JPS60172443A - Synchronous control with high accuracy - Google Patents

Synchronous control with high accuracy

Info

Publication number
JPS60172443A
JPS60172443A JP2875984A JP2875984A JPS60172443A JP S60172443 A JPS60172443 A JP S60172443A JP 2875984 A JP2875984 A JP 2875984A JP 2875984 A JP2875984 A JP 2875984A JP S60172443 A JPS60172443 A JP S60172443A
Authority
JP
Japan
Prior art keywords
shaft
cutter
control
axis
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2875984A
Other languages
Japanese (ja)
Inventor
Kenji Ueno
健治 上野
Tsuyoshi Matsunami
松浪 強
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Mitsubishi Automotive Engineering Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Mitsubishi Automotive Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Mitsubishi Automotive Engineering Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2875984A priority Critical patent/JPS60172443A/en
Publication of JPS60172443A publication Critical patent/JPS60172443A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42186Master slave, motion proportional to axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

PURPOSE:To improve control accuracy in a large-sized machine tool and permit the machining with superhigh accuracy in a small or medium-sized machine by controlling the shafts to be synchronously revolved, on the basis of the feedback signals of the shaft of the partner. CONSTITUTION:In an NC controller 9, the input information supplied from a tachogenerator 3 and a resolver 4 on a cutter shaft is incorporated into a work- shaft system and used for controlling a work-shaft driving motor 6, while the feedback signal of the work shaft is input from a tachogenerator 7 and a resolver 8 and incorporated into a cutter-shaft system and used for controlling a cutter-shaft driving motor. In the conventional NC driving motor, the response performance, namely the recovery force and trailing force are proportional to the magnitude of the error from instruction. In other words, the deflection from the instruction value is larger, a larger motor torque is generated. The control depends only upon the instruction value of the NC controller 9 in the conventional method, while in this method the control permits the direct followng to the movement of an object, having the motor speed of the partner which is to be synchronized, as instruction value, and the control accuracy can be improved.

Description

【発明の詳細な説明】 本発明は、歯車形削盤、ホブ盤等同期制御を必要とする
2軸をもつ工作機械、多軸のNC工作機械において、同
期制御の精度を向上させる制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control method for improving the precision of synchronous control in machine tools with two axes that require synchronous control, such as gear shaping machines and hobbing machines, and multi-axis NC machine tools. .

たとえば、歯車形削盤(以下ギヤシェイパという)にお
いても、最近では段取り容易化対策と歯切り精度向上の
目的で、数値制御(以下NCと称する)化が実施されて
いる。このNCギヤシェイパは第1図に示す制御方式を
採る。
For example, in gear shapers (hereinafter referred to as gear shapers), numerical control (hereinafter referred to as NC) has recently been implemented for the purpose of facilitating setup and improving gear cutting accuracy. This NC gear shaper employs the control method shown in FIG.

すなわち、ピニオンカッタ1を駆動するカッタ軸駆動モ
ータ2には回転数検出のタコジェネレータ3および位相
検出のレゾルバ4が備えられ、他方ワーク5を駆動する
ワーク軸駆動モータ6にもタコジェネレータ7およびレ
ゾルバ8が備えられる。NC制御装置9では、それぞれ
のタコジェネレータ3又は7、レゾルバ4又は8の検出
出力を取り入れて目標値と比較し差(ずれ)があるとき
には相応する駆動モータ2又tま6に制御信号を送るも
のである。このような制御方式により、カッタ軸とワー
ク軸が制御されて割出し系の精度を高めているのが普通
であり、実用上十分な歯切り精度が得られていることも
既に明らかにされている。
That is, the cutter shaft drive motor 2 that drives the pinion cutter 1 is equipped with a tacho generator 3 for rotation speed detection and a resolver 4 for phase detection, and the work shaft drive motor 6 that drives the workpiece 5 is also equipped with a tacho generator 7 and a resolver. 8 is provided. The NC control device 9 takes in the detection outputs of the respective tacho generators 3 or 7 and resolvers 4 or 8 and compares them with the target values, and if there is a difference (deviation), sends a control signal to the corresponding drive motor 2 or t or 6. It is something. This type of control method usually controls the cutter axis and workpiece axis to improve the accuracy of the indexing system, and it has already been shown that sufficient gear cutting accuracy can be obtained for practical use. There is.

ところが、この同期回転する軸を同時制御する方式は、
カッタ軸側ではその側の系を、ワーク軸側ではその側の
系をそれぞれ個別に制御することになり、カッタ軸とワ
ーク軸との間の関係は直接には無関係でありNC制御装
ft9内の制御指令を関係させるしかなく、この点セミ
クローズド制御方式であり、駆動モータ2,6はNC指
令に対してのみ追従する方式である。かかる場合、機械
が大型化されたり又は超高精度加工を目的とする場合に
は、ワーク系とカッタ系が別々になっており、しかもN
C指令によってのみ追従精度を採る上記方式では自ずと
限界が生ずる。
However, this method of simultaneously controlling synchronously rotating axes is
On the cutter axis side, the system on that side is controlled individually, and on the workpiece axis side, the system on that side is controlled individually, and the relationship between the cutter axis and workpiece axis is not directly related, and the NC control system ft9 This is a semi-closed control system in which the drive motors 2 and 6 follow only the NC commands. In such cases, if the machine is enlarged or the purpose is ultra-high precision machining, the workpiece system and cutter system are separate, and the N
The above method, which achieves tracking accuracy only by the C command, naturally has a limit.

そこで1本発明は上述の欠点に鑑み大形の機械でも制御
精度を高めると共に、中小形の機械にて超高精度の加工
を可能とした高精度同期制御方法の提供を目的とする。
In view of the above-mentioned drawbacks, one object of the present invention is to provide a high-precision synchronous control method that increases control precision even in large-sized machines and enables ultra-high-precision machining with small and medium-sized machines.

かかる目的を達成する本発明は、複数の軸を数値制御す
るように構成した工作機械において、上記軸の同期回転
すべきものどおしを互いに相手の軸のフィードバック信
号に基づいて制御することを特徴とする。
The present invention, which achieves this object, is characterized in that, in a machine tool configured to numerically control a plurality of axes, each of the axes to be rotated synchronously is controlled based on feedback signals from the other axes. shall be.

ここで、第2図、第3図、第6図を参照して本発明の詳
細な説明する。第2図において第1図と同一部分には同
符号を付す。カッタ軸の制御情報(フィードバック信号
)は、タコジェネレータ3およびレゾルバ4からNC制
御装置9に入力される。このNC制御装置9ではカッタ
軸の上記フィードバック信号がワーク軸の系に取り込ま
れワーク軸駆動モータ6の制御を行なう。
The present invention will now be described in detail with reference to FIGS. 2, 3, and 6. In FIG. 2, the same parts as in FIG. 1 are given the same reference numerals. Cutter axis control information (feedback signal) is input from the tacho generator 3 and resolver 4 to the NC control device 9 . In this NC control device 9, the feedback signal of the cutter shaft is taken into the work shaft system to control the work shaft drive motor 6.

他方、ワーク軸のフィードバック信号に1タコジエネレ
ータ7およびレゾルバ8からNC制御装置9に人力され
る。この場合には、このフィードバック信号がカッタ軸
の系に取り込まれカッタ軸駆動モータ2の制御を行なう
On the other hand, a feedback signal of the work axis is manually inputted from the tachometer generator 7 and resolver 8 to the NC control device 9. In this case, this feedback signal is taken into the cutter shaft system to control the cutter shaft drive motor 2.

NC制御装置9を中心としたかかる制御方式のブロック
を第3図に示す。NC制御装f9の内部はカッタ軸系(
Y軸系という)とワーク軸(C軸系という)とに分かt
l、それぞれの系には指令値取シ込み、レジスタ、パル
ス分配、スムージング、位相変調、位置制御、増幅から
なる各段が備えられている。このそれぞれの系には外部
メモリ例えば磁気テープから指令が指令バッファを経て
取り込まれる。各基の増幅段はその系に応じた駆動モー
タ、すなわちY軸系はY軸(カッタ軸)駆動モータ、C
軸系はC軸(ワークM )駆動モータにそれぞれ接続さ
れ、モータ制御が行なわれる。一方、各基のタコジェネ
レータ3.7およびレゾルバ4,8は相手の系の終段部
に第3図に示すように接続されている。この結果、ワー
ク軸のフィードバック信号はカッタ軸の系に、カッタ軸
のフィードバック信号はワーク軸の系に取り込まれるこ
とになる。
A block diagram of such a control system centered on the NC control device 9 is shown in FIG. The inside of the NC control device f9 is the cutter shaft system (
It is divided into two parts: the Y-axis system) and the workpiece axis (referred to as the C-axis system).
Each system is equipped with stages consisting of command value acquisition, registers, pulse distribution, smoothing, phase modulation, position control, and amplification. Each system receives commands from an external memory, such as a magnetic tape, via a command buffer. The amplification stage of each group is driven by a drive motor according to its system, that is, the Y-axis system is driven by a Y-axis (cutter axis) drive motor, and the C
The shaft systems are each connected to a C-axis (workpiece M) drive motor, and motor control is performed. On the other hand, each tacho generator 3.7 and resolver 4, 8 is connected to the final stage of the other system as shown in FIG. As a result, the workpiece axis feedback signal is taken into the cutter axis system, and the cutter axis feedback signal is taken into the workpiece axis system.

