signals, but only needs to decode and transmit a set of parameters (pseudo-ranging measurements and satellite ID) to the base station. Thus, the signal processing and power consumption at the mobile unit is minimized. Furthermore, the position location with partial GPS (p-GPS) is possible as the wireless network can help with timing and/or distance information.
Reference is made to FIG. 1 , in which two base stations 2 a, 2 b of the wireless network 2 and three of the satellites are involved in positioning of the targeted mobile unit 3 which is equipped with a GPS receiver 3 a. With the base stations 1 a, 1 b, the wireless network 2 maintains communication with a plurality of available satellites in space and collects information from these satellites. Like a DGPS reference receiver, the wireless network may include timing errors for each satellite.
The GPS receiver 3 a of the mobile unit 3 receives ephemeris data from the three satellites 1 a, 1 b and 1 c, which are not blocked. According to the present invention, however, the ephemeris data does not need to be extensively processed at the mobile unit 3 because of the fact that the wireless network has its own source of GPS satellite data. The mobile unit 3 only needs to decode and transmit a set of GPS parameters (pseudo-ranging measurements and satellite ID) which is needed for the position calculation to a location application processor 4 provided in the wireless network 2, e.g., at the base station 2 a.
The position calculation is carried out at the location application processor 4. Therefore, the signal processing and the computational power at the mobile unit 3 are minimized.
In addition to calculating the position of the GPS receiver 3 a, the wireless network 2 can also assist the GPS receiver 3 a in detection of the GPS signal. In particular, the wireless network 2 can predict what GPS signals the mobile unit 3 will be receiving at any given time and therefore can provide the information such as the Doppler shift experienced by the GPS signal and the PRN sequence that the mobile unit 3 should use to de-spread C/A signal from a particular satellite 1 a, 1 b or 1 c as well as the information content carried by the GPS signal, the location and identity of the satellite(s) providing the GPS signal, and any other relevant data. In this way, the detectability of the GPS signal at the mobile unit 3 is significantly enhanced, and the speed of such detection is maximized.
Furthermore, with the wireless network 2 and its base stations, the position location with partial GPS (p-GPS) is possible, as explained in detail below.
In order to determine the position in three dimensions and the GPS receiver clock error correction, pseudorange measurements are made to four satellites resulting in the system of equations:
ρi=√{square root over ((x i −x u)2+(y i −y u)2+(z i −z u)2)}{square root over ((x i −x u)2+(y i −y u)2+(z i −z u)2)}{square root over ((x i −x u)2+(y i −y u)2+(z i −z u)2)}+C·t u (1)
where:
ρi=√{square root over ((x i −x u)2+(y i −y u)2+(z i −z u)2)}{square root over ((x i −x u)2+(y i −y u)2+(z i −z u)2)}{square root over ((x i −x u)2+(y i −y u)2+(z i −z u)2)}+C·t u (1)
where:
- ρi=pseudorange from the receiver to satellite ‘i’;
- (xi, yi, zi)=coordinate of satellite ‘i’;
- (xu, yu, zu)=coordinate of the receiver to be calculated; and
- tu=the receiver clock offset to be calculated.
The satellite clock drift and other delay elements are assumed to be adjusted and therefore not shown in the equation (1) above. The pseudorange is measured using the propagation delay of the signal transmitted from GPS satellites. The coordinates of the satellites are to be decoded from ephemeris data in the signal, and in the present invention, this can be carried out by the wireless network 2 instead of the mobile unit 3.
