JPS60173462A - Flaw detecting method of ferromagnetic body using amorphous alloy magnetic powder - Google Patents

Flaw detecting method of ferromagnetic body using amorphous alloy magnetic powder

Info

Publication number
JPS60173462A
JPS60173462A JP2871084A JP2871084A JPS60173462A JP S60173462 A JPS60173462 A JP S60173462A JP 2871084 A JP2871084 A JP 2871084A JP 2871084 A JP2871084 A JP 2871084A JP S60173462 A JPS60173462 A JP S60173462A
Authority
JP
Japan
Prior art keywords
magnetic powder
amorphous
amorphous alloy
magnetic
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2871084A
Other languages
Japanese (ja)
Inventor
Shigenari Maezawa
前沢 重成
Tatsuyoshi Hironaka
弘中 達良
Toshihiro Ueda
上田 利博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP2871084A priority Critical patent/JPS60173462A/en
Publication of JPS60173462A publication Critical patent/JPS60173462A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
    • G01N27/84Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields by applying magnetic powder or magnetic ink

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To improve detection sensitivity and detect a fine defect by using amorphous alloy powder 50% of which is amorphous as magnetic powder when detecting a defect part of a ferromagnetic body by a magnetic powder flaw detecting method. CONSTITUTION:Alloy consisting principally of, for example, iron, cobalt, nickel, copper, etc., is used as the amorphous alloy used as magnetic powder, and is manufactured by quenching the fused body of it at an about 10-10<6> deg.C/sec quenching speed or by vapor-deposition, sputtering, electrodeposition, or chemical plating. When a measurement is taken by X-ray diffraction, 50%, preferably, 80%, further preferably, 90% of it is amorphous. The use of this magnetic powder improves the detection precision extremely and a defective magnetic powder pattern is detected with a low detection current of about 130A, so this method provides economy.

Description

【発明の詳細な説明】 本発明は磁粉を用いる強磁性体の探傷法に関する。[Detailed description of the invention] The present invention relates to a flaw detection method for ferromagnetic materials using magnetic particles.

一般に強磁性体の欠陥部分(傷)を検出する方法として
磁粉探傷法は公知である。この磁粉探傷注性その表面に
欠陥部分、す愈わち磁気的に不連続な部分を有する強磁
性体に直接、間接に電流をかけ材料を磁化したとき、欠
陥部分の近くに現われる漏洩磁束を、この漏洩磁束の存
在位置に強磁性体粉末が吸着する現象を利用して検出し
、強磁性体材料の欠陥位置及び形状を知る方法である。
Magnetic particle flaw detection is generally known as a method for detecting defective parts (flaws) in ferromagnetic materials. When a current is applied directly or indirectly to a ferromagnetic material that has a defective part, that is, a magnetically discontinuous part, on its surface to magnetize the material, the leakage magnetic flux that appears near the defective part is detected. This is a method of detecting the defect position and shape of the ferromagnetic material by utilizing the phenomenon in which ferromagnetic powder is attracted to the location where this leakage magnetic flux exists.

この方法は特に線状の表面欠陥を検出する感度がきわめ
て高い方法である。
This method is particularly sensitive for detecting linear surface defects.

従来磁粉探傷法において使用される強磁性体粉末(磁粉
)材料としては現在までに電解鉄、γ−酸化第二鉄、磁
性四三酸化鉄などが用いられている。しかしながらこれ
らの磁粉を用いた場合にはその検出感度が小さく、正確
に強磁性体材料の欠陥部分を知るには大きに電流をかけ
て強磁性体を強く磁化する必要がある。この点を改良す
るため磁粉に螢光塗料をコーティングして検出感度を高
めたシする方法が用いられているが、いまだ満足する感
度までには至っていない。また従来の磁粉を用いる方法
では、微細な欠陥を見出すには不さな粒径、例えば/〜
ioμ程度の粒径の磁粉を用い々ければならないなどの
問題点がある。
As ferromagnetic powder (magnetic powder) materials used in conventional magnetic particle flaw detection methods, electrolytic iron, γ-ferric oxide, magnetic triiron tetroxide, etc. have been used up to now. However, when these magnetic particles are used, the detection sensitivity is low, and in order to accurately identify defective parts of the ferromagnetic material, it is necessary to apply a large current to strongly magnetize the ferromagnetic material. In order to improve this point, a method has been used in which magnetic particles are coated with fluorescent paint to increase detection sensitivity, but satisfactory sensitivity has not yet been achieved. In addition, in the conventional method using magnetic particles, the particle size is too small to detect minute defects, such as /~
There are problems such as the need to use magnetic powder having a particle size of approximately ioμ.

