JPS6017335A - Auto-lens meter - Google Patents

Auto-lens meter

Info

Publication number
JPS6017335A
JPS6017335A JP12525483A JP12525483A JPS6017335A JP S6017335 A JPS6017335 A JP S6017335A JP 12525483 A JP12525483 A JP 12525483A JP 12525483 A JP12525483 A JP 12525483A JP S6017335 A JPS6017335 A JP S6017335A
Authority
JP
Japan
Prior art keywords
lens
image
image sensor
tested
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12525483A
Other languages
Japanese (ja)
Other versions
JPH0514217B2 (en
Inventor
Toshiaki Mizuno
俊昭 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP12525483A priority Critical patent/JPS6017335A/en
Publication of JPS6017335A publication Critical patent/JPS6017335A/en
Publication of JPH0514217B2 publication Critical patent/JPH0514217B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0228Testing optical properties by measuring refractive power
    • G01M11/0235Testing optical properties by measuring refractive power by measuring multiple properties of lenses, automatic lens meters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To measure the refractive index, axial angle and prism quantity of a lens to be tested without using a servo means or a rotary sector by processing signals on image sensors arranged on the focal surface of an image forming lens. CONSTITUTION:The lens 6 to be tested is set up on a nose piece 5 and four LEDs a-d are successively turned on by indications from a computer. Light rays from the LEDs form the optical image of a target 3 on positions A-D of two intersected image sensors 9 by an objective lens 2 through a colimate lens 4, the lens 6 to be tested and an image formation lens 7. The coordinate positions are detected by the computer and the spherical refractive index S, cylindrical surface refractive index, axial angle and prism quantity are calculated on the basis of the calculating formula and displayed.

Description

【発明の詳細な説明】 度、プリズム素子を自動的に計測するオートレンズメー
タに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an auto lens meter that automatically measures power and prism elements.

ロ、従来技術 従来のレンズメータは、コリメーティングレンズと、移
動可能なターゲットから成るコリメータを有し、このコ
リメータと同軸に被検レンズと、焦点検出用対物レンズ
及び所定の位置における結像状態を観察するだめの焦点
板と接眼レンズが設けられており、コリメーティングレ
ンズに対してターゲットを光軸方向に移動させて、焦点
板上で最良の結像状態が得られるときのターゲットの位
置を読みとって、被検レンズの度数を決定するようにな
っている。
B. Prior art A conventional lens meter has a collimator consisting of a collimating lens and a movable target, and coaxially with this collimator is a test lens, an objective lens for focus detection, and an imaging state at a predetermined position. A focusing plate and an eyepiece lens are provided to observe the target, and the target position is determined by moving the target in the optical axis direction relative to the collimating lens to obtain the best imaging condition on the focusing plate. The lens is read to determine the power of the lens to be tested.

手動式の場合は測定者の目視により、最良像位置を決定
するため個人差が生じるとともに、測定に時間がかかる
等の欠点がある。
In the case of a manual method, the best image position is determined by visual inspection by the measurer, which causes individual differences and has drawbacks such as the time required for measurement.

自動式の場合は最良像位置の検出手段とターゲット移動
のサーボ機構とを設ける必要があり、構造が複雑となり
高価となる。 自動式の中には最良像位置の検出手段や
、サーボ機構を設けない方式のものもあるが、これは被
検レンズの屈折力による測定光の偏向を、回転するセク
タ−を用いて時間的ズレとして検出して、演算処理して
レンズの屈折力をめるようになっており、これも複雑な
形状のセクターと、その回転機構とを必要とし、やはり
高価になる。
In the case of an automatic type, it is necessary to provide means for detecting the best image position and a servo mechanism for moving the target, making the structure complicated and expensive. Some automatic methods do not have a means for detecting the best image position or a servo mechanism, but this method uses a rotating sector to adjust the deflection of the measurement light due to the refractive power of the lens under test. This method detects the misalignment and calculates the refractive power of the lens through arithmetic processing, but this also requires a sector with a complicated shape and a mechanism for rotating it, which is also expensive.

