JPS60172824A - Analog digital converting circuit - Google Patents

Analog digital converting circuit

Info

Publication number
JPS60172824A
JPS60172824A JP2472784A JP2472784A JPS60172824A JP S60172824 A JPS60172824 A JP S60172824A JP 2472784 A JP2472784 A JP 2472784A JP 2472784 A JP2472784 A JP 2472784A JP S60172824 A JPS60172824 A JP S60172824A
Authority
JP
Japan
Prior art keywords
converter
signal
type
input
analog
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2472784A
Other languages
Japanese (ja)
Inventor
Akinori Yamagata
山方 昭徳
Mamoru Obara
小原 護
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2472784A priority Critical patent/JPS60172824A/en
Publication of JPS60172824A publication Critical patent/JPS60172824A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/44Sequential comparisons in series-connected stages with change in value of analogue signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

PURPOSE:To obtain an A/D converter at high speed, low power consumption and small size by constituting the circuit that the high speed converting performance being the highest feature of the parallel type is maintained and the cascade connection type is used together. CONSTITUTION:An A/D1 is a cascade connection type A/D converter having m- bit resolution, m-set of amplifiers A1, A2-Am are connected in cascade, and consists of comparators C1, C2-Cm of the same number connected in parallel with the input terminals of the amplifiers A1, A2-Am and a code converter EC1 converting a gray code output signal from the comparators C1, C2-Cm into a binary code. When the conversion of a parallel A/D converter A/D2 is attained by using a clock signal of duty ratio of 50%, if the convertion of the cascade connection type A/D converter A/D1 is finished in the pause period, the converting speed of the A/D converter using the cascade connection type and the parallel type in common is equal to the converting speed of the parallel A/D converter. Moreover, since the circuit scale is decreased because of the number of cascade connection types is increased and the low power consumption, small size and economy are attained.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、高速変換動作をするアナログ・ディジタル変
換回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to an analog-to-digital conversion circuit that performs high-speed conversion operations.

(従来技術) 従来、アナログ信号をディンタル信号に変換するアナロ
グ・ディジタル変換器(以下、A/D変換器と略称する
)のうち、高速性能の需要には主として並列形、直差列
形の回路構成による変換器が用いられている。
(Prior art) Conventionally, among analog-to-digital converters (hereinafter referred to as A/D converters) that convert analog signals to digital signals, parallel type and series series type circuits have mainly been used to meet the demand for high-speed performance. Transducers of different configurations are used.

並列形では、2N−1個(Nはビット数)の比較器が主
要回路として用いられている。すなわち、Nビットのデ
ィジタル信号は2進符号で表わせば2Nの組合わせが存
在するため、A/D変換器によってNビットのディジタ
ル信号を得る場合には2N組のアナログ入力信号とディ
ジタル出力信号との対応づけを行わなければならない。
In the parallel type, 2N-1 comparators (N is the number of bits) are used as main circuits. In other words, since there are 2N combinations of an N-bit digital signal expressed in binary code, when an N-bit digital signal is obtained by an A/D converter, 2N combinations of an analog input signal and a digital output signal are required. must be matched.

その手段としては、アナログ入力信号を第一の入力とし
更にアナログ信号の入力レベル範囲を2Nに等分割した
基準電圧をそれぞれの第二の入力とする2N−1個の比
較器を用いて行うのが並列形の基本であり、特徴で1あ
る。この構成ではクロック信号による一度の変換動作で
瞬時にアナログからディジタルへの信号変換が完了する
ため、最も高速変換が可能であることが周知となってい
る。しかし々から、2N−1個の比較器を要すること、
比較器出力“をNビットのディジタル符号化するための
論理回路が不可欠であることなどの理由により、回路規
模はかなシ大きいものとなる。この結果、素子数も消費
電力も比例して大きくなり、LSIを実現するに際し小
形化、経済化、高信頼化の妨げとなる欠点があった。
One way to do this is to use 2N-1 comparators each having an analog input signal as its first input and a reference voltage obtained by equally dividing the input level range of the analog signal into 2N as its second input. This is the basis of the parallel form, and it is the first characteristic. It is well known that with this configuration, signal conversion from analog to digital is completed instantaneously with a single conversion operation using a clock signal, and therefore the highest speed conversion is possible. However, since 2N-1 comparators are required,
Due to the necessity of a logic circuit for digitally encoding the comparator output into N bits, the circuit scale becomes extremely large.As a result, the number of elements and power consumption increase proportionately. When realizing LSI, there were drawbacks that hindered miniaturization, economy, and high reliability.