本発明者等はこれらの問題点を解消し、検出感度の高い
磁粉探傷法を開発すべく鋭意研究した結果本発明を完成
した。
The present inventors completed the present invention as a result of intensive research to solve these problems and develop a magnetic particle flaw detection method with high detection sensitivity.

すなわち本発明は、磁粉探傷法によυ強磁性体の欠陥部
分を検出するにあたシ、磁粉として少々くともgo%が
無定形である非晶質合金粉末を用いることを特徴とする
方法に関する。
That is, the present invention provides a method for detecting defective parts of υ ferromagnetic materials by magnetic particle testing, which is characterized by using amorphous alloy powder in which at least go% is amorphous as magnetic particles. Regarding.

本発明において使用する非晶質合金とは適当な組成の合
金(例えば鉄、コバルト、ニッケル、銅などを主体とす
る合金)の溶融物を10−10’t1′/秒程度の冷却
速度で急冷するか、あるいは蒸着法、スパッタ法、電着
法または化学メッキ法などによシ製造されるもので、X
線回折で測定した場合、合金中の少なくとも50%、好
ましくけ10チ、更に好ましくは9左チ以上が無定形で
あるような合金であシ、このような非晶質合金としては
例えば、一般式 %式% (式中νHLニッケル、クロム、コバルトおよびバナジ
ウムからなる群から選択される金属またはそれらの混合
物syはリン、炭素およびホウ素から選択される非金属
、またはそれらの混合物12はアルミニウム、シリコン
、スズ、アンチモン、ゲルマニウム、インジウムおよび
ベリリウムからなる群から選択される元素、またはそれ
らの混合物1aX bおよびCはそれらの和が100に
なるという条件下でそれぞれ60〜90./θ〜3θ、
0./〜−〇の原子百分率。)で示される非晶質合金。
The amorphous alloy used in the present invention is made by rapidly cooling a molten alloy of an appropriate composition (for example, an alloy mainly composed of iron, cobalt, nickel, copper, etc.) at a cooling rate of about 10-10't1'/sec. X
An alloy in which at least 50%, preferably 10%, more preferably 9% or more of the alloy is amorphous when measured by line diffraction; such amorphous alloys include, for example, general Formula % Formula % (wherein νHL a metal selected from the group consisting of nickel, chromium, cobalt and vanadium or a mixture thereof sy is a non-metal selected from phosphorus, carbon and boron, or a mixture thereof 12 is aluminum, silicon , tin, antimony, germanium, indium and beryllium, or a mixture thereof 1aX b and C are each 60-90./θ-3θ under the condition that their sum is 100,
0. /~−〇 atomic percentage. ) is an amorphous alloy.

を誉げることができ、その具体例としては特公昭!;j
−/9??A号に記載された非晶質合金を誉げることが
できる。
A specific example of this is Tokko Akira! ;j
-/9? ? The amorphous alloy described in No. A can be praised.

本発明ではこれらの非晶質合金の中で、キューリ一点が
roYO:以上、特にljOυ〜6θ0υの非晶質磁性
合金を使用することが好ましい。
In the present invention, among these amorphous alloys, it is preferable to use an amorphous magnetic alloy with a Curie point of roYO: or more, particularly ljOυ to 6θ0υ.

本発明では上記非晶質合金のリボン、またはストリップ
を例えば竪型渦流ミル々どで粉砕し、粒径がθ、oi〜
100μ、特に0.−〜Aθμの粉末にして、これを磁
粉として使用する。また必要によシこれらの非晶質合金
の粉末に着色剤あるいは螢光剤をコーティングして用い
てもよい。
In the present invention, the ribbon or strip of the amorphous alloy is pulverized, for example, in a vertical vortex mill, and the particle size is θ, oi ~
100μ, especially 0. −~Aθμ powder and use this as magnetic powder. If necessary, these amorphous alloy powders may be coated with a coloring agent or a fluorescent agent.

また本発明で欠陥部分を検査されるべき強磁性体とは、
強磁性を有する金属材料のととであシ、例えば鉄、炭素
鋼、けい素鋼などが挙げられる。
In addition, the ferromagnetic material to be inspected for defective parts in the present invention is:
Examples of ferromagnetic metal materials include iron, carbon steel, silicon steel, and the like.

また強磁性体の形態としては板状がどの原材料の形態で
もよく、また製品の形態でもよい。
Further, the ferromagnetic material may be in the form of any raw material such as a plate, or may be in the form of a product.

非晶質合金粉末を使用して強磁性体の欠陥部分を検出す
るにはJI8 CkO!Ajtに記載された検出方法に
より行うことができる。すなわち強磁性体を磁化させな
がら、または磁化させた状態で乾燥した非晶質合金の粉
末をそのまま、あるいは水などの液体に懸濁させて、検
査すべき強磁性体に散布し、そのとき現れる磁粉模様を
観察することによって、欠陥磁粉模様の有無、位置、種
類などを確認し、試験体である強磁性体の欠陥位置およ
びその程度を検出する。
How to detect defects in ferromagnetic materials using amorphous alloy powder JI8 CkO! This can be carried out by the detection method described in Ajt. In other words, the powder of an amorphous alloy that has been dried while magnetizing the ferromagnetic material, or is suspended in a liquid such as water, is sprinkled on the ferromagnetic material to be examined. By observing the magnetic particle pattern, the presence, location, type, etc. of the defective magnetic particle pattern can be confirmed, and the defect location and degree of the defect in the ferromagnetic material being tested can be detected.

試験体の磁化方法は試験体に直接電流を流す方法(軸通
電法、直角通電法、ブロンド法)や試験体の穴などに通
した導体に電流を流す方法(′fIL流貫通法)試験体
をコイルの中に入れ、コイルに電流を流す方法(コイル
法)、試験体の穴などに通した磁性体に交流磁束を与え
ることによって試験体に誘導電流を流して磁化する方法
(磁束貫通法)、および試験体または試験される部位を
電磁石または永久磁石の一極間の間において磁化させる
方法(極間法)などがある。また磁化するために流す電
流は直流、交流、衝撃型、流いずれでもよい。
The test specimen can be magnetized by passing a current directly through the specimen (axial current method, right angle current method, blond method), or by passing a current through a conductor passed through a hole in the test specimen ('fIL flow penetration method). A method in which a magnetic substance is inserted into a coil and current is passed through the coil (coil method), and a method in which an induced current is passed through a test object by applying alternating magnetic flux to a magnetic material passed through a hole in the test object to magnetize it (magnetic flux penetration method) ), and a method in which a test object or a part to be tested is magnetized between one pole of an electromagnet or a permanent magnet (pole-to-pole method). The current applied for magnetization may be direct current, alternating current, impact type, or current.

また通電時間は連続法では3〜10秒、残留法でけ%〜
/秒が適当である。
In addition, the energization time is 3 to 10 seconds for the continuous method, and % to 10 seconds for the residual method.
/second is appropriate.

本発明においては非+1’l質合金粉末を磁粉として用
いているため、従来公知の磁粉を用いた場合に比べ検出
感度が栖めてよく、/3θA程度の低い検出箱、流で欠
陥磁粉模様が検出できるので経済的である。捷た本発明
においては従来公知の磁粉を用いた場合に比べ比較的キ
11い。すなわち粒径の大きい磁粉を用いても検出感度
が良好であり、従って微細な欠陥も検出しやすいという
利点がある。
In the present invention, since non-+1'l alloy powder is used as the magnetic powder, the detection sensitivity is lower than when conventionally known magnetic powder is used. It is economical because it can detect In the present invention, the strength is comparatively 11 compared to the case where conventionally known magnetic powder is used. That is, even if magnetic powder with a large particle size is used, the detection sensitivity is good, and therefore, there is an advantage that even minute defects can be easily detected.

以下本発明を実施例により更に詳しく説明する。The present invention will be explained in more detail below with reference to Examples.

実施例/ Fe12”i5aMo4BH+ (原子%)の組成を有
する非晶質合金を竪型渦流ミルで粉末化して得られた粒
径6〜30μの非晶質合金粉末ioyを水ll中に懸濁
させた。次にJIS G−Oj−Ajで規定されたA型
標準試験片(電磁軟鉄板JIS O−コまθダ)のA2
−7/loをs、2tcのプ0ツク(yoxlθ×go
)にはシつけて、電流貫通法によシダ〜S秒通電し、試
験片を磁化させながら、上記懸濁液を試験体に散布し、
試験体を磁化させた。
Example/Amorphous alloy powder ioy with a particle size of 6 to 30 μ obtained by powdering an amorphous alloy having a composition of Fe12”i5aMo4BH+ (atomic %) in a vertical vortex mill is suspended in 1 liter of water. Next, A2 of the A type standard test piece (electromagnetic soft iron plate JIS O-koma θda) specified by JIS G-Oj-Aj.
−7/lo is s, 2tc is pu0tsu(yoxlθ×go
), and applying current to the specimen for ~S seconds using the current penetration method to magnetize the specimen, spraying the suspension onto the specimen.
The specimen was magnetized.

形成された試験体の欠陥磁粉模様を観察し、JIS a
−ozbzK基づいて試験片の欠陥部分を検出した。こ
のときの検出最低電流は13θAであった。
Observe the defective magnetic particle pattern of the formed test piece, and check the JIS a
- The defective portion of the test piece was detected based on ozbzK. The lowest detected current at this time was 13θA.

比較例1 実施例1において磁粉として非晶質合金粉末の代りに粒
径/〜3μの黒色磁粉(商品名MRB−133電子磁気
工業■製)を用いた以外は実施例/と全く同様にして磁
粉探傷を行った。このときの検出最低電流に/AθAで
あった。
Comparative Example 1 A procedure was carried out in exactly the same manner as in Example 1, except that black magnetic powder (trade name: MRB-133 manufactured by Electronic Magnetic Industry ■) with a particle size of ~3μ was used instead of the amorphous alloy powder as the magnetic powder in Example 1. Magnetic particle flaw detection was performed. The lowest detected current at this time was /AθA.

出願人 三井石油化学工業株式会社 代理人 山 口 和Applicant: Mitsui Petrochemical Industries, Ltd. Agent Kazu Yamaguchi

Claims (1)

【特許請求の範囲】[Claims] (1)磁粉探傷法によシ、強磁性体の欠陥部分を検出す
るに当ヤ、磁粉として少なくともSO%が無定形である
非晶質合金粉末を用いることを特徴とする方法。 (21非晶質合金がSOυ以上のキューリ一点を有する
非晶質磁性合金である特許請求の範囲第1項に記載の方
法。
(1) A method for detecting defective parts of a ferromagnetic material using a magnetic particle flaw detection method, characterized in that an amorphous alloy powder having at least an amorphous SO% is used as the magnetic particle. (21) The method according to claim 1, wherein the amorphous alloy is an amorphous magnetic alloy having a single Curie point of SOυ or more.
JP2871084A 1984-02-20 1984-02-20 Flaw detecting method of ferromagnetic body using amorphous alloy magnetic powder Pending JPS60173462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2871084A JPS60173462A (en) 1984-02-20 1984-02-20 Flaw detecting method of ferromagnetic body using amorphous alloy magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2871084A JPS60173462A (en) 1984-02-20 1984-02-20 Flaw detecting method of ferromagnetic body using amorphous alloy magnetic powder

Publications (1)

Publication Number Publication Date
JPS60173462A true JPS60173462A (en) 1985-09-06

Family

ID=12256008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2871084A Pending JPS60173462A (en) 1984-02-20 1984-02-20 Flaw detecting method of ferromagnetic body using amorphous alloy magnetic powder

Country Status (1)

Country Link
JP (1) JPS60173462A (en)

Similar Documents

Publication Publication Date Title
Kotecki Ferrite determination in stainless steel welds-advances since 1974
Eisenmann et al. Review of progress in magnetic particle inspection
Gupta et al. Hysteresis loop analysis of gas metal arc welded ferritic stainless steel plate
US4321534A (en) Magnetic particle testing procedure involving pre-coating with a hydrophobic coating
Leamy et al. Ferromagnetic domain structure of metallic glasses
JPS60173462A (en) Flaw detecting method of ferromagnetic body using amorphous alloy magnetic powder
JP4764199B2 (en) Magnetic particle shape observation device
US3951881A (en) Method of magnetic particle testing using strippable coatings
USRE19611E (en) Magnetic testing method and means
BRUNE et al. Corrosion resistance of a passivated and non‐passivated cobalt‐chromium alloy
US1960898A (en) Magnetic testing method and means
US3345564A (en) Method for non-destructive detection and observation of defects of ferromagnetic steels utilizing an aqueous ferromagnetic solution
US3786346A (en) Method for detecting defects using magnetic particles in a viscous fluid that restricts their mobility
JP2797160B2 (en) Magnetic fluid used for magnetic fluid underground crack confirmation method
Rigmant et al. Instruments for magnetic phase analysis of articles made of austenitic corrosion-resistant steels
Di Silvestro et al. Development of LiMCA (Liquid Metal Cleanliness Analyzer) Since Its Invention to Date
Chakraborty et al. Estimation of hardness in nickel-base hardafacing deposits on 316LN stainless steel by magnetic techniques
Nakai et al. Effect of carbide particle morphology and prior austenite grain size on Barkhausen noise in 0.4 C–5Cr–Mo–V hot-work tool steel
US6310471B1 (en) Card with magnetic stripe and method for testing magnetic inspection particle fluid
Uchimoto et al. Electromagnetic nondestructive evaluation of graphite structures in flake graphite cast iron
US1960899A (en) Magnetic testing material and method of preparing the same
JPH0692961B2 (en) Austemper pearlite precipitation determination method for spheroidal graphite cast iron
Yamaguchi Magnetic Analysis of Alloys by Electron Diffraction
WO1986006485A1 (en) Method of determining quality of nodular graphite cast iron
Jung et al. Dispersion quality of metal particle inks measured by a magnetic probing technique and its relation to tape quality