ハ0発明の目的 本発明は前記欠点を解消するため、サボ機(苦や回転セ
クターを使用せず、結像レンズの焦点面に配置したイメ
ージセンサ上の信号を処理することによって被検レンズ
の屈折度、軸角度及びプリズム欧を測定するようにした
オートレンズメータに関するものである。
OBJECT OF THE INVENTION In order to eliminate the above-mentioned drawbacks, the present invention aims to improve the image quality of a lens to be tested by processing signals on an image sensor placed on the focal plane of an imaging lens without using a sabot machine (or a rotary sector). This invention relates to an automatic lens meter that measures refractive power, axial angle, and prism angle.

二0発明の構成の実施例 以下図面により本発明の詳細な説明する。20 Examples of the configuration of the invention The present invention will be explained in detail below with reference to the drawings.

第1図は本発明の詳細な説明する光学系であり、(1)
はLEDなどの発光ダイオードであり、対物レンズ(2
)の焦点付近に第2図に示すように、光軸に直交してグ
個配置されている。 (3)は直交するスリットを有す
るターゲツト板であり。
FIG. 1 shows an optical system for explaining the present invention in detail, (1)
is a light emitting diode such as an LED, and the objective lens (2
) are arranged perpendicularly to the optical axis, as shown in FIG. (3) is a target plate with orthogonal slits.

前記対物レンズ(2)及びコリメーティグレンズ(4)
の焦点付近に固定又は移動可能に配置されており、スリ
ットの形状は第3a図捷だは第3b図のようになってい
る。 (5)は被検レンズ(6)をのせるだめのノーズ
ピースでコリメーティングレンズ(4)及び結像レンズ
(7)の焦点付近に配信されている。 (8)はハーフ
プリズム、(9)は光軸に対る。 イメージセンサ上に
はターゲツト像が第゛グ図に示すように投影される。
The objective lens (2) and the collimating lens (4)
The slit is fixedly or movably arranged near the focal point of the slit, and the shape of the slit is as shown in Figures 3a and 3b. (5) is a nose piece on which the test lens (6) is placed, and is distributed near the focal point of the collimating lens (4) and the imaging lens (7). (8) is a half prism, and (9) is opposite to the optical axis. A target image is projected onto the image sensor as shown in FIG.

クーゲラl−(3)は1個のLEDで個別に照明され、
被検レンズが無い場合及びODの被検レンズがノーズピ
ース(5)にのせられている場合には、LED、 a、
 b、 c、 d それぞれによってイメージセンサ(
9)上にできるターゲツト像は第5図のようにすべて重
なる。
Kugera L-(3) is individually illuminated with one LED;
When there is no test lens or when the OD test lens is placed on the nosepiece (5), the LED, a,
The image sensor (
9) The target images formed above all overlap as shown in Figure 5.

被検レンズ(6)が球面屈折力のみをもっている場合、
イメージセンサ(9)上に結像するターゲツト像の位置
はそれぞれ第乙a図〜第乙d図に示すように、被検レン
ズ(6)の球面屈折度数に相当した分だけイメージセン
サ(9)上で移動する。
When the test lens (6) has only spherical refractive power,
The position of the target image formed on the image sensor (9) is determined by the distance corresponding to the spherical refractive power of the test lens (6), as shown in Figures 2a to 3d. move on.

図からも明らかなように球面屈折力によるターゲツト像
の移動はLED光の入射方向と等しい。
As is clear from the figure, the movement of the target image due to the spherical refractive power is equal to the direction of incidence of the LED light.

すなわち、LEDa、cはX軸方向のみにターゲツト像
が移動し、LED b、aはY軸方向のみに移動する。
That is, the target images of LEDs a and c move only in the X-axis direction, and the target images of LEDs b and a move only in the Y-axis direction.

 ここでイメージセンサ上でのターゲツト像の移動は被
検レンズが光軸内にセットされただめのピンボケ敬であ
るが、入射光束が狭いいためターゲツト像のボケは少々
い。
Here, the movement of the target image on the image sensor is out of focus due to the fact that the test lens is set within the optical axis, but since the incident light beam is narrow, the target image is slightly out of focus.

被検レンズ(6)が柱面屈折力のみをもっている場合、
柱面レンズに入射する光線は、主径線と直交(又は同方
向)する方向に屈折力が働き、第7a図〜第7d図に示
すように、イメージセンサ上にターゲツト像を作シ、こ
のターゲツト像の移動量により柱面屈折度数が算出でき
る。
When the test lens (6) has only cylindrical refractive power,
The light rays incident on the cylindrical lens have refractive power acting in a direction perpendicular to (or in the same direction as) the principal axis, creating a target image on the image sensor as shown in Figures 7a to 7d. Cylindrical refraction power can be calculated from the amount of movement of the target image.

被検レンズ(6)に球面屈折力及び柱面屈折力の両方が
ある場合には、それぞれの屈折度値に相当した分だけタ
ーゲツト像はイメージセンサ(9)上を移動して結像す
る。 1個のLED、a、b、c、dのそれぞれによっ
てイメージセンサ上に結像した像の位置関係ld′第に
図のXY座標として表わされる。 とこで、A’、 B
’、d、 r1′は柱面屈折力による位置を示し、この
位置からA’、(IE’はX軸方向に、B/、DIはY
軸方向に、このレンズの球面屈折力の一だけ移動した位
置が、LED、a、b、c、dで作られま たイメージセンサ上のターゲツト像の中心となる。 す
なわち5.A、B、O,Dの位置であり2この位置情報
が信号として取りだされる。 A′のX軸方向の延長線
とC′のY軸方向の延長線との交点をP、B’のX軸方
向の延長線とD′のY軸方向の延長線との交点をQ、A
のX軸方向の延長線とCのY軸方向の延長線との交点を
〆、BのX軸方向の延長線とDのY軸方向の延長線との
交点をQ’、49分A’Pをx、C2FをAf/、B’
QをAx、DI QをF、AP’全x、 Ddを15球
面度数を8とすると、 △A’ d PとΔB’I/Qとが相似形であることか
ら、x=X−F3 V=Y−8より Ωヒ殻=ユυ−とな9、 AF Y−8 球面度数8は t となる。
If the lens to be tested (6) has both spherical refractive power and cylindrical refractive power, the target image is formed by moving on the image sensor (9) by an amount corresponding to each refractive power value. The positional relationship ld' of images formed on the image sensor by each of one LED, a, b, c, and d, is expressed as XY coordinates in the figure. By the way, A', B
', d, r1' indicate the position according to the cylindrical refractive power, and from this position A', (IE' are in the X-axis direction, B/, DI are in the Y-axis direction,
A position shifted by one spherical power of this lens in the axial direction becomes the center of the target image formed by LEDs a, b, c, and d and on the image sensor. That is, 5. These are the positions of A, B, O, and D, and this position information is taken out as a signal. The intersection of the extension line of A' in the X-axis direction and the extension line of C' in the Y-axis direction is P, the intersection of the extension line of B' in the X-axis direction and the extension line of D' in the Y-axis direction is Q, A
The intersection of the extended line in the X-axis direction of and the extended line in the Y-axis direction of C is 〆, the intersection of the extended line in the X-axis direction of B and the extended line in the Y-axis direction of D is Q', and 49 minutes A' P is x, C2F is Af/, B'
If Q is Ax, DI Q is F, AP' total x, Dd is 15, and the spherical power is 8, then △A' d P and ΔB'I/Q are similar, so x=X-F3 V = Y-8, Ωhi shell = Yu υ- and 9, AF Y-8 spherical power 8 becomes t.

ここでX、Y、Ajc、 Ay はすべてイメージセン
サ上から取りだせる信号である。
Here, X, Y, Ajc, and Ay are all signals that can be extracted from the image sensor.

ハ ハ 柱面度数は線分A/ c/とB/ D/の和である。Ha Ha The cylindrical frequency is the sum of the line segments A/c/ and B/D/.

従って球面屈折度数CYLは、 CY L−r−石/十仏t” + As夏となる。Therefore, the spherical refractive power CYL is CY L-r-stone/Tenbutsu t'' + As It's summer.

軸角度は、<A′C′Pまたは<、B’ m Qの値で
あるから 軸角度0は θ=tan−Xフー又はjan 、となる。
Since the axis angle has a value of <A'C'P or <, B' m Q, the axis angle 0 becomes θ=tan-Xfu or jan.

プリズム量は原点からの移動量であり、従って測定され
たA、B、C,Dのり点の座標からこの被検レンズの中
心の座標をめ、原点からの距離をめればよい。 いまq
点の座標を、 A(XA、 YA)。
The amount of prism is the amount of movement from the origin, and therefore, the coordinates of the center of this lens to be tested can be determined from the coordinates of the measured points A, B, C, and D, and the distance from the origin can be determined. Now q
The coordinates of the point are A(XA, YA).

13(XB、 YB)、 C(XC,YC)、 D(X
D、 YD)トf ルト、その中心座標は。
13 (XB, YB), C (XC, YC), D (X
D, YD) Torto, its center coordinates are.

となる。 従ってプリズム喰△は、 となる。becomes. Therefore, prism eating △ is becomes.

第7図はこの発明に係る電気系のブロックダイヤグラム
であり、 QOはグ個の光源を順次点灯するだめのLE
Dドライバ、01)はイメージセンサ上の信号をとらえ
るだめの駆動回路、02はクロックカウンタ、0りはク
ロック発生回路、α菊は01)から送られてくる信号の
ピーク電圧を保持するだめのピークホールド回路、αQ
け駆動回路からの信号と、ピーク回路αくがらコンパレ
ータσ力を経てピーク電圧の7に変換された信号との電
圧を比較してストローブ信号を出すだめのコンパレータ
、OQはストローブ信号が入ったときの力コンバータ、
(19H/、コンバータである。
FIG. 7 is a block diagram of the electrical system according to the present invention, and QO is the LE for sequentially lighting up the number of light sources.
D driver, 01) is a drive circuit that captures the signal on the image sensor, 02 is a clock counter, 0 is a clock generation circuit, and α chrysanthemum is a peak that holds the peak voltage of the signal sent from 01). Hold circuit, αQ
OQ is a comparator that outputs a strobe signal by comparing the voltage between the signal from the drive circuit and the signal converted to the peak voltage 7 through the peak circuit α comparator σ force. power converter,
(19H/, converter.

第70図は゛ターゲット像がイメージセンサ上に結像し
た状態を示す波形である。
FIG. 70 shows waveforms showing a state in which the target image is formed on the image sensor.

以上のような構成となっておシ、いま被検レンズ(6)
をノーズピース(5)に対してセットしたとき、コンピ
ュータαηからの指示によりLEDドライバ00が作動
し、1個のLED a、’ b、 c、 d 7)E 
ll(I次点灯する。 LEDからの光は対物レンズ(
2)によりグーゲット(3)の光像をコリメーティング
レンズ(4)、被検レンズ(6)、結像レンズ(7)を
介して直交する2つのイメージセンサ(9)上にそれぞ
れ結像し、その信号が2つの駆動回路01)にそれぞれ
伝達される。 駆動回路Onからの信号はコンパレータ
αOおよびピークホールド回路04に伝達される。 ピ
ークホールド回路により検出されだピーク電圧は、1/
コンバータ0沙によシデジタル信り 号に変換された後コンピュータα力に入力される。
With the above configuration, the lens to be tested (6)
When set on the nosepiece (5), the LED driver 00 operates according to instructions from the computer αη, and one LED a, ' b, c, d 7)E
ll (I lights up. The light from the LED passes through the objective lens (
2), the optical image of Googet (3) is formed on two orthogonal image sensors (9) via a collimating lens (4), a test lens (6), and an imaging lens (7). , the signals are transmitted to the two drive circuits 01). The signal from the drive circuit On is transmitted to the comparator αO and the peak hold circuit 04. The peak voltage detected by the peak hold circuit is 1/
The signal is converted into a digital signal by the converter and then input to the computer.

αηで出力されたピーク電圧のデジタlし信号をヘコン
バータ(11でピーク電圧の百の直圧信号に変 (換さ
れ、コンパレータα篩に入力される。 この信号と直接
コンパレータαGに入った信号とを比較してストローブ
信号を出すのであるが、ピーク電圧のiの信号は、/サ
イクル前に入力したイメージセンサからの信号と比較す
ることになる。 ストローブ信号によシカランク(イ)
の信号がランチ〇Qに入シ、そのとき、第70図に示す
波形から明暗エッヂの位置を読み敗る。 第1O図の波
形は第3a図に示すターゲット(3)からの情報であり
、直交した2つのイメージセンサからの波形の中間値が
検出する座標位置となる。
The digital signal of the peak voltage outputted by αη is converted into a direct voltage signal of the peak voltage by the converter (11) and input to the comparator α sieve. This signal and the signal directly input to the comparator αG The strobe signal is output by comparing the peak voltage i with the signal from the image sensor input a cycle ago.
The signal enters the launch Q, and at that time, the positions of the bright and dark edges can be read from the waveform shown in FIG. The waveform in FIG. 1O is information from the target (3) shown in FIG. 3a, and the intermediate value of the waveforms from two orthogonal image sensors becomes the coordinate position to be detected.

コンピュータa71によりこの座標位置を検出し、前述
した計算式に基づいて、球面圧接度、柱面屈折度、軸角
度、プリズム量を算出し、その値をデジタル表示する。
The computer a71 detects this coordinate position, calculates the spherical pressure contact degree, cylindrical refraction degree, axial angle, and prism amount based on the above-mentioned calculation formula, and displays the values digitally.

ホ2発明の効果 以上の説明から明らかなように、この発明は機械的な駆
動部分がないため、構造が簡単となり、故障の心配が少
なくなる。
E.2 Effects of the Invention As is clear from the above description, the present invention has no mechanically driven parts, so the structure is simple and there is less risk of failure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の詳細な説明する光学系配置図、第2
図はLEDの配置図、第3図はターゲツト板を示す平面
図、第1図〜第7図はイメージセンサ上にターゲツト像
が結像する状態を示す配置図、第g図はイメージセンサ
上にターゲット像が結像している状態を示すXY座標、
第り図はブロックダイヤグラム、第70図はイメージセ
ンサからの信号を示す波形である。 (1)・・・LED (3)・・・ターゲツト板 (6)・・・被検レンズ (9)・・・イメージセンサ 00・・・LEDドライバ (ハ)・・・カウンタ αυ・・・コンパレータ 0O・・・ラッチ αη・・・コンピュータ 特許出願人 株式会社ニデツク
FIG. 1 is an optical system layout diagram explaining the details of this invention, and FIG.
The figure is a layout diagram of the LED, Figure 3 is a plan view showing the target plate, Figures 1 to 7 are layout diagrams showing the state in which the target image is formed on the image sensor, and Figure g is the layout diagram showing the state in which the target image is formed on the image sensor. XY coordinates indicating the state in which the target image is formed;
Figure 2 is a block diagram, and Figure 70 is a waveform showing a signal from the image sensor. (1)...LED (3)...Target plate (6)...Test lens (9)...Image sensor 00...LED driver (c)...Counter αυ...Comparator 0O...Latch αη...Computer patent applicant Nidetsu Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 光軸に対して直交する1個の点光源、対物レンズを通し
て照明される透光部が直交するスリット状のターゲット
、ノーズピーヌ先端部に前記点光源を結像させるコリメ
ーティングレンズ、結像レンズの焦点位置に直交する2
個のイメージセンサを設ケ、コリメーテイングレンズト
結像レンズの間に入れる被検レンズの屈折力によって生
じるダ個の点光源それぞれによってイメージセンサ上に
形成されるヌリット像の偏位砥及び偏位方向から、被検
レンズの屈折度(球面、柱面)、軸角度及びプリズム欣
を測定するように構成したオートレンズメータ。
A point light source perpendicular to the optical axis, a slit-shaped target illuminated through an objective lens with a transparent part orthogonal to it, a collimating lens that images the point light source on the tip of the nose pin, and an imaging lens. 2 perpendicular to the focal point
An image sensor is installed, and the null image formed on the image sensor by each of the point light sources generated by the refractive power of the test lens inserted between the collimating lens and the imaging lens is deflected and deflected. An automatic lens meter configured to measure the refractive power (spherical surface, cylindrical surface), axial angle, and prism axis of a test lens from the axial direction.
JP12525483A 1983-07-08 1983-07-08 Auto-lens meter Granted JPS6017335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12525483A JPS6017335A (en) 1983-07-08 1983-07-08 Auto-lens meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12525483A JPS6017335A (en) 1983-07-08 1983-07-08 Auto-lens meter

Publications (2)

Publication Number Publication Date
JPS6017335A true JPS6017335A (en) 1985-01-29
JPH0514217B2 JPH0514217B2 (en) 1993-02-24

Family

ID=14905553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12525483A Granted JPS6017335A (en) 1983-07-08 1983-07-08 Auto-lens meter

Country Status (1)

Country Link
JP (1) JPS6017335A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231236A (en) * 1987-03-19 1988-09-27 Nidetsuku:Kk Method for measuring optical characteristics of optical system
JPH02216428A (en) * 1988-03-05 1990-08-29 Hoya Corp Automatic lens meter
US5152067A (en) * 1991-02-28 1992-10-06 Nidek Co., Ltd. Apparatus for measuring interpupilary distance of mounted spectacles
US5307141A (en) * 1991-11-30 1994-04-26 Nidek Co., Ltd. Refractive characteristics measuring apparatus for measuring the refractive characteristics of a lens
US5379111A (en) * 1992-04-30 1995-01-03 Nidek Co., Ltd. Lens meter
US5432596A (en) * 1992-06-30 1995-07-11 Nidek Co., Ltd. Lens measurement apparatus providing measurements of multiple lens characteristics
US5521700A (en) * 1992-03-31 1996-05-28 Nidek Co., Ltd. Meter for testing progressive multifocus lenses
US5682234A (en) * 1995-07-27 1997-10-28 Nidek Co., Ltd. Lens meter
US5684576A (en) * 1995-07-27 1997-11-04 Nidek Co., Ltd. Lens meter
US5734465A (en) * 1995-07-31 1998-03-31 Nidek Co., Ltd. Lens meter for measuring a shape of a progressive section
US5872625A (en) * 1997-05-09 1999-02-16 Nidek Co., Ltd. Apparatus for measuring an optical characteristic of an examined lens
JP2002022599A (en) * 2000-07-06 2002-01-23 Hoya Corp Image pickup process device for ophthalmic lens
US6621564B2 (en) 2001-02-09 2003-09-16 Hoya Corporation Automatic lens meter
US6750959B2 (en) 2000-12-11 2004-06-15 Hoya Corporation Method for processing a spectacle lens, lens meter, and apparatus for processing a spectacle lens, having lens meter and data of relative positions for processing a spectacle lens
EP1965189A2 (en) 2007-02-28 2008-09-03 Nidek Co., Ltd. Lens Meter
CN105699052A (en) * 2014-12-12 2016-06-22 尼德克株式会社 Lensmeter and method for determining optical characteristics of spectacle lenses

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5487547A (en) * 1977-12-23 1979-07-12 Canon Inc Lens inspector
JPS55155227A (en) * 1979-05-18 1980-12-03 Rodenstock Instr Apparatus for and method of determining refractory characteristic of test lens
JPS58737A (en) * 1981-06-26 1983-01-05 Nippon Kogaku Kk <Nikon> Automatic lens meter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5487547A (en) * 1977-12-23 1979-07-12 Canon Inc Lens inspector
JPS55155227A (en) * 1979-05-18 1980-12-03 Rodenstock Instr Apparatus for and method of determining refractory characteristic of test lens
JPS58737A (en) * 1981-06-26 1983-01-05 Nippon Kogaku Kk <Nikon> Automatic lens meter

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231236A (en) * 1987-03-19 1988-09-27 Nidetsuku:Kk Method for measuring optical characteristics of optical system
JPH02216428A (en) * 1988-03-05 1990-08-29 Hoya Corp Automatic lens meter
US5152067A (en) * 1991-02-28 1992-10-06 Nidek Co., Ltd. Apparatus for measuring interpupilary distance of mounted spectacles
US5307141A (en) * 1991-11-30 1994-04-26 Nidek Co., Ltd. Refractive characteristics measuring apparatus for measuring the refractive characteristics of a lens
US5521700A (en) * 1992-03-31 1996-05-28 Nidek Co., Ltd. Meter for testing progressive multifocus lenses
US5379111A (en) * 1992-04-30 1995-01-03 Nidek Co., Ltd. Lens meter
US5432596A (en) * 1992-06-30 1995-07-11 Nidek Co., Ltd. Lens measurement apparatus providing measurements of multiple lens characteristics
US5844671A (en) * 1995-07-27 1998-12-01 Nidek Co., Ltd. Lens meter
US5684576A (en) * 1995-07-27 1997-11-04 Nidek Co., Ltd. Lens meter
US5682234A (en) * 1995-07-27 1997-10-28 Nidek Co., Ltd. Lens meter
US5734465A (en) * 1995-07-31 1998-03-31 Nidek Co., Ltd. Lens meter for measuring a shape of a progressive section
US5872625A (en) * 1997-05-09 1999-02-16 Nidek Co., Ltd. Apparatus for measuring an optical characteristic of an examined lens
JP2002022599A (en) * 2000-07-06 2002-01-23 Hoya Corp Image pickup process device for ophthalmic lens
US6750959B2 (en) 2000-12-11 2004-06-15 Hoya Corporation Method for processing a spectacle lens, lens meter, and apparatus for processing a spectacle lens, having lens meter and data of relative positions for processing a spectacle lens
US6621564B2 (en) 2001-02-09 2003-09-16 Hoya Corporation Automatic lens meter
EP1965189A2 (en) 2007-02-28 2008-09-03 Nidek Co., Ltd. Lens Meter
US7733468B2 (en) 2007-02-28 2010-06-08 Nidek Co., Ltd. Lens meter
CN105699052A (en) * 2014-12-12 2016-06-22 尼德克株式会社 Lensmeter and method for determining optical characteristics of spectacle lenses
JP2016114432A (en) * 2014-12-12 2016-06-23 株式会社ニデック Lens meter and arithmetic program
CN105699052B (en) * 2014-12-12 2019-11-01 尼德克株式会社 The measuring method of the optical characteristics of vertometer and spectacle lens

Also Published As

Publication number Publication date
JPH0514217B2 (en) 1993-02-24

Similar Documents

Publication Publication Date Title
JPS6017335A (en) Auto-lens meter
US3781110A (en) Optical range finding system
US3877788A (en) Method and apparatus for testing lenses
US20040109170A1 (en) Confocal distance sensor
JPH0466834A (en) Automatic lens meter
GB1563570A (en) Hardness tester
JPH06123610A (en) Method and apparatus for optical measurement of objective
EP0210722B1 (en) Apparatus for measuring the refractive power or radius of curvature of an optical system
JPH10311779A (en) Equipment for measuring characteristics of lens
US6621564B2 (en) Automatic lens meter
US4281926A (en) Method and means for analyzing sphero-cylindrical optical systems
JP2001504592A (en) Distance measuring method and distance measuring device
JPH02161332A (en) Device and method for measuring radius of curvature
US4770523A (en) Apparatus for measuring curvature
JPS63208736A (en) Optical characteristic measuring instrument for optical system
US3323417A (en) Testing apparatus for optical lenses
JPH0820334B2 (en) Automatic lens meter
JPH0346774B2 (en)
JPH04269639A (en) Lens meter
JP3011742B2 (en) Automatic lens meter
JPS6034699B2 (en) hardness tester
JP3123748B2 (en) Automatic lens meter
JPS5967440A (en) Inspector for optical system
JPH0471453B2 (en)
JP2000009586A (en) Lens measuring equipment