一方、直並列形は、大まかな変換を実施する上位ビット
月並列形A/D変換器と、細かな変換を実施する下位ビ
ット月並列形A/D変換器と、上位ピット月並列形A/
D変換器の出力を再びアナログ信号に戻すディジタル・
アナログ変換器(以下、D/A変換器と略称する)と、
アナログ入力信号からD/A変換器のアナログ出力信号
を引き算する減算回路とで構成される。アナログ入力信
号は、まず上位ビット月並列形A/D変換器で最終出力
の上位ピットディジタル信号を得るための第一の変換が
行われ、この出力は同時にD/A変換器の入力となる。
On the other hand, the series-parallel type A/D converter has an upper bit parallel type A/D converter that performs rough conversion, a lower bit parallel type A/D converter that performs fine conversion, and an upper bit parallel type A/D converter that performs fine conversion.
A digital converter that converts the output of the D converter back into an analog signal.
An analog converter (hereinafter abbreviated as D/A converter),
It consists of a subtraction circuit that subtracts the analog output signal of the D/A converter from the analog input signal. The analog input signal is first converted by a high-order bit parallel type A/D converter to obtain a final output high-order pit digital signal, and this output is simultaneously input to the D/A converter.

減算回路の動作によってアナログ入力信号からD/A変
換器出力信号の引き算、が行われ、得られたアナログ信
号は下位ビット月並列形A/D変換器の入力となって第
二の変換が行われ、この出力が最終出力としての下位ピ
ットディジタル信号となる。以上の一連の各回路動作に
よって直並列形A/D変換器の変換動作は完了するが、
この間、アナログ入力信号はサンプル・ホールド回路に
よって一定な信号レベルに保持される必要がある。変換
速度は並列形と比較して、D/A変換器の分だけ遅くな
る。また、並列形A/D変換器を2回路必要とすること
、Nビット精度のD/A変換器を要することなどにより
回路規模は並列形に近いものとなり、LSIの高速化。
The D/A converter output signal is subtracted from the analog input signal by the operation of the subtraction circuit, and the obtained analog signal is input to the lower bit parallel type A/D converter to perform the second conversion. This output becomes the lower pit digital signal as the final output. The conversion operation of the series-parallel A/D converter is completed by the series of circuit operations described above, but
During this time, the analog input signal must be held at a constant signal level by the sample and hold circuit. The conversion speed is slower than the parallel type by the amount of the D/A converter. In addition, the circuit scale is close to that of the parallel type due to the need for two circuits of parallel type A/D converters and the need for a D/A converter with N-bit accuracy, increasing the speed of LSI.

小形化、経済化、高信頼化を図る上で問題があった。There were problems in trying to make it smaller, more economical, and more reliable.

(発明の目的) 本発明は、これらの欠点を解決するため、並列形の最大
の特長である高速変換性能を維持しつつ縦続形を併用す
る回路構成とすることによって回路規模の縮小化を図り
、高速、低消費電力、小形のA/D変換器を提供するも
のである。
(Objective of the Invention) In order to solve these drawbacks, the present invention aims to reduce the circuit scale by creating a circuit configuration that uses the cascade type while maintaining high-speed conversion performance, which is the greatest feature of the parallel type. The present invention provides a high speed, low power consumption, and compact A/D converter.

(発明の構成及び作用) 以下図面により詳細に説明する。(Structure and operation of the invention) This will be explained in detail below with reference to the drawings.

第1図は本発明による縦続形と並列形との併用形A/D
変換器の実施例にもとづく基本回路ブロック図である。
Figure 1 shows a combination type A/D of cascade type and parallel type according to the present invention.
1 is a basic circuit block diagram based on an embodiment of a converter; FIG.