However, as shown in FIG. 1 , only three satellites 1 a, 1 b and 1 c are available to the GPS receiver 3 a of the mobile unit 3. This may be caused by the fact that the mobile unit 3 is in a blocked location such as behind a building. With the signals sent from the three satellites 1 a, 1 b and 1 c, three “GPS Equations” are as follows:
ρ1=√{square root over ((x 1 −x u)2+(y 1 −y u)2+(z 1 −z u)2)}{square root over ((x 1 −x u)2+(y 1 −y u)2+(z 1 −z u)2)}{square root over ((x 1 −x u)2+(y 1 −y u)2+(z 1 −z u)2)}+C·t u
ρ2=√{square root over ((x i −x u)2+(y 2 −y u)2+(z 2 −z u)2)}{square root over ((x i −x u)2+(y 2 −y u)2+(z 2 −z u)2)}{square root over ((x i −x u)2+(y 2 −y u)2+(z 2 −z u)2)}+C·t u
ρ3=√{square root over ((x i −x u)2+(y 3 −y u)2+(z 3 −z u)2)}{square root over ((x i −x u)2+(y 3 −y u)2+(z 3 −z u)2)}{square root over ((x i −x u)2+(y 3 −y u)2+(z 3 −z u)2)}+C·t u (2)
where ρi=pseudorange, the distance between target satellite ‘i’; and
ρ1=√{square root over ((x 1 −x u)2+(y 1 −y u)2+(z 1 −z u)2)}{square root over ((x 1 −x u)2+(y 1 −y u)2+(z 1 −z u)2)}{square root over ((x 1 −x u)2+(y 1 −y u)2+(z 1 −z u)2)}+C·t u
ρ2=√{square root over ((x i −x u)2+(y 2 −y u)2+(z 2 −z u)2)}{square root over ((x i −x u)2+(y 2 −y u)2+(z 2 −z u)2)}{square root over ((x i −x u)2+(y 2 −y u)2+(z 2 −z u)2)}+C·t u
ρ3=√{square root over ((x i −x u)2+(y 3 −y u)2+(z 3 −z u)2)}{square root over ((x i −x u)2+(y 3 −y u)2+(z 3 −z u)2)}{square root over ((x i −x u)2+(y 3 −y u)2+(z 3 −z u)2)}+C·t u (2)
where ρi=pseudorange, the distance between target satellite ‘i’; and
-
- tu=target's clock offset.
From the two base stations 2 a and 2 b, we have one “TDOA (time difference of arrival) Equation”:
where δBS2,BS1=differences of distances between the target and base stations, which is measured at the target. (Notice that the TDOA equation does not have timing information assuming that the target's clock is not synchronized with the wireless network.)
Thus, we have the four non-linear equations with four unknowns, which are sufficient to calculate the position of the GPS receiver 3. The unknowns can be solved by employing closed form solution, iterative techniques based on linearization, or Kalman filtering.
ρ1=√{square root over ((x S1 −x u)2+(y S1 −y u)2+(z S1 −z u)2)}{square root over ((x S1 −x u)2+(y S1 −y u)2+(z S1 −z u)2)}{square root over ((x S1 −x u)2+(y S1 −y u)2+(z S1 −z u)2)}+C·t u
ρ2=√{square root over ((x S2 −x u)2+(y S2 −y u)2+(z S2 −z u)2)}{square root over ((x S2 −x u)2+(y S2 −y u)2+(z S2 −z u)2)}{square root over ((x S2 −x u)2+(y S2 −y u)2+(z S2 −z u)2)}+C·t u (4)
where ρi=pseudorange, the distance between target and satellite ‘i’
-
- tu=target's clock offset
From the three base stations, we have two “TDOA Equations”:
where δBSi,BSj=difference of distance between target and base station.
Thus, we have four equations for the four unknowns, which are sufficient for the positional calculation of the GPS receiver 3 a.
According to the present invention, the insufficiency in GPS satellite signals can be supported by the information provided from one or more base stations of the wireless network 2, which may include timing information and distance information.
Basically, there are four degrees in terms of the assistance from the wireless network 3:
First degree: support is timing information from a base station of the wireless network 2. For this degree, three satellites are needed for acquiring a full set of four equations.
Second degree: support is timing information with distance information from a base station (distance from one base station to the target mobile unit). For this degree, two satellites are needed for acquiring a full set of four equations.
Third degree: support is timing information with distance information from two base stations (distance from each base station to the target mobile unit). For this degree, one satellite is needed for acquiring a full set of four equations.
Fourth degree: support is timing information with distance information from three base stations (distance from each base station to the target mobile unit). For this degree, no satellite is needed, and the positioning of the mobile unit 3 can be carried out solely by the wireless network 3.
Notably, the assistance request message may itself reach plural base stations, each of which provides information. The difference in arrival times of the information can itself be utilized as yet further information in detecting the position of the GPS receiver, which further information may be combined with the use of the satellite data that is at least partially specified in the information.
A status report signal received at multiple base stations may also be used to determine the position of the mobile unit 3, using TOA, TDOA and/or AOA. Base stations determine the received signal properties (e.g., signal propagation delay in case of TOA) that are relevant in determining the position of the mobile unit 3, and forward these signal properties along with the GPS pseudo-ranging measurement data contained in the status report message to the location application processor where the final position calculation is carried out.
