JPS6017293A - Submersible pump - Google Patents

Submersible pump

Info

Publication number
JPS6017293A
JPS6017293A JP13106584A JP13106584A JPS6017293A JP S6017293 A JPS6017293 A JP S6017293A JP 13106584 A JP13106584 A JP 13106584A JP 13106584 A JP13106584 A JP 13106584A JP S6017293 A JPS6017293 A JP S6017293A
Authority
JP
Japan
Prior art keywords
pressure
impeller
pump
side wall
vane wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13106584A
Other languages
Japanese (ja)
Other versions
JPS6356437B2 (en
Inventor
Teiji Tanaka
田中 定司
Tadashi Okaji
忠 尾梶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP13106584A priority Critical patent/JPS6017293A/en
Publication of JPS6017293A publication Critical patent/JPS6017293A/en
Publication of JPS6356437B2 publication Critical patent/JPS6356437B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the variation of the axial thrust due to the suction pressure by varying the differential pressure in a pressure balance pipe for connecting a pump discharge pipe with a casing wall opposed in the vicinity of the back-surface boss part of a vane wheel, in correspondence with the variation of the suction pressure of a pump. CONSTITUTION:A pressure balance pipe 16 connected to a pump discharge pipe is installed onto a casing wall 7 opposed in the vicinity of the back-surface boss part of a vane wheel 1. Therefore, the static pressure acting onto the side wall of the vane wheel 1 is represented by the figure, and though the leak flow passing through the balance pipe 16 flows to the outlet side of the vane wheel 1 from the pump discharge pipe, the differential pressure between before and behind a weiring ring 13 (namely the leak flow) can be set small by setting the area of the narrow slit part of the weiring ring 13 larger than the sectional area of the balance pipe 16. Therefore, the axial thrust which is generated towards the front-surface side wall 1a from the back-surface side wall 1b side by the revolution of the vane wheel 1 can be set to an arbitrary small value.

Description

【発明の詳細な説明】 この発明は乾式モードルで駆動される水中ポンプの軸ス
ラスト低減に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to axial thrust reduction in submersible pumps driven in dry mode.

ポンプでは羽根車の回転により流体にエネルギーを付与
するため、羽根車前後では圧力差が生ずる。したがって
、羽根車にはこの圧力差によって水力的な軸スラストが
作用する。たとえば第1図に示すような水中ポンプにつ
いて説明すると1羽根車1はインペラナツト2により回
転軸3に固定されており、回転軸3は乾式モードル4に
より回転を与えられる。回転軸3の羽根車1とモードル
4の間の部分には軸封部5が設けられており、羽根車1
の出口からのもれ流れがモードル4へ侵入することを防
いでいる。軸封部5における圧力が高くなる場合には、
軸封を二重にして軸封5の間にオイル室6を設けて油で
漏水の侵入を防止する。
In a pump, energy is imparted to the fluid by the rotation of the impeller, so a pressure difference occurs before and after the impeller. Therefore, a hydraulic axial thrust acts on the impeller due to this pressure difference. For example, in the case of a submersible pump as shown in FIG. 1, an impeller 1 is fixed to a rotating shaft 3 by an impeller nut 2, and the rotating shaft 3 is rotated by a dry model 4. A shaft sealing portion 5 is provided in a portion of the rotating shaft 3 between the impeller 1 and the model 4, and the impeller 1
This prevents leakage flow from the outlet from entering the mode model 4. When the pressure in the shaft seal 5 increases,
The shaft seals are doubled and an oil chamber 6 is provided between the shaft seals 5 to prevent water leakage with oil.

モードル4は上記軸封5によって大気と遮断さJLるが
、モードル内の圧力は、通常は大気圧程度である。一方
、ケーシング7は羽根車lをおおうように形成されてお
り、羽根車1の前面側壁1a。
The moldle 4 is isolated from the atmosphere by the shaft seal 5, but the pressure inside the moldle is usually about atmospheric pressure. On the other hand, the casing 7 is formed to cover the impeller 1, and the front side wall 1a of the impeller 1.

背面側壁1bの対向面にはウェアリングリング8が取付
けられ、IPIIIl1部9を構成して羽根車出口から
吸込口10へ向うもれ流れをシールしている。
A wear ring 8 is attached to the opposite surface of the rear side wall 1b, forming an IPIII1 section 9 to seal leakage flow from the impeller outlet to the suction port 10.

上記構成となっているため、羽根車1とケーシング7で
囲まれた間隙11と、吸込口lOとでは著しい圧力差を
生じ、かつ吸込口10の径は回転軸3より大きいため1
羽根車1を回転させると背面側壁1b側から前面側1i
1i 1 aに向って軸スラストTが生起する。この軸
スラストTは第2′図(b)の斜線部分の圧力に相当し
5羽根車Iの前面、背面側の圧力分布、羽根車1を通る
流水の運動量、吸込口部の吸込圧力等によって変化する
。ここで。
Due to the above configuration, a significant pressure difference occurs between the gap 11 surrounded by the impeller 1 and the casing 7 and the suction port 10, and since the diameter of the suction port 10 is larger than the rotating shaft 3,
When the impeller 1 is rotated, it moves from the back side wall 1b side to the front side 1i.
An axial thrust T occurs toward 1i 1 a. This axial thrust T corresponds to the pressure in the shaded area in Figure 2'(b), and depends on the pressure distribution on the front and back sides of the five impeller I, the momentum of the flowing water passing through the impeller 1, the suction pressure at the suction port, etc. Change. here.

T、は羽根車前面側に作用するスラスト、Tgは羽根車
背面側に作用するスラス1へ、Tpは流水の吸込圧によ
るスラスト、1゛□は流水の運動量変化によるスラスト
である。
T is the thrust acting on the front side of the impeller, Tg is the thrust 1 acting on the back side of the impeller, Tp is the thrust due to the suction pressure of the flowing water, and 1゛□ is the thrust due to the change in momentum of the flowing water.

ポンプに過大な軸スラストが作用する場合には、軸受部
あるいは軸をこのスラストに酎えら扛るように強度的考
慮を払う必要が生じ、軸受、軸が請しく大きくなるため
、通常はさらに第2図(、)に示すように羽根車1r面
ボス部付近にバランスホール12を設けて、羽根車背面
ボス部付近の圧力を吸込圧程度まで減少させ、吸込口の
スラスi・(’rp 十TM )と背面ウェアリングリ
ング13より小径側のバランス室14の側壁に作用する
スラストTB2を釣合せる。
If excessive shaft thrust is applied to the pump, it is necessary to consider the strength of the bearing or shaft so that it absorbs this thrust, which requires the bearing and shaft to be larger. As shown in Figure 2 (,), a balance hole 12 is provided near the boss on the r side of the impeller 1 to reduce the pressure near the boss on the back side of the impeller to about the suction pressure, and to TM) and the thrust TB2 acting on the side wall of the balance chamber 14 on the smaller diameter side than the rear wear ring 13.

しかし、水中ポンプのように吸込圧力がその使用条件に
より変化する場合には、この吸込圧力変化に伴うスラス
ト1゛2の変化量が第2図(b)に示すごとく非常に大
きくなり、羽根車前面側壁1a側から背面側壁1bに向
う逆スラストが生ずることかある。例えば土木基礎工事
に用いられる水中ポンプ式リバースサーキュレーション
ドリル装置では、第4図に示すごとく地盤掘削するドリ
ルビット21の上方に氷中ポンプ22を配置して、掘削
した土砂を地上に排出する。この場合水中ポンプは掘削
深さに応じてその位置を変化させるが、掘削深さは10
0mを越えることがであるためポンプ吸込圧力の変化は
10kg/cJを越える。一方モートル内部の圧力は掘
削深さにかかわらず大気圧状態であるため、軸封部でロ
ータに作用する圧力のバランスがくずれ、この結果式(
])に示すスラストが生ずる。
However, when the suction pressure changes depending on the usage conditions, such as in a submersible pump, the amount of change in thrust 1゛2 due to the change in suction pressure becomes extremely large as shown in Figure 2 (b), and the impeller A reverse thrust may occur from the front side wall 1a side toward the rear side wall 1b. For example, in a submersible pump type reverse circulation drilling device used for civil engineering foundation work, as shown in FIG. 4, an ice pump 22 is disposed above a drill bit 21 that excavates the ground, and discharges excavated earth and sand to the ground. In this case, the submersible pump changes its position depending on the excavation depth, but the excavation depth is 10
Since the distance exceeds 0 m, the change in pump suction pressure exceeds 10 kg/cJ. On the other hand, since the pressure inside the motor is atmospheric regardless of the excavation depth, the balance of pressure acting on the rotor at the shaft seal is lost, resulting in the equation (
]) A thrust is generated.

’rP=plIX−D”llF ・・・・・・ (1)
ここで、P9は吸込ゲージ圧力、DIIFは軸封部軸径
である。
'rP=plIX-D"llF... (1)
Here, P9 is the suction gauge pressure, and DIIF is the shaft diameter of the shaft seal portion.

前述のリバースサーキュレーションドリル装置に用いら
れる水中ポンプでは、軸スラストの最大値が400 k
g、その吐出し量に伴う変化が200kg程度であるの
に対して、吸込圧変化に伴う軸スラストの変化量は約8
00 kgにも及ぶ。
The submersible pump used in the reverse circulation drilling equipment mentioned above has a maximum axial thrust of 400 k
g, the change due to the discharge amount is about 200 kg, while the change in the axial thrust due to the change in suction pressure is about 8
00 kg.

吸込圧に伴う軸スラスト変化は、軸封部での圧力のアン
バランスに起因するため、モードルを乾式モードルから
油封入式モードルに替えて地上から吸込圧に応じて加圧
したり、油圧モードルを使用することにより無くすこと
は可能であるが、油封入式モードルの場合油封入のため
の補助設備を要したり、油圧モードルの場合掘削深さが
深くなると作動油の給排油パイプ中での流動損失が増す
ため、著しくモードル効率が低下する欠点があった。
Changes in shaft thrust due to suction pressure are caused by unbalanced pressure in the shaft seal, so change the mode from a dry mode to an oil-filled mode and pressurize from the ground according to the suction pressure, or use a hydraulic mode. However, in the case of an oil-filled model, auxiliary equipment for oil filling is required, and in the case of a hydraulic model, if the excavation depth becomes deep, the flow of hydraulic oil in the oil supply and drain pipes may occur. This has the drawback of significantly reducing model efficiency due to increased loss.

この発明は、上記ポンプ吸込圧力の変化に伴う軸スラス
トの変化を軽減するもので、羽根車背面ボス部付近に対
向するケーシング壁面とポンプ吐出し管とを接続する圧
力バランス管を設けることにより成る。
This invention reduces the change in the axial thrust caused by the change in the pump suction pressure, and is achieved by providing a pressure balance pipe that connects the pump discharge pipe and the opposing casing wall near the rear boss of the impeller. .

以下、この発明の実施例を第5図〜第8図を用いて説明
する。
Embodiments of the present invention will be described below with reference to FIGS. 5 to 8.

第5図(a)はリバースサーキュレーションドリル装置
に用いられる水中ポンプの実施例であり、羽根車1の前
面側壁1a、背面側壁1bには羽根車側壁上の静圧iq
aおよび土砂侵入防止のためのうら羽根15が設けられ
ており、また羽根車背面側1!lbにはウェアリングリ
ング13を設けてもれ流れをシールするとともに、羽根
車背面ボス部付近に対向するケーシング壁7にはポンプ
吐出し管と接続する圧力バランス管16が設けられてい
る。この発明は上記構成のため、羽根車側壁に作用する
静圧は第5図(b)のごとくなり、バラン入管16を通
るもれ流れはポンプ吐出し管から羽根卓出口側へ向うが
、ウェアリングリング13の細隙部面積AVをバランス
管断面積A。より広くとることにより、ウェアリングリ
ング前後の差圧(すなわちもれ流れを)小さく設定でき
、従っである吸込圧状態におい、て軸スラストを任意の
小さな値に設定できる。
FIG. 5(a) shows an embodiment of a submersible pump used in a reverse circulation drilling device, in which the front side wall 1a and the back side wall 1b of the impeller 1 have static pressure iq on the impeller side wall.
A and a back blade 15 are provided to prevent the intrusion of earth and sand, and the back side of the impeller 1! lb is provided with a wear ring 13 to seal leakage flow, and a pressure balance pipe 16 connected to the pump discharge pipe is provided on the casing wall 7 facing the vicinity of the rear boss portion of the impeller. Since this invention has the above-mentioned configuration, the static pressure acting on the side wall of the impeller is as shown in FIG. The slit area AV of the ring ring 13 is the cross-sectional area A of the balance tube. By making it wider, the differential pressure (that is, the leakage flow) before and after the wear ring can be set small, and therefore the axial thrust can be set to an arbitrarily small value in a certain suction pressure state.

Aw ” x X Dw X E ) X DB ’ 
= Ag ・・(2)ここでDwはウェアリングリング
直径、εはウェアリングリング部半径すきま、Dnはバ
ランス管直径である。
Aw ” x X Dw X E) X DB'
=Ag (2) where Dw is the diameter of the wear ring, ε is the radial clearance of the wear ring, and Dn is the diameter of the balance tube.

なお上記構成のみでは所定の軸スラストが得られない場
合には、うら羽根の高さ比t / sを変更するか、あ
るいは背面ウェアリングリング径を前面ウェアリングリ
ング径と異なる値とすることにより、目的を達成できる
がこれらはいずれもこの発明の範ちゅうである。
In addition, if the specified axial thrust cannot be obtained with the above configuration alone, it is possible to change the height ratio t/s of the back blade or by setting the back wear ring diameter to a different value from the front wear ring diameter. , the objectives can be achieved, but all of these are within the scope of this invention.

次にポンプ運転条件変化による特性を述べる。Next, we will discuss the characteristics due to changes in pump operating conditions.

第6図は木ポンプの羽根車出口静圧比の吐出し量による
変化を示す。通常羽根車出口の流れは、少吐出し負側で
は流出角が小さくなり絶対流速が増すため反動度すなわ
ち羽根車出口静圧の全圧に対する比は小さくなり、さら
にケーシング内部での流動損失は吐出し量とともに増加
するため、全揚程に対する羽根車山口静圧の比は大吐出
量側で1.0 に近く、少吐出し負側では0.7程度ま
で低下する。なお第6回は本ポンプに関して固有の値で
あるが1羽根卓出口静圧比の吐出し貝による変化のこの
傾向はほとんどすべてのポンプに適用できる。
FIG. 6 shows the change in the static pressure ratio at the impeller outlet of a wooden pump depending on the discharge amount. Normally, on the negative side of the impeller outlet, the outflow angle becomes smaller and the absolute flow velocity increases, so the reaction rate, that is, the ratio of the static pressure at the impeller outlet to the total pressure, becomes smaller, and the flow loss inside the casing decreases due to the flow loss inside the casing. The ratio of the impeller mountain mouth static pressure to the total head is close to 1.0 on the large discharge side, and decreases to about 0.7 on the small discharge negative side. Although the 6th value is a unique value for this pump, this tendency of change in the single-blade table outlet static pressure ratio depending on the discharge shell can be applied to almost all pumps.

従って、吐出し管静圧と羽根卓出]」部静圧との差は第
7図に示すごとく大吐出し爪側で小さく。
Therefore, the difference between the discharge pipe static pressure and the blade protrusion static pressure is small on the large discharge claw side, as shown in FIG.

少吐出し員側で大きい。羽根車出口部静圧とウェアリン
グ部静圧との間には、この間の流体の旋回速度に関係づ
けられる式(3)の関係がある。ウェアリングリング部
静圧は羽根卓出1」静圧からほぼ2定値低下し、この結
果バランス管前後の差圧は少吐出し員側で大きくなる。
It is large on the side with a small discharge amount. Between the static pressure at the impeller outlet and the static pressure at the wear ring, there is a relationship expressed by equation (3), which is related to the swirling speed of the fluid between them. The static pressure at the wear ring section decreases by approximately 2 constant values from the static pressure at the vane level, and as a result, the differential pressure before and after the balance tube becomes larger on the side of the small discharge member.

P w = P g ((+1 Xβ)”[ro’ r
w2)・・・・・・ (3) ここでPWはウェアリングリング部静圧、P。
P w = P g ((+1 Xβ)” [ro' r
w2)... (3) Here, PW is the static pressure of the wear ring, P.

は羽根車出口静圧、ωは羽根車の旋回角速度、βは流体
の羽根車に対する旋回角速度比、ρは水の密度、roは
羽根車外径、rwはウェアリングリング半径である。
is the impeller outlet static pressure, ω is the swirling angular velocity of the impeller, β is the swirling angular velocity ratio of the fluid to the impeller, ρ is the density of water, ro is the impeller outer diameter, and rw is the wear ring radius.

一方、リバースサーキュレーションドリルでは掘削深さ
が深くなるとともにポンプ吐出し管長さも長くなるため
、泥水吐出しに伴う流動抵抗が増してポンプの運転点は
少吐出し員側へ移る。従つてポンプ吸込圧力と、バラン
ス管に作用する差圧とはともに掘削深さとともに増すが
、一般にバランス室面積は軸封部軸断面積より十分法い
ため。
On the other hand, in a reverse circulation drill, the length of the pump discharge pipe increases as the excavation depth increases, so the flow resistance associated with discharging muddy water increases and the pump operating point shifts to the side with fewer dischargers. Therefore, both the pump suction pressure and the differential pressure acting on the balance pipe increase with excavation depth, but the area of the balance chamber is generally much larger than the shaft cross-sectional area of the shaft seal.

バランス管差圧のわずかな変化で吸込圧力によるスラス
トTPとバランス室に作用するスラストT、2は釣合う
With a slight change in the balance tube differential pressure, the thrust TP caused by the suction pressure and the thrust T, 2 acting on the balance chamber are balanced.

第8図(a)はこの発明による清水用水中ポンプの実施
例であり、羽根車1の前面側壁1a、、背面側壁1bに
はウェアリングリング8を設けてもオを流れをシールす
るとともに、羽根車背面ボス部付近に対向するケーシン
グ壁7にはポンプ吐出し管と接続する圧力バランス管1
6が設けられている。通常の水中ポンプではその水深を
連続的に変化させて使用することはないが、水深の深い
配管状態と、浅い配管状態とで比較してみると、吐出し
抵抗は配管長さにほぼ比例するため、MS5図(a)で
述べたと全く同様の作用効果が得られる。
FIG. 8(a) shows an embodiment of a fresh water submersible pump according to the present invention, in which wear rings 8 are provided on the front side wall 1a and the back side wall 1b of the impeller 1 to seal the flow. A pressure balance pipe 1 connected to the pump discharge pipe is installed on the casing wall 7 facing the vicinity of the rear boss of the impeller.
6 is provided. Normal submersible pumps are not used by continuously changing the water depth, but when comparing deep piping conditions and shallow piping conditions, the discharge resistance is approximately proportional to the length of the piping. Therefore, exactly the same effect as described in FIG. 5(a) of MS5 can be obtained.

なお1羽根車、側壁にうら羽根がない場合には流体の旋
回速度に対するもれ流れの影響が強く現われ、もれ流れ
の方向が前面側壁側と背面側壁側とて異なる場合には流
体の旋回角速度比βは両面で著しく異なるため、第8図
(b)に示すごとく羽根車背面側から前面側へ向う軸ス
ラス)・が大きくなる。
In addition, when there is no back blade on the side wall of a single impeller, the influence of leakage flow on the swirling speed of the fluid appears strongly, and when the direction of the leakage flow is different between the front side wall side and the back side wall side, the swirling of the fluid becomes Since the angular velocity ratio β is significantly different on both sides, the axial thrust from the back side to the front side of the impeller increases as shown in FIG. 8(b).

従って清水用水中ポンプの場合でも、使用条件に応じて
羽根車背面側にうら羽根を設けることが望ましい。
Therefore, even in the case of a submersible pump for fresh water, it is desirable to provide a back blade on the back side of the impeller depending on the usage conditions.

以上説明したように、この発明によれば羽根車背面ボス
部付近に対向するケーシング壁とポンプ吐出し管を連接
する圧力バランス管を設けたため、ポンプ吸込圧力の変
化に対応してバランス管の差圧も変化し、吸込圧による
軸スラスト変化を容易に軽減できる。特に常に吸込圧力
が大幅に変化し、これに対応してポンプ運転点が少吐出
し員側へ移aするリバースサーキュレーションドリル装
置用の水中ポンプに非常に有効である。
As explained above, according to the present invention, a pressure balance pipe is provided near the rear boss portion of the impeller that connects the opposing casing wall and the pump discharge pipe. The pressure also changes, and changes in axial thrust due to suction pressure can be easily reduced. In particular, it is very effective for submersible pumps for reverse circulation drilling equipment, where the suction pressure always changes significantly and the pump operating point shifts toward the side with a smaller discharge capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の水中ポンプの断面図、第2図(a)は第
1図のポンプ部分の拡大断面図、第2[(b)は第2図
(a)のポンプの圧力分布図、第3図は水中ポンプの吸
込圧変化に伴うスラスト変化を示す図、第4図はリバー
スサーキュレーションドリル装置図、第5図(a)はこ
の発明によるポンプの断面図、第5図(b)は第5図(
a)のポンプの圧力分布図、第6図は羽根車出口静圧の
吐出し量に伴う変化を説明する図、第7図はリバースサ
ーキュレーションドリル用水中ポンプの運転点を説明す
る図、第8図(a)はこの発明による他のポンプの断面
図、第8図(b)はf!S8図(、)に示すポンプの圧
力分布図。 1・・・羽根車、4・・・乾式モードル、7・・・ケー
シング。 8.13・・・ウェアリングリング、15・・・うら羽
根、16・・・バランス管。 X 1 図 篤 3 (2)
Figure 1 is a cross-sectional view of a conventional submersible pump, Figure 2 (a) is an enlarged cross-sectional view of the pump part in Figure 1, and Figure 2 (b) is a pressure distribution diagram of the pump in Figure 2 (a). Fig. 3 is a diagram showing thrust changes due to changes in suction pressure of a submersible pump, Fig. 4 is a diagram of a reverse circulation drill device, Fig. 5(a) is a cross-sectional view of the pump according to the present invention, and Fig. 5(b) is shown in Figure 5 (
Fig. 6 is a diagram illustrating the change in the static pressure at the impeller outlet with the discharge amount; Fig. 7 is a diagram illustrating the operating points of the submersible pump for reverse circulation drill; FIG. 8(a) is a sectional view of another pump according to the present invention, and FIG. 8(b) is f! A pressure distribution diagram of the pump shown in Figure S8 (,). 1... Impeller, 4... Dry model, 7... Casing. 8.13...wearing ring, 15...back blade, 16...balance tube. X 1 Zuatsu 3 (2)

Claims (1)

【特許請求の範囲】[Claims] 乾式モードルで駆動され、背面側壁を有する羽根車をケ
ーシングに回転自在に支持させた氷中ポンプにおいて、
羽根車背面側壁にウェアリングリングを設け、該ウェア
リングリング内径側のケーシング壁とポンプ吐出し管と
を接続する圧力バランス管を備えたことを特徴とする水
中ポンプ。
In an ice pump that is driven by a dry mode and has an impeller with a rear side wall rotatably supported by a casing,
A submersible pump characterized in that a wear ring is provided on a rear side wall of an impeller, and a pressure balance pipe is provided that connects a casing wall on the inner diameter side of the wear ring and a pump discharge pipe.
JP13106584A 1984-06-27 1984-06-27 Submersible pump Granted JPS6017293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13106584A JPS6017293A (en) 1984-06-27 1984-06-27 Submersible pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13106584A JPS6017293A (en) 1984-06-27 1984-06-27 Submersible pump

Publications (2)

Publication Number Publication Date
JPS6017293A true JPS6017293A (en) 1985-01-29
JPS6356437B2 JPS6356437B2 (en) 1988-11-08

Family

ID=15049183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13106584A Granted JPS6017293A (en) 1984-06-27 1984-06-27 Submersible pump

Country Status (1)

Country Link
JP (1) JPS6017293A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100368689C (en) * 2004-09-16 2008-02-13 北京化工大学 Differential thrust balance device for rotary fluid machinery
US7785082B2 (en) 2004-09-15 2010-08-31 Mitsubishi Heavy Industries, Ltd Sealless pump

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436801U (en) * 1977-08-19 1979-03-10

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147201A (en) * 1975-06-13 1976-12-17 Sony Corp Receiving device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436801U (en) * 1977-08-19 1979-03-10

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7785082B2 (en) 2004-09-15 2010-08-31 Mitsubishi Heavy Industries, Ltd Sealless pump
CN100368689C (en) * 2004-09-16 2008-02-13 北京化工大学 Differential thrust balance device for rotary fluid machinery

Also Published As

Publication number Publication date
JPS6356437B2 (en) 1988-11-08

Similar Documents

Publication Publication Date Title
US5106262A (en) Idler disk
US3882946A (en) Turbodrill
JP2006307859A (en) Centrifugal pump and its impeller
JPH0355837Y2 (en)
CN105003458A (en) Impeller for a centrifugal pump, a centrifugal pump and a use thereof
US7338252B2 (en) Pump for the transporting of fluids and of mixtures of fluids
US3728040A (en) Turbodrill
Iino et al. Hydraulic axial thrust in multistage centrifugal pumps
CA2058325A1 (en) Positive displacement pumps
US3356338A (en) Turbodrill
US4676716A (en) Hydraulic multistage turbine of turbodrill
US5813833A (en) High capacity, large sphere passing, slurry pump
JPS6017293A (en) Submersible pump
US2710579A (en) Deep-well pumps
US3405913A (en) Rotary seal structure
US2416538A (en) Hydroturbine pump
US2458958A (en) Internal gear pump and compressor
US2346180A (en) Means for increasing dredge output
US2136799A (en) Pump seal
US3930749A (en) Turbodrill
US1180602A (en) Rotor-end-thrust-balancing device.
JP3022845B2 (en) Suction sand pump
US2918017A (en) Centrifugal pumps
US3588283A (en) Vacuum pump or compressor
US1786435A (en) Centrifugal pump