A/DIは縦続形A/D変換器、A1.A、〜Amは増
幅器、EC1はコード変換器、SINはアナログ入力信
号、VRBFは基準電圧、CI、C7〜Cmは比較器、
A/D2は並列形A/D変換器、CLKはクロック入力
信号、0い02〜0rrlは増幅器の出力信号、Di−
DmおよびDm+i〜I)m+。はディジタル出力信号
である。
A/DI is a cascaded A/D converter, A1. A, ~Am are amplifiers, EC1 is a code converter, SIN is an analog input signal, VRBF is a reference voltage, CI, C7 ~ Cm are comparators,
A/D2 is a parallel A/D converter, CLK is a clock input signal, 002 to 0rrl are amplifier output signals, Di-
Dm and Dm+i~I)m+. is the digital output signal.

また第2図および第3図は増幅器の入出力特性を説明す
る図であり、VFsはフルスケール電圧を示している。
Further, FIGS. 2 and 3 are diagrams for explaining the input/output characteristics of the amplifier, and VFs indicates the full-scale voltage.

A/D1は分解能mビットの縦続形A/D変換器であり
、A1.A、〜Amのm個の増幅器を縦続接続すると共
に増幅器A、 、 A、〜Amの入力端子と並列接続し
た同数の比較器C,、C,〜Cm1およびこれらの比較
器C,,C,〜Cmのグレイ符号出力信号を2進符号に
変換するコード変換器EC,から構成される。増幅器A
、 、 A、〜Amにはアナログ入力信号SINとして
o−vFsを、基準電圧VREFとして1/2VF8を
入力した時に出力信号がVOUT = 21sIN−V
REF’lとなる入出力特性、すなわち二人力端子間に
おける電圧差が0の時VOUT ;VFS %電圧差が
最大となった時vouT= 0となるような関数を持つ
回路を用い、これを縦続接続した場合の一段目の増幅器
A、にo−vFsの入力信号電圧を加えると、各増幅器
A1.A、〜Amの出力特性は第2図に示す如くなる。
A/D1 is a cascade type A/D converter with a resolution of m bits, and A1. m amplifiers A, ~Am are connected in cascade, and the same number of comparators C, , C, ~Cm1 are connected in parallel with the input terminals of amplifiers A, , A, ~Am, and these comparators C,,C, It consists of a code converter EC, which converts the Gray code output signal of ~Cm into a binary code. Amplifier A
, , A, ~Am, when o-vFs is input as the analog input signal SIN and 1/2VF8 is input as the reference voltage VREF, the output signal is VOUT = 21sIN-V
When the voltage difference between the two terminals is 0, VOUT; When an input signal voltage of o-vFs is applied to the first stage amplifier A when connected, each amplifier A1. The output characteristics of A, -Am are as shown in FIG.

これらの出力信号を比較器C1,C,〜Cmにおいて基
準電圧VREFとの比較を行うことにより、入力信号レ
ベルとの対応関係において1/2 VFS +”/4 
VFS〜’/2”VFSのレベル判定がなされ、mビッ
トの縦続形A/D変換器A/D1が成立する。ここで説
明した縦続形A/D変換器A/DIのディジタル出力信
号の符号則はグレイ符号であるが、各増幅器A、、A2
〜Amの入出力特性を変えることによって自然2進符号
とすることは容易であり、この場合にはコード変換器E
C1が省略できることは明らかである。すなわち、縦続
接続した入出力特性が第3図に示すようなVouT:2
 SIN (0≦SIN<VREF時) + Vot+
t=2 (5IN−VREF ) (VREF≦SIN
 <vFs時〕となる増幅器を用いれば、先の場合と同
様に、各出力信号と基準電圧vREFとの比較を行うこ
とによって1/2 VFS + 1/、i vFs −
1/2’ VFSのレベル判定がなされ、自然2進符号
のmビット縦続形A/D変換器A/D1が実現できる。
By comparing these output signals with the reference voltage VREF in the comparators C1, C, ~Cm, 1/2 VFS + "/4 in correspondence with the input signal level
The level of VFS~'/2''VFS is determined, and the m-bit cascaded A/D converter A/D1 is established.The sign of the digital output signal of the cascaded A/D converter A/DI described here is The rule is Gray code, but each amplifier A, ,A2
It is easy to make a natural binary code by changing the input/output characteristics of ~Am, and in this case, the code converter E
It is clear that C1 can be omitted. In other words, the cascade-connected input/output characteristics are VouT:2 as shown in Figure 3.
SIN (when 0≦SIN<VREF) + Vot+
t=2 (5IN-VREF) (VREF≦SIN
<at vFs> If an amplifier is used, as in the previous case, by comparing each output signal with the reference voltage vREF, 1/2 VFS + 1/, i vFs −
The level of 1/2' VFS is determined, and an m-bit cascade type A/D converter A/D1 of natural binary code can be realized.