It is also possible that the mobile unit 3 calculates the position by itself, but more power will be consumed at the mobile unit due to more signal processing requirement.
In general, there are in fact at least three types of information that may be utilized to assist in locating the GPS receiver. First, the difference in path lengths of plural signals sent from different based stations to the GPS receiver. Second, the difference in lengths of signals sent to/from satellites from/to the GPS receiver. Third, the difference in path length of one or more signals sent from the GPS receiver to plural base stations. These three signals can be combined using known mathematical equations to locate the GPS receiver with in a more accurate fashion than was previously possible.
Claims (15)
1. An apparatus comprising:
a location application processor having access to GPS satellite data and configured to receive a set of GPS parameters from a mobile unit and to process the GPS parameters in view of the GPS satellite data to calculate a position of the mobile unit, wherein the location application processor is not collocated with the mobile unit.
2. The apparatus according to claim 1 , wherein said location application processor is further configured to receive from said mobile unit timing and distance information received by said mobile unit from one or more base stations of a wireless network and to use said timing and distance information to assist in calculating the position of the mobile unit.
3. The apparatus according to claim 1 , wherein said location application processor is further configured to collect at least three items of information, said items of information to be selected from among the group consisting of: one or more differences in path lengths of plural signals sent from different base stations of the wireless network to the mobile unit; one or more differences in lengths of signals sent to/from satellites from/to the GPS receiver associated with the mobile unit; and one or more differences in path lengths of one or more signals sent from the mobile unit to plural base stations of the wireless network; and
to combine said at least three types of information to obtain a location of said mobile unit.
4. The apparatus according to claim 2 , wherein said timing and distance information includes distances between said mobile unit and at least two of said base stations.
5. The apparatus according to claim 4 , wherein said location application processor is configured to utilize at least one time difference of arrival equation to calculate the position of the mobile unit.
6. A method comprising:
collecting at least three items of information, said items of information to be selected from among the group consisting of: one or more differences in path lengths of plural signals sent from different base stations of a wireless network to a mobile unit; one or more differences in lengths of signals sent to/from satellites from/to a GPS receiver collocated with the mobile unit; and one or more differences in path lengths of one or more signals sent from the mobile unit to plural base stations of the wireless network; wherein at least one of the items of information collected comprises a GPS parameter obtained by a GPS receiver collocated with the mobile unit, and wherein said collecting is performed at a location not collocated with said mobile unit; and
combining said at least three types of information to obtain a location of said mobile unit.
7. The method according to claim 6 , wherein said collecting comprises:
obtaining at least one of said one or more differences in path lengths of one or more signals sent from the mobile unit to plural base stations of the wireless network from said mobile unit.
8. The method according to claim 6 , wherein said combining comprises:
solving a system of simultaneous equations to obtain the location of said mobile unit.
9. The method according to claim 8 , wherein said simultaneous equations are selected from the group consisting of GPS equations and time difference of arrival equations.
10. The method according to claim 8 , wherein said solving includes employing a technique selected from the group consisting of: closed form solution; iteration based on linearization; and Kalman filtering.
11. A system comprising:
a base station to be disposed in a wireless communication network; and
a location application processor, to be coupled to said base station, the location application processor having access to GPS satellite data and configured to receive a set of GPS parameters from a mobile unit and to process the GPS parameters in view of the GPS satellite data to calculate a position of the mobile unit, wherein said location application processor is not collocated with the mobile unit.
12. The system according to claim 11 , wherein said location application processor is further configured to receive from said mobile unit timing and distance information received by said mobile unit from one or more base stations of the wireless network.
13. The system according to claim 11 , wherein said location application processor is further configured to collect at least three items of information, said items of information to be selected from among the group consisting of: one or more differences in path lengths of plural signals sent from different base stations of the wireless network to the mobile unit; one or more differences in lengths of signals sent to/from satellites from/to the GPS receiver associated with the mobile unit; and one or more differences in path lengths of one or more signals sent from the mobile unit to plural base stations of the wireless network; and
to combine said at least three types of information to obtain a location of said mobile unit.
14. The apparatus according to claim 12 , wherein said timing and distance information includes distances between said mobile unit and at least two of said base stations.