従来のNC駆動モータの応答性すなわち回復力や追従力
は指令との誤差の大きさに比例し、例えば駆動モータに
発生するトルクの大きさは第4図に示すようにF=K・
△で近似的に示される。ここで、Fはトルク、Kはゲイ
ン(定数)、△は指令値との差(ずれ)である。つまり
、指令値からのずれが大きくなる程その大きさに比例し
て大きなモータトルクが発生するものである。また、第
5図に示すように、従来ではY軸モータとC輔モータと
のそれぞれの回転角は指令値Ys 、 Csに対しドル
ープ量+誤差分Dy 、 Daだけ下って指令値に追従
していく。Ms 、 Me は追従値である。第5図で
はDy > Doである。こうして、従来ではNC制御
装置90指令値のみに依存するものであったが、本発明
では第6図に示すようにドループ量に相当するものが存
在するが、相手方の同期すべきモータ速度を指令値とみ
なして追従させることができる。第6図でMsはY軸モ
ータ、 MeはC軸モータの実際の動きを示す。
The responsiveness of a conventional NC drive motor, that is, the recovery force and follow-up force, is proportional to the magnitude of the error from the command.For example, the magnitude of the torque generated in the drive motor is expressed as F=K・
Approximately indicated by △. Here, F is torque, K is gain (constant), and Δ is the difference (deviation) from the command value. In other words, the greater the deviation from the command value, the greater the motor torque generated in proportion to the magnitude. Furthermore, as shown in Fig. 5, in the past, the respective rotation angles of the Y-axis motor and the C motor were lowered by the droop amount + error amount Dy, Da relative to the command values Ys, Cs to follow the command values. go. Ms and Me are tracking values. In FIG. 5, Dy > Do. In this way, in the past, it depended only on the command value of the NC control device 90, but in the present invention, there is a value equivalent to the droop amount as shown in FIG. It can be regarded as a value and tracked. In Fig. 6, Ms indicates the actual movement of the Y-axis motor and Me indicates the actual movement of the C-axis motor.

以上説明したように本発明によれば、例えば歯切り加工
のように同期精度を重視する制御においては間接的なN
C指令でなく直接的に相手側の動きに追従できることに
なり、大形の工作機械で制御精度を高めることができ、
また中小形機では超高精度の加工が可能となる。
As explained above, according to the present invention, indirect N
It is now possible to directly follow the movement of the other party rather than using C commands, increasing control accuracy with large machine tools.
In addition, small and medium-sized machines can perform ultra-high precision machining.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第4図、第5図は従来のNCギヤシェイパの制
御方式につき、第1図は装置の構成図、第4図は指令値
とモータトルクとの関係を示すグラフ、第5図はY軸モ
ータとC軸モータの追従模式図、第2図、第3図、第6
図は本発明による実施例で、第2図はNCギヤシェイパ
の制御装置の構成図、第3図はNC制御装置のブロック
図、第6図はY軸モータとC軸モータの追従模式図であ
る。 図中、 2はカッタ軸(Y軸)駆動モータ、 3.7はタコジェネレータ、 4.8はレゾルバ。 6はワーク軸(C軸)駆動モータ、 9はNC制御装置である。 特許出願人 三菱重工業株式会社 日本自動車エンジニアリング株式会社 復代理人 弁理士 光 石 士 部 (他1名) 第1図 第2図 第3図 薯 椙令 へ゛ノーアア ー] ・° C軸 Y6 2 11今f峯hAi値 準II@v−ス し5′スタ レジ゛スタ 02% 1 o”+L2 ’ 令We ・ 今−e 、−9 ス4−+−゛シ @Wr 0鋒 l置値碍 11 1 日3番 0呉 ・・]■ 7 6% つ−り 1 第4図 F (Kg−cm ) 第5図 0 4□=。
Figures 1, 4, and 5 show the control method of a conventional NC gear shaper. Figure 1 is a configuration diagram of the device, Figure 4 is a graph showing the relationship between command value and motor torque, and Figure 5 is a graph showing the relationship between command value and motor torque. Follow-up schematic diagram of Y-axis motor and C-axis motor, Fig. 2, Fig. 3, Fig. 6
The figures show an embodiment according to the present invention, Fig. 2 is a block diagram of the control device of the NC gear shaper, Fig. 3 is a block diagram of the NC control device, and Fig. 6 is a schematic diagram of the tracking of the Y-axis motor and the C-axis motor. . In the figure, 2 is a cutter axis (Y-axis) drive motor, 3.7 is a tacho generator, and 4.8 is a resolver. 6 is a work axis (C-axis) drive motor, and 9 is an NC control device. Patent Applicant: Mitsubishi Heavy Industries, Ltd. Nippon Automotive Engineering Co., Ltd. Patent Attorney: Shibu Mitsuishi (and 1 other person) Mine hAi value standard II @v-s 5' star register register 02% 1 o"+L2' order We ・ now-e , -9 s4-+-゛shi@Wr 0 钒l set value 碍 11 1 day No. 3 0 Kure...] ■ 7 6% Change 1 Fig. 4 F (Kg-cm) Fig. 5 0 4□=.

Claims (1)

【特許請求の範囲】[Claims] 複数の軸を数値制御するように構成した工作機械におい
て、上記軸の同期回転すべきものどおしを互いに相手の
軸のフィードバック信号に基づいて制御することを特徴
とする高精度同期制御方法。
A high-precision synchronous control method in a machine tool configured to numerically control a plurality of axes, characterized in that each of the axes to be rotated synchronously is controlled based on feedback signals from the other axes.
JP2875984A 1984-02-20 1984-02-20 Synchronous control with high accuracy Pending JPS60172443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2875984A JPS60172443A (en) 1984-02-20 1984-02-20 Synchronous control with high accuracy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2875984A JPS60172443A (en) 1984-02-20 1984-02-20 Synchronous control with high accuracy

Publications (1)

Publication Number Publication Date
JPS60172443A true JPS60172443A (en) 1985-09-05

Family

ID=12257333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2875984A Pending JPS60172443A (en) 1984-02-20 1984-02-20 Synchronous control with high accuracy

Country Status (1)

Country Link
JP (1) JPS60172443A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4816082A (en) * 1971-07-07 1973-03-01
JPS4977080A (en) * 1972-11-29 1974-07-25

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4816082A (en) * 1971-07-07 1973-03-01
JPS4977080A (en) * 1972-11-29 1974-07-25

Similar Documents

Publication Publication Date Title
US4879660A (en) Thread cutting machine with synchronized feed and rotation motors
JP3389417B2 (en) How to compensate for lost motion
JPS61156309A (en) Numerically controlled device containing speed difference smoothing function
KR880001647B1 (en) Robot control apparatus
EP0209604B1 (en) Interface system for a servo controller
EP0364593B1 (en) Machine tool having two main spindles
JPS62237504A (en) Numerical controller
JPH02220103A (en) Spindle control command system
EP0343257A1 (en) Numerical controller
EP1403747A2 (en) Numerical controller
JPS62163109A (en) Numerical controller
GB1318835A (en) Numerical control system with controlled dwell
JPS60172443A (en) Synchronous control with high accuracy
JPH0649260B2 (en) Synchronous control device
JPS60231207A (en) Command generating system of multi-axis servo system
JP2997270B2 (en) Interpolation method
JPH03126104A (en) Feed speed control system
JP2629728B2 (en) Screw processing equipment
JPH01188914A (en) Double loop controller for numerically controlled machine
JPH03246707A (en) Position correcting system by systems
JPS61159322A (en) Nc gear processing machine
EP0380685A1 (en) Nc command system
JPH044405A (en) Numerical controller
EP0078855A1 (en) Numerical control device
JPS631390A (en) Method for feeding speed or acceleration command in speed control