このような手段を用いた縦続形A/D変換器A/D1の
変換動作によってmビットのディジタル出力信号を得た
後、縦続形A/D変換器A/Dl内の最終段増幅器Am
の出力信号をnピット並列形A/D変換器A/D2のア
ナログ入力信号として変換し、nビットのディジタル出
力信号を得る。
After obtaining an m-bit digital output signal by the conversion operation of the cascaded A/D converter A/D1 using such means, the final stage amplifier Am in the cascaded A/D converter A/Dl
The output signal is converted as an analog input signal of an n-pit parallel type A/D converter A/D2 to obtain an n-bit digital output signal.

以上のように、縦続形A/D変換器A/D1の出力を上
位ビットとし、並列形A/D変換器A/D 2の出力を
下位ピントとするディジタル信号が縦続形と並列形の併
用形構成とした本発明のA/D変換器によって得ること
ができる。並列形A/D変換器A/D2の変換動作をデ
ユーティレジ第50チのクロック信号で行う時、その休
止期間内で縦続形A/D変換器A/D1の変換が終了す
るならば、縦続形と並列形との併用形A/D変換器の変
換速度は並列形A/D変換器の変換速度と同等になる。
As described above, a digital signal in which the output of the cascade A/D converter A/D1 is the upper bit and the output of the parallel A/D converter A/D 2 is the lower bit is a combination of the cascade type and the parallel type. can be obtained by the A/D converter of the present invention having a configuration of When the conversion operation of the parallel type A/D converter A/D2 is performed using the clock signal of the 50th duty register, if the conversion of the cascaded type A/D converter A/D1 is completed within the pause period, then the cascaded type The conversion speed of a parallel type A/D converter is equivalent to that of a parallel type A/D converter.

また、縦続形と並列形との変換ビット数の割合において
、縦続形が増えることは回路規模の縮小が図れ低消費電
力化、小形化、経済化が進むことを意味している。従っ
て、前段を縦続形A/D変換器で、後段を並列形A/D
変換器で構成する併用形とすることにより、低消費電力
、小形、高信頼度且つ高速のA/D変換器が実現できる
Furthermore, in terms of the ratio of the number of conversion bits between the cascade type and the parallel type, an increase in the number of cascade types means that the circuit scale can be reduced, leading to lower power consumption, smaller size, and economicalization. Therefore, the first stage is a cascade type A/D converter, and the second stage is a parallel type A/D converter.
By using a combination type configured with converters, it is possible to realize an A/D converter with low power consumption, small size, high reliability, and high speed.

第4図は、本発明による縦続形と並列形との併用形A/
D変換器の他の実施例である。D、〜DnおよびDn+
、〜Dn+□はディジタル出力信号、0゜はA/D2か
ものアナログ出力信号、Am−1は増幅器、Cm−1は
比較器、0m−1は増幅器の出力信号である。
FIG. 4 shows a combination type A/ of the cascade type and parallel type according to the present invention.
This is another embodiment of the D converter. D, ~Dn and Dn+
, ~Dn+□ is a digital output signal, 0° is an analog output signal of A/D2, Am-1 is an amplifier, Cm-1 is a comparator, and 0m-1 is an output signal of the amplifier.

他の構成回路は第1図に示す実施例と同じであり、並列
形A/D’変換器A/D2を前段として得られるアナロ
グ出力信号を後段の縦続形A/D変換器A/D1の入力
信号に用い、両A/D変換器のディジタル出力信号は前
段を上位ビット、後段を下位ビットとする構成の縦続形
と並列形との併用形A/D変換器である。アナログ入力
信号は並列形A/D変換器A/D2においてくクロック
信号の制御によってnビットの変換が行われディジタル
出力信号は最終のディジタル出力信号D1〜Dnとなる
。この変換動作と並行してnビット変享後の残りのアナ
ログ信号0゜を発生し、縦続形A/D変換器A/D1の
入力信号に用いる。縦続形A/D変換器A/D1は第1
図に示す実施例の場合と全く同一の変換動作をし、得ら
れるディジタル出力信号は最終の出力のDn+、〜Dn
+□となる。
The other constituent circuits are the same as the embodiment shown in FIG. The digital output signal of both A/D converters is a cascade-type and parallel-type A/D converter with a configuration in which the first stage is the upper bit and the second stage is the lower bit. The analog input signal is subjected to n-bit conversion by the parallel A/D converter A/D2 under the control of a clock signal, and the digital output signals become final digital output signals D1 to Dn. In parallel with this conversion operation, the remaining analog signal 0° after n-bit transformation is generated and used as an input signal to the cascaded A/D converter A/D1. The cascaded A/D converter A/D1 is the first
The conversion operation is exactly the same as in the embodiment shown in the figure, and the resulting digital output signal is the final output Dn+, ~Dn
It becomes +□.

並列形A/D変換器A/D2は、本来ディジタル信号を
出力する回路であるが、付加回路によりアナログ信号を
も発生させることができる。第5図はO8の信号発生を
説明する回路図であり、第6図はその特性である。縦続
形A/D変換器A/D 1へのアナログ信号をどのよう
に発生するかを以下で説明する。All + A13 
HA45〜A+rrl+11 AOは増幅器、al r
 a2+ 63〜am/2は基準電圧端子、IN、、I
N、〜INn 、 ru、−’ry、は入力端子、Os
s * Osa+Ots〜O1m+1 +0゜は増幅器
A18. AHsHA15〜A+m++の出力信号、C
l1ICIt * C13〜C1mは比較器、ECはコ
ード変換器、+ VREF + −VREFは基準電圧
源、Rtt + Rst r Rss r R14+R
sa r R16〜R,、mは基準抵抗、D’L8B 
−DM8Bはディジタル出力信号である。この場合のア
ナログ信号発生回路は縦続形A/D変換器A/D1で用
いる増幅器と同じ回路を(2γ2)+1個用いて、An
 + Ass + A+s〜A1m+1の第一の入力に
はアナログ入力信号SINを共通入力とし、それぞれの
第二の入力には基準電圧として端子a1の電圧を増幅器
Allに、端子a2を増幅器A13に、端子a3を増幅
器A15に、端子am/ 2を増幅器A1m+1と言う
ように第5図の如く並列形A/D変換器A/D2の基準
電圧子VREFから一つおきに接続して構成する。この
時、第6図のように得られる増幅器の出力信号をOR入
力端子を持つ増幅器A。に印加し、増幅器A、1の出力
信号を入力端子IN、に、増幅器A8.の出力信号を入
力端子IN2に、・・・、増幅器A1.の出力信号を入
力端子IN、に、・・・、増幅器A1m+1の出力信号
を入力端子IN、に接続することによってアナログ信号
O8を発生する。具体的には、1ず、増幅器A。の入力
がOR構成であるためアナログ人力信号SINのレベル
が端子a1と端。
Although the parallel A/D converter A/D2 is originally a circuit that outputs a digital signal, it can also generate an analog signal with an additional circuit. FIG. 5 is a circuit diagram explaining signal generation of O8, and FIG. 6 shows its characteristics. How to generate the analog signal to the cascaded A/D converter A/D 1 will be explained below. All + A13
HA45~A+rrl+11 AO is amplifier, al r
a2+ 63~am/2 are reference voltage terminals, IN,, I
N, ~INn, ru, -'ry are input terminals, Os
s*Osa+Ots~O1m+1 +0° is amplifier A18. AHsHA15~A+m++ output signal, C
l1ICIt * C13 to C1m are comparators, EC is a code converter, + VREF + -VREF is a reference voltage source, Rtt + Rst r Rss r R14+R
sa r R16~R, m is the reference resistance, D'L8B
-DM8B is a digital output signal. In this case, the analog signal generation circuit uses (2γ2)+1 circuits that are the same as the amplifiers used in the cascaded A/D converter A/D1.
+ Ass + The analog input signal SIN is used as a common input for the first input of A+s to A1m+1, and the voltage of terminal a1 is used as a reference voltage for each second input, and the voltage of terminal a1 is sent to amplifier All, terminal a2 is sent to amplifier A13, and terminal A3 is connected to amplifier A15, terminal am/2 is connected to amplifier A1m+1, and every other reference voltage terminal VREF of parallel type A/D converter A/D2 is connected as shown in FIG. At this time, the output signal of the amplifier obtained as shown in FIG. 6 is connected to an amplifier A having an OR input terminal. The output signal of amplifier A,1 is applied to input terminal IN, and the output signal of amplifier A8.1 is applied to input terminal IN. output signal to the input terminal IN2, . . . , amplifier A1. The analog signal O8 is generated by connecting the output signal of the amplifier A1m+1 to the input terminal IN, . . . and the output signal of the amplifier A1m+1 to the input terminal IN. Specifically, 1. Amplifier A. Since the input is in an OR configuration, the level of the analog human input signal SIN is the same as that of terminal a1.

子a2の範囲内であれば出力011と0,3を入力信号
として011””013のA、点(第6図)では最大レ
ベル、011と013のレベル差が最大と々る81点お
よび82点では最小レベルのO8が得られる。次に、ア
ナログ入力信号SINが端子82〜85間は出力O1、
より Otsが高レベルのため入力部の機能によって0
,3とOSSの二つが入力信号と々す0,3=01.の
A2点(第6図)では最大レベル、013と0,50レ
ベル差が最大となる82点および83点では最小レベル
のO6が得られる。
If it is within the range of child a2, outputs 011 and 0,3 are used as input signals, and A of 011""013 is at the maximum level (Figure 6), and the level difference between 011 and 013 is maximum at points 81 and 82. A minimum level of O8 is obtained at the point. Next, when the analog input signal SIN is between terminals 82 and 85, the output is O1;
Since Ots is at a high level, it becomes 0 due to the function of the input section.
,3 and OSS are the input signals 0,3=01. The maximum level is obtained at point A2 (FIG. 6), and the minimum level O6 is obtained at points 82 and 83, where the difference between 013 and 0.50 levels is maximum.

以下、同様の動作を繰返すことによって、後段の縦続形
A/D変換器A/DIの入力として接続可能な特性を持
つアナログ信号が発生できる。
Thereafter, by repeating the same operation, an analog signal having characteristics that can be connected as an input to the cascaded A/D converter A/DI in the subsequent stage can be generated.

以上のように、並列形A/D変換器A/D2の出力を上
位ビットとし、A/D1の出力を下位ビットとする縦続
形と並列形との併用形A/D変換器の構成では、一般に
は下位ビットになる程変換精度が厳しくなる条件に対し
て入力信号のダイナミックレンジが変らない縦続形がこ
れに相当するため、精度′的に有効な変換動作となる。
As described above, in the configuration of a combined cascade type and parallel type A/D converter in which the output of the parallel type A/D converter A/D2 is the upper bit and the output of A/D1 is the lower bit, In general, this corresponds to a cascade type in which the dynamic range of the input signal does not change under the condition that the conversion accuracy becomes more severe as the lower bits become lower, so that it is an effective conversion operation in terms of accuracy.

また、第1図の実施例で説明したと同様の特長を有する
ことは回路構成上明らかである。従って、本構成におけ
る併用形においても、高速、高精度、低消費電力。
Furthermore, it is clear from the circuit configuration that this embodiment has the same features as those described in the embodiment of FIG. Therefore, even in the combined form of this configuration, high speed, high precision, and low power consumption are achieved.

小形、高信頼度のA/D変換器が実現できる。A small, highly reliable A/D converter can be realized.

以上、実施例に基づき縦続形および並列形A/D変換器
による二段構成について述べたが、前段、中間段および
後段に三分割してそれぞれに組合わせた併用形構成とし
た場合でもその特長を生かすことが可能であり、高速、
低消費電力、小形、高信頼度のA/D変換器とすること
は明らかである。
The two-stage configuration using the cascade type and parallel type A/D converters has been described above based on the embodiment, but the features can also be achieved when the combination type configuration is divided into three stages: the front stage, the middle stage, and the rear stage and combined with each stage. It is possible to take advantage of
It is clear that an A/D converter with low power consumption, small size, and high reliability is desired.

(発明の効果) 以上詳細に帛1明したように、縦続形と並列形との併用
形A/D変換器とすることによって構成の17i〕単な
縦続形の特長を生かし、全並列形との比較において回路
規模を縮小することができる。回路規模の縮小は素子数
、消費電力の減少となって影響し、小形化、高信頼化、
経済化に際し大きな利点をもたらす。しかも、変換速度
は並列形の変換速度を損うことなく実現が可能である。
(Effects of the Invention) As explained in detail in Plate 1 above, by making the A/D converter a combination of cascade type and parallel type, configuration 17i] takes advantage of the features of the simple cascade type and converts it into a fully parallel type. The circuit scale can be reduced in comparison. Reducing the circuit scale has the effect of reducing the number of elements and power consumption, leading to smaller size, higher reliability, and
It brings great advantages in economicization. Moreover, the conversion speed can be realized without impairing the conversion speed of the parallel type.

このように高速性能を備え、且つ素子級、消費電力の小
さい回路構成であるためLSI化には最適であり、高速
、低消費電力、小形、高信頼且つ経済化に優れたA/D
変換器が提供できる。
Because it has high-speed performance, element-level circuit configuration, and low power consumption, it is ideal for LSI integration, and is an A/D that is high speed, low power consumption, compact, highly reliable, and highly economical.
Converter can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるA/D変換器の一実施例を示すブ
ロック図、第2図は本発明に用いる増幅器の入出力特性
の一例を示す特性図、第3図は本発明に用いる増幅器の
入出力特性の他の例を示す特性図、第4図は本発明によ
るA/D変換器の他の実施例を示すブロック図、第5図
は第4図の実施例の動作でアナログ信号発生を説明する
ためのブロック図、第6図は本発明に用いるアナログ信
号発生回路の入出力特性側図である。 A、、A2−Am−1+ Am + All + A1
31 At5−A +m++ + Ao°°゛増幅器、
C1+ c2〜crrl−1+ Cm + Co + 
C121c13〜C1m・・・比較器、EC,、EC・
・・コード変換器、A/D 1・・・縦続形A/D変換
器、A/D2・・・並列形A/D変換器、SIN・・・
アナログ入力信号、VREF r +VREF + V
REF ”・基準電圧、CLK・・・クロック入力信号
、D1〜Dm、Dm+1〜Dman + DH〜Dy1
+Dn++〜Dn+m r DLSB−DMSB−ディ
ジタル出力信号、Ol 、 O□〜0m−1+ 0rr
x011+O+5rOHs〜011T++1゜Oo・・
・増幅器出力、alz 82+ 83〜am/2・・・
基単電圧端子、 R11+Ru+ R131R141R
151R16−R+m ・・’基準抵抗、IN、、IN
、〜INn、 IN、〜lNn−・・増幅器州5図 拷6図 入力信号
FIG. 1 is a block diagram showing an example of an A/D converter according to the present invention, FIG. 2 is a characteristic diagram showing an example of input/output characteristics of an amplifier used in the present invention, and FIG. 3 is a block diagram showing an example of the input/output characteristics of an amplifier used in the present invention. 4 is a block diagram showing another embodiment of the A/D converter according to the present invention, and FIG. 5 is a characteristic diagram showing another example of the input/output characteristics of the A/D converter of the present invention. FIG. 6 is a block diagram for explaining the generation, and is a diagram showing the input/output characteristics of the analog signal generating circuit used in the present invention. A,, A2-Am-1+ Am + All + A1
31 At5-A +m++ + Ao°°゛amplifier,
C1+ c2~crrl-1+ Cm + Co +
C121c13~C1m... Comparator, EC,, EC・
... Code converter, A/D 1... Cascade type A/D converter, A/D2... Parallel type A/D converter, SIN...
Analog input signal, VREF r + VREF + V
REF”・Reference voltage, CLK...Clock input signal, D1~Dm, Dm+1~Dman+DH~Dy1
+Dn++~Dn+mr DLSB-DMSB-digital output signal, Ol, O□~0m-1+0rr
x011+O+5rOHs~011T++1゜Oo・・
・Amplifier output, alz 82+ 83~am/2...
Base single voltage terminal, R11+Ru+ R131R141R
151R16-R+m...'Reference resistance, IN,, IN
, ~INn, IN, ~lNn-... Amplifier state Figure 5 Torture Figure 6 input signal

Claims (1)

【特許請求の範囲】[Claims] 対応するアナログ信号と基準電圧とをそれぞれ入力とす
る複数段の増幅器および比較器を該増幅器のおのおのの
出力信号は次段の増幅器と比較器の入力に該比較器のお
のおのの出力信号は最終のディジタル出力信号とする如
く縦続に接続して構成された縦続形A/D変換器と、該
縦続形A/D変換器における最終段の前記増幅器のアナ
ログ出力又は被変換アナログ入力信号を入力として変換
後に栴られるディジタル出力信号を最終のディジタル出
力信号とする並列形A/D変換器とを備えて、該並列形
A/D変換器の入力が前記縦続形A/D変換器の最終段
の前記増幅器のアナログ出力であるときには前記被変換
アナログ入力信号が前詰縦続形A/D変換器の最前段の
前記増幅器の入力となり、該並列形A/D変換器の入力
が前記変換アナログ入力信号であるときは該並列形A/
D変換器のアナログ出力が前記縦続形A/D変換器の最
前段の前記増幅器の入力となるように配置されることに
より、前記被変換アナログ入力信号をクロック信号に同
期してディジタル信号に変換するように構成されたアナ
ログ・ディジタル変換回路。
A plurality of stages of amplifiers and comparators each receiving a corresponding analog signal and a reference voltage are used. The output signal of each amplifier is input to the next stage amplifier and comparator. A cascade type A/D converter configured to be connected in cascade so as to produce a digital output signal, and an analog output of the amplifier at the final stage in the cascade type A/D converter or an analog input signal to be converted is input and converted. a parallel type A/D converter which uses a digital output signal to be reproduced later as a final digital output signal, and the input of the parallel type A/D converter is connected to the last stage of the cascaded type A/D converter. When the converted analog input signal is an analog output of an amplifier, the analog input signal to be converted becomes the input of the amplifier at the first stage of the front-packed cascade type A/D converter, and the input of the parallel type A/D converter is the converted analog input signal. In some cases, the parallel type A/
By arranging the analog output of the D converter to be the input of the amplifier at the first stage of the cascade type A/D converter, the analog input signal to be converted is converted into a digital signal in synchronization with a clock signal. an analog-to-digital conversion circuit configured to
JP2472784A 1984-02-13 1984-02-13 Analog digital converting circuit Pending JPS60172824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2472784A JPS60172824A (en) 1984-02-13 1984-02-13 Analog digital converting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2472784A JPS60172824A (en) 1984-02-13 1984-02-13 Analog digital converting circuit

Publications (1)

Publication Number Publication Date
JPS60172824A true JPS60172824A (en) 1985-09-06

Family

ID=12146182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2472784A Pending JPS60172824A (en) 1984-02-13 1984-02-13 Analog digital converting circuit

Country Status (1)

Country Link
JP (1) JPS60172824A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7567197B2 (en) 2007-09-17 2009-07-28 Samsung Electronics Co., Ltd. Cascade comparator and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7567197B2 (en) 2007-09-17 2009-07-28 Samsung Electronics Co., Ltd. Cascade comparator and control method thereof

Similar Documents

Publication Publication Date Title
AU665771B2 (en) Reversible analog to digital converter (ADC-DAC) with analog and digital signal processing and encoding functions
US5274377A (en) Pipelined A/D converter
US7576677B2 (en) Pipeline A/D converter converting analog signal to digital signal
JP3295564B2 (en) Analog-to-digital converter
JP4897047B2 (en) Analog-to-digital conversion using asynchronous current-mode cyclic comparison
EP1182781B1 (en) Multistage converter employing digital dither
US6229472B1 (en) A/D converter
US6285309B1 (en) Nested pipelined analog-to-digital converter
US7002507B2 (en) Pipelined and cyclic analog-to-digital converters
JPH0681048B2 (en) A / D converter
JP2995599B2 (en) Analog-to-digital conversion method
CN113114257B (en) Sub-high-order advanced successive approximation analog-to-digital converter and control method
JP2762969B2 (en) Resistor string type D / A converter and serial / parallel type A / D converter
US20120092202A1 (en) Analog to digital converter
JPS60172824A (en) Analog digital converting circuit
JPS6271336A (en) Analog-digital converter
JP3175070B2 (en) AD converter
KR100282443B1 (en) Digital / Analog Converter
JPS60146528A (en) Analog-digital converting circuit
JPH0563571A (en) Serial parallel a/d converter
JP2924740B2 (en) A / D converter
Huang et al. A 5-bit 1 Gsample/s two-stage ADC with a new flash folded architecture
Liu et al. An Encoder Design for High-Speed Pipelined Folding-Interpolation ADC
JPH04280121A (en) Serial-parallel a/d converter
KR20010045351A (en) Analog to digital converter