15. The apparatus according to claim 14 , wherein said location application processor is configured to utilize at least one time difference of arrival equation to calculate the position of the mobile unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/682,434 US7532158B2 (en) | 2003-04-25 | 2007-03-06 | Wireless network assisted GPS system |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US46582303P | 2003-04-25 | 2003-04-25 | |
US10/827,911 US7215281B2 (en) | 2003-04-25 | 2004-04-20 | Wireless network assisted GPS system |
US11/682,434 US7532158B2 (en) | 2003-04-25 | 2007-03-06 | Wireless network assisted GPS system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/827,911 Division US7215281B2 (en) | 2003-04-25 | 2004-04-20 | Wireless network assisted GPS system |
Publications (2)
Publication Number | Publication Date |
---|---|
US20070159389A1 US20070159389A1 (en) | 2007-07-12 |
US7532158B2 true US7532158B2 (en) | 2009-05-12 |
Family
ID=33418298
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/827,911 Expired - Lifetime US7215281B2 (en) | 2003-04-25 | 2004-04-20 | Wireless network assisted GPS system |
US11/682,434 Expired - Lifetime US7532158B2 (en) | 2003-04-25 | 2007-03-06 | Wireless network assisted GPS system |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/827,911 Expired - Lifetime US7215281B2 (en) | 2003-04-25 | 2004-04-20 | Wireless network assisted GPS system |
Country Status (2)
Country | Link |
---|---|
US (2) | US7215281B2 (en) |
WO (1) | WO2004097446A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE41983E1 (en) * | 2000-09-22 | 2010-12-07 | Tierravision, Inc. | Method of organizing and compressing spatial data |
US8649968B2 (en) | 2004-09-07 | 2014-02-11 | Tierravision, Inc. | System and method of wireless downloads of map and geographic based data to portable computing devices |
US8768618B1 (en) * | 2013-05-15 | 2014-07-01 | Google Inc. | Determining a location of a mobile device using a multi-modal kalman filter |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8483717B2 (en) * | 2003-06-27 | 2013-07-09 | Qualcomm Incorporated | Local area network assisted positioning |
US8971913B2 (en) | 2003-06-27 | 2015-03-03 | Qualcomm Incorporated | Method and apparatus for wireless network hybrid positioning |
US7440762B2 (en) * | 2003-12-30 | 2008-10-21 | Trueposition, Inc. | TDOA/GPS hybrid wireless location system |
US7319878B2 (en) | 2004-06-18 | 2008-01-15 | Qualcomm Incorporated | Method and apparatus for determining location of a base station using a plurality of mobile stations in a wireless mobile network |
US7642958B2 (en) | 2005-06-21 | 2010-01-05 | Motorola, Inc. | Satellite positioning system receivers and methods |
US7257413B2 (en) * | 2005-08-24 | 2007-08-14 | Qualcomm Incorporated | Dynamic location almanac for wireless base stations |
US7904096B2 (en) * | 2005-09-06 | 2011-03-08 | O2Micro International Limited | GPS application using network assistance |
US9042917B2 (en) * | 2005-11-07 | 2015-05-26 | Qualcomm Incorporated | Positioning for WLANS and other wireless networks |
KR100777100B1 (en) * | 2006-10-19 | 2007-11-19 | 한국전자통신연구원 | Method and apparatus for providing gps data using network |
US9226257B2 (en) * | 2006-11-04 | 2015-12-29 | Qualcomm Incorporated | Positioning for WLANs and other wireless networks |
US8121609B2 (en) | 2006-12-28 | 2012-02-21 | Worldscout Corporation | System and method for determining the location of a location tracking device |
US8897801B2 (en) | 2008-06-13 | 2014-11-25 | Qualcomm Incorporated | Transmission of location information by a transmitter as an aid to location services |
CN106301529A (en) * | 2016-07-27 | 2017-01-04 | 北京合众思壮科技股份有限公司 | A kind of short message transmission method, server, terminal and communication system |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5841396A (en) | 1996-03-08 | 1998-11-24 | Snaptrack, Inc. | GPS receiver utilizing a communication link |
US6289280B1 (en) | 1999-12-10 | 2001-09-11 | Qualcomm Incorporated | Method and apparatus for determining an algebraic solution to GPS terrestrial hybrid location system equations |
US6433735B1 (en) | 2000-12-26 | 2002-08-13 | Telefonaktiebolaget (Lme) | Mobile terminal and system and method for determining the geographic location of a mobile terminal |
US20020111171A1 (en) | 2001-02-14 | 2002-08-15 | Boesch Ronald D. | Expedited location determination in analog service areas |
US6441778B1 (en) | 1999-06-18 | 2002-08-27 | Jennifer Durst | Pet locator |
US20020199196A1 (en) | 2001-06-21 | 2002-12-26 | Matthew Rabinowitz | Position location using global positioning signals augmented by broadcast television signals |
US20030006931A1 (en) | 2001-07-03 | 2003-01-09 | Ken Mages | System and method for providing accurate location information for wireless or wired remote gaming activities |
US6518919B1 (en) | 1999-06-18 | 2003-02-11 | Jennifer Durst | Mobile object locator |
US20040072583A1 (en) | 2002-10-09 | 2004-04-15 | Weng Yuan Sung | Mobile phone device with function of emergency notification |
US20040077311A1 (en) | 2002-09-05 | 2004-04-22 | Riley Wyatt Thomas | Position computation in a positioning system using synchronization time bias |
US6760582B2 (en) | 2002-02-04 | 2004-07-06 | Qualcomm Incorporated | Method and apparatus for testing assisted position location capable devices |
US20040160365A1 (en) | 2003-02-14 | 2004-08-19 | Riley Wyatt T. | Method and apparatus for processing navigation data in position determination |
US20040203853A1 (en) | 2002-04-24 | 2004-10-14 | Leonid Sheynblat | Position determination for a wireless terminal in a hybrid position determination system |
US20050192024A1 (en) | 2002-10-17 | 2005-09-01 | Leonid Sheynblat | Method and apparatus for improving radio location accuracy with measurements |
US6950059B2 (en) * | 2002-09-23 | 2005-09-27 | Topcon Gps Llc | Position estimation using a network of a global-positioning receivers |
US6952181B2 (en) * | 1996-09-09 | 2005-10-04 | Tracbeam, Llc | Locating a mobile station using a plurality of wireless networks and applications therefor |
US6999776B2 (en) | 2001-09-13 | 2006-02-14 | Denso Corporation | Mobile station having indoor/outdoor mode shifting function |
US20060038719A1 (en) | 2000-05-18 | 2006-02-23 | Ashutosh Pande | Aided location communication system |
-
2004
- 2004-04-20 US US10/827,911 patent/US7215281B2/en not_active Expired - Lifetime
- 2004-04-20 WO PCT/US2004/012037 patent/WO2004097446A2/en active Application Filing
-
2007
- 2007-03-06 US US11/682,434 patent/US7532158B2/en not_active Expired - Lifetime
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6400314B1 (en) | 1995-10-09 | 2002-06-04 | Qualcomm Incorporated | GPS receiver utilizing a communication link |
US5841396A (en) | 1996-03-08 | 1998-11-24 | Snaptrack, Inc. | GPS receiver utilizing a communication link |
US6952181B2 (en) * | 1996-09-09 | 2005-10-04 | Tracbeam, Llc | Locating a mobile station using a plurality of wireless networks and applications therefor |
US6518919B1 (en) | 1999-06-18 | 2003-02-11 | Jennifer Durst | Mobile object locator |
US6441778B1 (en) | 1999-06-18 | 2002-08-27 | Jennifer Durst | Pet locator |
US7113126B2 (en) * | 1999-06-18 | 2006-09-26 | Pfizer, Inc. | Portable position determining device |
US6289280B1 (en) | 1999-12-10 | 2001-09-11 | Qualcomm Incorporated | Method and apparatus for determining an algebraic solution to GPS terrestrial hybrid location system equations |
US20060038719A1 (en) | 2000-05-18 | 2006-02-23 | Ashutosh Pande | Aided location communication system |
US6433735B1 (en) | 2000-12-26 | 2002-08-13 | Telefonaktiebolaget (Lme) | Mobile terminal and system and method for determining the geographic location of a mobile terminal |
US20020111171A1 (en) | 2001-02-14 | 2002-08-15 | Boesch Ronald D. | Expedited location determination in analog service areas |
US20020199196A1 (en) | 2001-06-21 | 2002-12-26 | Matthew Rabinowitz | Position location using global positioning signals augmented by broadcast television signals |
US20030006931A1 (en) | 2001-07-03 | 2003-01-09 | Ken Mages | System and method for providing accurate location information for wireless or wired remote gaming activities |
US6999776B2 (en) | 2001-09-13 | 2006-02-14 | Denso Corporation | Mobile station having indoor/outdoor mode shifting function |
US6760582B2 (en) | 2002-02-04 | 2004-07-06 | Qualcomm Incorporated | Method and apparatus for testing assisted position location capable devices |
US20040203853A1 (en) | 2002-04-24 | 2004-10-14 | Leonid Sheynblat | Position determination for a wireless terminal in a hybrid position determination system |
US20040077311A1 (en) | 2002-09-05 | 2004-04-22 | Riley Wyatt Thomas | Position computation in a positioning system using synchronization time bias |
US6950059B2 (en) * | 2002-09-23 | 2005-09-27 | Topcon Gps Llc | Position estimation using a network of a global-positioning receivers |
US20040072583A1 (en) | 2002-10-09 | 2004-04-15 | Weng Yuan Sung | Mobile phone device with function of emergency notification |
US20050192024A1 (en) | 2002-10-17 | 2005-09-01 | Leonid Sheynblat | Method and apparatus for improving radio location accuracy with measurements |
US20040160365A1 (en) | 2003-02-14 | 2004-08-19 | Riley Wyatt T. | Method and apparatus for processing navigation data in position determination |
Non-Patent Citations (1)
Title |
---|
International Search Report and Written Opinion based on PCT/US2004/012037. |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE41983E1 (en) * | 2000-09-22 | 2010-12-07 | Tierravision, Inc. | Method of organizing and compressing spatial data |
US8649968B2 (en) | 2004-09-07 | 2014-02-11 | Tierravision, Inc. | System and method of wireless downloads of map and geographic based data to portable computing devices |
US9137633B2 (en) | 2004-09-07 | 2015-09-15 | Tierravision, Inc. | System and method of wireless downloads of map and geographic based data to portable computing devices |
US10244361B1 (en) | 2004-09-07 | 2019-03-26 | Tierravision, Inc. | System and method of wireless downloads of map and geographic based data to portable computing devices |
US8768618B1 (en) * | 2013-05-15 | 2014-07-01 | Google Inc. | Determining a location of a mobile device using a multi-modal kalman filter |
Also Published As
Publication number | Publication date |
---|---|
WO2004097446A3 (en) | 2006-08-17 |
WO2004097446A2 (en) | 2004-11-11 |
US20070159389A1 (en) | 2007-07-12 |
US7215281B2 (en) | 2007-05-08 |
US20050052320A1 (en) | 2005-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7532158B2 (en) | Wireless network assisted GPS system | |
KR100684541B1 (en) | Method and apparatus for determining an algebraic solution to gps terrestrial hybrid location system equations | |
US6445927B1 (en) | Method and apparatus for calibrating base station locations and perceived time bias offsets in an assisted GPS transceiver | |
EP1328823B1 (en) | Method and apparatus for estimating velocity of a terminal in a wireless communication system | |
EP1735634B1 (en) | Position detection with frequency smoothing | |
US8255160B2 (en) | Integrated mobile terminal navigation | |
US6839021B2 (en) | Method and apparatus for determining time in a satellite positioning system | |
EP1330662B1 (en) | Gps satellite signal acquisition assistance system and method in a wireless communications network | |
JP5026086B2 (en) | TDOA / GPS hybrid wireless position detection system | |
ES2344661T3 (en) | RELATIVE LOCATION SUPPORT. | |
US8369872B2 (en) | Method and device for determination of the position of a terminal in a mobile communication network | |
EP2634593B1 (en) | Positioning using a local wave-propagation model | |
US20150319725A1 (en) | Determining clock-drift using signals of opportunity | |
JP2014503147A (en) | System and method for a time-synchronized wireless network access point | |
CN101592726A (en) | With measuring the method and apparatus that improves radio location accuracy | |
US6476762B2 (en) | Method for performing positioning and an electronic device | |
KR100721517B1 (en) | Apparatus and method for determining a position of mobile terminal equipment | |
Quddus et al. | Validation of map matching algorithms using high precision positioning with GPS | |
FI108580B (en) | Procedure for locating an object, location system, receiver and electronic device | |
KR20140024640A (en) | Method and apparatus for determining nlos(non-line of sight) around a gps receiver | |
Alam | Vehicular positioning enhancement using DSRC | |
JP2005077291A (en) | Three-dimensional positioning system | |
Tan et al. | Positioning techniques for fewer than four GPS satellites | |
KR101075660B1 (en) | Method and apparatus for measuring location of a mobile station in a mobile communication system | |
EP1698188B1 (en) | Excess delay estimation using total received power |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |