JPS60172303A - Process for preventing caking of powder body obtained by crystallization - Google Patents

Process for preventing caking of powder body obtained by crystallization

Info

Publication number
JPS60172303A
JPS60172303A JP2725484A JP2725484A JPS60172303A JP S60172303 A JPS60172303 A JP S60172303A JP 2725484 A JP2725484 A JP 2725484A JP 2725484 A JP2725484 A JP 2725484A JP S60172303 A JPS60172303 A JP S60172303A
Authority
JP
Japan
Prior art keywords
powder
polymer
powder body
weight
triethylenediamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2725484A
Other languages
Japanese (ja)
Other versions
JPS6362241B2 (en
Inventor
Akihiko Nomura
野村 彰彦
Masahiko Fujii
正彦 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP2725484A priority Critical patent/JPS60172303A/en
Priority to US06/683,484 priority patent/US4559384A/en
Priority to DE8484115843T priority patent/DE3469849D1/en
Priority to CA000470566A priority patent/CA1247852A/en
Priority to EP84115843A priority patent/EP0149186B1/en
Publication of JPS60172303A publication Critical patent/JPS60172303A/en
Publication of JPS6362241B2 publication Critical patent/JPS6362241B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Micro-Capsules (AREA)

Abstract

PURPOSE:To obtain an effective process for preventing caking of powder body having tendency of forming cake obtd. by crystallization and to facilitate handling of the powder body in a process for obtg. powder body by crystallization by adding a specified polymer previously to a soln. contg. the powder body by dissolving. CONSTITUTION:In a process for obtg. powder body by crystallization, amorphous polymer of triethylenediamine existing in a soln. in the form of colloid and having low average mol.wt. selected from triethylenediamine polymers insoluble in water an org. solvent and having high heat resistance is added previously to the soln. contg. the powder body dissolved therein. The triethylenediamine polymer to be suitably used has <=3,000 average mol.wt., and suitable amt. thereof to be added is >=0.002pts.wt. per 100pts.wt. powder body.

Description

【発明の詳細な説明】 本発明は、晶出操作によって得られる粉体の中で、固結
性を有する粉体の固結防止方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preventing caking of a powder that has caking properties among powders obtained by a crystallization operation.

一般に、粉体は凝集性、付着性を有するため、サイロや
ドラムなどの容器に保存する間に、固結する場合がある
。特に、吸湿性の強い粉体や昇華性の強い粉体は、わず
かの水分混入や温度上昇によって容易に固結する。この
ため、この様な固結性を有する粉体は、特に、その取扱
いに注意を要しまた、粉体が固結した場合は、取扱いが
極めて困難となるため、固結性を有する粉体の固結防止
の対策としては、粉体自体の粒子サイズの拡大、及び粉
体中の不純物の除去、粉体への固結防止剤の添加、ある
いは密閉容器を使用しての粉体の貯蔵。
Generally, powders have cohesive and adhesive properties, so they may solidify while being stored in a container such as a silo or drum. In particular, powders with strong hygroscopicity or powders with strong sublimation properties are easily solidified by a slight amount of moisture mixed in or by an increase in temperature. For this reason, powders with such caking properties require special care when handling, and if the powder solidifies, handling becomes extremely difficult. Measures to prevent caking include increasing the particle size of the powder itself, removing impurities in the powder, adding anti-caking agents to the powder, or storing the powder in a closed container. .

粉体表面を適当な物質で覆う方法(マイクロカプセル化
)などのギ段により適宜性われているのが現状である。
At present, this is done as appropriate by methods such as coating the powder surface with a suitable substance (microencapsulation).

ところが、ピペラジンやトリエチレンジアミンなどのア
ミン類の粉体や、アントラキノン誘導体、安息香酸誘導
体などの粉体は、密閉容器に保存してもわずかの温度上
昇で容易に固結してしまう。
However, powders of amines such as piperazine and triethylenediamine, powders of anthraquinone derivatives, and benzoic acid derivatives easily solidify with a slight temperature rise even when stored in a closed container.

昇華性の強いこれらの粉体は、粉体表面で昇華。These powders have strong sublimation properties and sublimate on the powder surface.

凝結を繰り返す間に粉体粒子間の接触面積が増大し、固
結するものと考えられる。このような昇華性の強い粉体
も含めて、すべての粉体に対して有効な固結防止方法と
しては、固結防止剤の添加あるいはマイクロカプセル化
の手法が用いられている。
It is thought that during repeated coagulation, the contact area between powder particles increases, resulting in solidification. Addition of an anti-caking agent or microencapsulation are effective methods for preventing caking for all powders, including those with strong sublimation properties.

従来の固結防止剤としては、シリカ粉末や、ポリエチレ
ングリフール類の液体等が用いられていたが、添加■↓
を002〜1%と多くしなければ効果はなかった。また
、マイクロカプセル化の手法は、一度粉体を製造した後
、スプレードライ、真空蒸着、界面重合など、マイクロ
カプセル化のための工程を経なければならず、いずれも
多くの機器を必要とするし、操作が繁雑である。
Conventional anti-caking agents used include silica powder and polyethylene glycol liquids, but additives ■↓
There was no effect unless the amount was increased to 0.002 to 1%. In addition, the microencapsulation method requires that after the powder is produced, it must undergo microencapsulation processes such as spray drying, vacuum evaporation, and interfacial polymerization, all of which require a large amount of equipment. However, the operation is complicated.

本発明者らは、操作がよりfltj単でかつ効果の大き
な固結防止方法を探索、研究の結果、本発明を完成した
のである。
The present inventors have completed the present invention as a result of searching and researching a method for preventing caking that is easier to operate and more effective.

即ち、本発明は、晶出操作で粉体を得るに際し、平均分
子Hs、ooo以下のトリエチレンジアミンポリマーを
あらかしめ粉体か溶解している溶液中に添加しておくこ
とを特徴とする粉体の固結防止方法を提供するものであ
る。
That is, the present invention provides a powder characterized in that, when obtaining a powder by a crystallization operation, a triethylenediamine polymer having an average molecular weight of Hs, ooo or less is added to a solution in which the powder is dissolved. The present invention provides a method for preventing caking.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において、晶出操作とは、対象とする粉体か溶解
している溶液を加熱して溶媒を蒸発させるか、或いは濃
縮された溶液を冷却してもしくは蒸発と冷却を同時に行
うかして粉体を得る操作であり、溶媒、粉体の種類に制
限はない。
In the present invention, the crystallization operation is performed by heating a solution in which the target powder is dissolved to evaporate the solvent, or by cooling a concentrated solution, or by performing evaporation and cooling at the same time. This is an operation to obtain powder, and there are no restrictions on the type of solvent or powder.

本発明は上記の晶出操作で粉体を得るに際し、水。In the present invention, when obtaining a powder by the above-mentioned crystallization operation, water is used.

有機溶媒には不溶で、耐熱性に優れている トリエチレ
ンジアミンポリマーのうモ、非結晶性で、溶液中ではコ
ロイド状で存在する平均分子量が低分子量であるトリエ
チレンジアミンポリマーをあらかしめ粉体が溶解してい
る溶液中に添加しておくものである。
It is insoluble in organic solvents and has excellent heat resistance.It is amorphous and has a low average molecular weight, existing in colloidal form in solution. It is added to the solution in which it is being prepared.

本発明において、固結防止がなされる理由は、次のよう
に考えられる。
The reason why caking is prevented in the present invention is considered to be as follows.

コロイド状のトリエチレンジアミンポリマーは該粉体が
溶解している溶液を加熱濃縮する際、溶液中に均一に分
散する。次に、濃縮溶液を冷却して結晶を晶出さ合る際
、分散しているトリエチレンジアミンポリマー分子が種
結晶の役割をしてこれを核として結晶が発生し、成長す
る。そして、結晶が成長する過程でトリエチレンジアミ
ンポリマー分子を取り込んで行き、最終的には、結晶の
表面を密にトリエチレンジアミンポリマー分子が覆い、
結晶表面での昇華、凝結が著しく抑制されるため、固結
防止効果が得られるものと推測している。
When a solution in which the powder is dissolved is heated and concentrated, the colloidal triethylenediamine polymer is uniformly dispersed in the solution. Next, when the concentrated solution is cooled to crystallize each other, the dispersed triethylenediamine polymer molecules serve as seed crystals, and crystals are generated and grown using these as nuclei. As the crystal grows, it incorporates triethylenediamine polymer molecules, and eventually the surface of the crystal is densely covered with triethylenediamine polymer molecules.
It is presumed that because sublimation and condensation on the crystal surface are significantly suppressed, an anti-caking effect can be obtained.

トリエチレンジアミンポリマーは、トリエチレンジアミ
ンモノマーの重合条件(重合温度9重合触媒)を変える
ことによって、平均分子量が2、000程度の、低分子
量のものから、平均分子量が30.000程度の、高分
子量のものまで様々な分子量のものが得られるが、本発
明において使用するトリエチレンジアミンポリマーは、
平均分子量が3.000以下、好ましくは2.500以
下のものである。平均分子量が3.000を超えるとト
リエチレンジアミンポリマー分子の結晶性が大となり、
粉体が溶解している溶液中にトリエチレンジアミンボI
J 又−を添加しても、分散性が悪くなる。そして、粉
体を晶出させる時に、均一にトリエチレンジアミンポリ
マーを含有させることができなくなって、固結防止効果
が得られなくなる。
Triethylenediamine polymer can be produced from a low molecular weight with an average molecular weight of about 2,000 to a high molecular weight with an average molecular weight of about 30,000 by changing the polymerization conditions of the triethylenediamine monomer (polymerization temperature 9 polymerization catalyst). The triethylenediamine polymer used in the present invention has a wide variety of molecular weights.
The average molecular weight is 3.000 or less, preferably 2.500 or less. When the average molecular weight exceeds 3.000, the crystallinity of the triethylenediamine polymer molecules increases,
Triethylene diamine boron I is added to the solution in which the powder is dissolved.
Even if J or - is added, the dispersibility deteriorates. Then, when crystallizing the powder, it becomes impossible to uniformly contain the triethylenediamine polymer, making it impossible to obtain the anti-caking effect.

また、その添加量は粉体100重量部に対して0002
重量部以上であればなんらさしつかえないが、経済性お
よび固結層の変化等から0002〜0.02重量部が好
ましい。添加量が0002重量部未満では、粉体の結晶
表面での昇華、凝結が抑制され難い。この平均分子zs
、ooo以下の゛、低分子量のトリエチレンジアミンポ
リマーを得る方法には、重合触媒を用いずに、トリエチ
レンジアミンモノマーを温度170℃以上で長時間加熱
するか、あるいは、硫酸を触媒として用い、温度170
°C〜190℃の範囲で重合を行うとよいが、工業的規
模で、低分子量のトリエチレンジアミンポリマーを得る
には、硫酸を触媒に用いる方法が好ましい。
The amount added is 0,002 parts by weight per 100 parts by weight of powder.
There is no problem as long as it is more than 0.002 parts by weight, but 0.002 to 0.02 parts by weight is preferred from the viewpoint of economy and changes in the solidified layer. If the amount added is less than 0,002 parts by weight, it is difficult to suppress sublimation and coagulation on the crystal surface of the powder. This average molecule zs
To obtain a low molecular weight triethylenediamine polymer of less than .
It is preferable to carry out the polymerization at a temperature in the range of .degree. C. to 190.degree. C., but in order to obtain a low molecular weight triethylenediamine polymer on an industrial scale, a method using sulfuric acid as a catalyst is preferred.

本発明は、従来の粉体の固結防止方法、即ち固結性を有
する粉体へ固結防止剤を添加、混合する方法、あるいは
マイクロカプセル化法等に比べて数々の優れた特長を有
している。
The present invention has many superior features compared to conventional powder caking prevention methods, such as adding and mixing an anti-caking agent to powder that has caking properties, or microencapsulation methods. are doing.

たとえば、固結性を有する粉体へ、固結防止剤を添加、
混合する方法では、粉体を製造した後、すポンプレンダ
−2■型ミキサー等の混合装置を用いて、粉体と固結防
止剤とを長時間、混合する必要がある。これに対し、本
発明では粉体を晶出させると同時に、固結防止処理を行
うことができる為、何ら混合袋;行を必要としない。ま
た、固結防止剤の添加、U合法では、固結防止剤として
通常シリカ粉末やポリエチレングリコールが使用されて
いるが、これらの粉体への混合量は粉体100重量部に
対し、002重量部〜i、 o重量部であるのに対し、
本方法では粉体へのトリエチレンジアミンポリマー混合
量は、粉体100重風部に対し0002重量部以」二含
有されれば固結防止効果が得られ、極めて少量で済む。
For example, adding an anti-caking agent to a powder that has caking properties,
In the mixing method, after producing the powder, it is necessary to mix the powder and the anti-caking agent for a long time using a mixing device such as a pump blender-2 type mixer. In contrast, in the present invention, since the powder can be crystallized and at the same time can be subjected to caking prevention treatment, no mixing bags or rows are required. In addition, in the U method, silica powder or polyethylene glycol is usually used as an anti-caking agent, but the amount of these powders to be mixed is 0.02 parts by weight per 100 parts by weight of the powder. parts to i, o parts by weight, whereas
In this method, if the amount of triethylenediamine polymer mixed in the powder is at least 0.02 parts by weight per 100 parts by weight of the powder, an anti-caking effect can be obtained, and a very small amount is sufficient.

固結防止剤を添加した場合、場合によっては粉体の物性
に影響を及ぼずことかあるが、トリエチレンジアミンポ
リマーが粉体に含有されても、粉体の物性に何の影響も
及ぼさないことも、特筆すべき点である。さらに、本発
明は晶出を行う際に、晶出する粉体の粒子をトリエチレ
ンジアミンポリマーで覆うので、一種のマイクロカプセ
ル化が行われていると考えられる。通常のマイクロカプ
セル化法(真空蒸着法。
Adding an anti-caking agent may not affect the physical properties of the powder in some cases, but even if triethylenediamine polymer is contained in the powder, it will not have any effect on the physical properties of the powder. This is also a noteworthy point. Furthermore, in the present invention, when performing crystallization, particles of the powder to be crystallized are covered with triethylenediamine polymer, so it is considered that a type of microencapsulation is performed. Usual microencapsulation method (vacuum deposition method).

スプレードライ法、相分離法、界面重合法等)では、一
度、粉体を製造した後、マイクロカプセルを作る為の装
置、例えば真空蒸着装置、遠心分離機、乾操機、静定槽
1重合反応装置等が必要であるし、界面重合法において
は、重合を粉体表面でのみ選択的に行う必要があるため
、不純物を含まない、きれいな系で、重合条件を細かく
管理しなければならない。これに対しガ本発明は、何ら
特別の装置を必要としないし、晶出を行う際、系内に不
純物が存在しても、全く影響を受けることはなく、工程
管理が極めて簡単である。また、溶媒の種類、粉体の種
類にも何ら制限はないため、晶出操作で得られるすべて
の粉体に適用できる、画期的な固結防止方法である。
In the spray drying method, phase separation method, interfacial polymerization method, etc., once the powder is produced, equipment for making microcapsules, such as a vacuum evaporation device, a centrifuge, a drying machine, and a static tank, is used for polymerization. A reaction device is required, and interfacial polymerization requires polymerization to be carried out selectively only on the powder surface, so the polymerization conditions must be carefully controlled in a clean system free of impurities. In contrast, the present invention does not require any special equipment, and even if impurities are present in the system during crystallization, it is not affected at all, and process control is extremely simple. Furthermore, since there are no restrictions on the type of solvent or the type of powder, this is an innovative method for preventing caking that can be applied to all powders obtained by crystallization.

以下、本発明を実施例により具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例−1 内容積soom6のフラスコに昇華精製したトリエチレ
ンジアミン3509 ’+特級メタノール100cc、
97%濃硫酸0.19 (0,0003モル%)を入れ
マントルヒーターで加熱し、留出するメタノール、少量
の水は、冷却管で凝縮させ回収した。液iII+i!が
174°Cになった時点で留出弁を閉し、2時間全還流
した。その後、60℃以下まで放冷し、メタノールを加
え、未反応のモノマーを溶解する。そのまま放置し、生
成したトリエチレンジアミンポリマーを沈殿させ、上澄
と分離しSこれを6回メタノールで洗浄し、真空乾燥し
て、平均分子H2,sooのトリエチレンジアミンポリ
マー(以下、TED+ケtう)17Qを得た。
Example-1 Triethylenediamine 3509' purified by sublimation in a flask with an internal volume of 6 + special grade methanol 100cc,
0.19 (0,0003 mol %) of 97% concentrated sulfuric acid was added and heated with a mantle heater, and the distilled methanol and a small amount of water were condensed and collected in a cooling tube. Liquid iII+i! When the temperature reached 174°C, the distillation valve was closed and the mixture was completely refluxed for 2 hours. Thereafter, the mixture is allowed to cool down to 60° C. or lower, and methanol is added to dissolve unreacted monomers. The resulting triethylenediamine polymer was allowed to precipitate, separated from the supernatant, washed six times with methanol, and dried under vacuum to obtain a triethylenediamine polymer with an average molecular weight of H2, soo (hereinafter referred to as TED+ket). Obtained 17Q.

次に、内容積21のフラスコに、ピペラジン40重量部
、メタノール60重量部の組成を持つピペラジンのメタ
ノール溶液1.0009を入れ、平均分子量2.500
のTEIIIAポリマー0.03gを添加した。(ピペ
ラジン100重量部に対し、00075重量部)マント
ルヒーターで加熱シ、メタノ−省を300 cc 留出
させた所で加熱を止め、フラスコをウォーターバスに浸
し、液温が20°Cになるまで冷却口〆。晶出したピペ
ラジンをA30P紙で吸引濾過して、少量の特級メタノ
ールで洗浄した後、真空乾燥してピペラジン83りを得
た。
Next, a methanol solution of piperazine having a composition of 40 parts by weight of piperazine and 60 parts by weight of methanol was put into a flask with an internal volume of 21, and the average molecular weight was 2.500.
of TEIIIA polymer was added. (00075 parts by weight per 100 parts by weight of piperazine) Heat with a mantle heater, stop heating when 300 cc of methanol has been distilled out, and immerse the flask in a water bath until the liquid temperature reaches 20°C. Cooling port closed. The crystallized piperazine was suction filtered through A30P paper, washed with a small amount of special grade methanol, and then vacuum dried to obtain piperazine 83.

こうして得たピペラジンの一部を取り、−辺5an。Take a portion of the piperazine thus obtained and -side 5an.

高さ2 cnrの箱に詰め、1辺5 IIのプラスチッ
ク板を乗せて、その上から3009の重りを乗せ、デシ
ケータ中に保存した。ピペラジンに加わる圧力は、12
g−/cnrであり、この値はピペラジンを25に9詰
のファイバードラムに充填した場合の、ドラム中央部で
加わる圧力に相当する。
It was packed in a box with a height of 2 cnr, a plastic plate of 5 II on each side was placed, a weight of 3009 was placed on top of it, and the product was stored in a desiccator. The pressure applied to piperazine is 12
g/cnr, and this value corresponds to the pressure applied at the center of the drum when piperazine is packed into a 25 to 9 fiber drum.

デシケータ−中に1か月保存した後、重り及び箱を取り
除き、プラスチック板を下にして、本屋式硬度計にて、
ピペラジン塊の中央部に圧力を加え、ピペラジン塊が粉
砕された時の圧力を読み取った。
After storing it in a desiccator for one month, remove the weight and box, put the plastic plate down, and measure it with a bookstore type hardness tester.
Pressure was applied to the center of the piperazine mass and the pressure was read when the piperazine mass was crushed.

粉砕圧力は0.0’5 kg /crflて、固結は全
く起っていなかった。このようにして測定した値を固結
度とし、粉体の固結傾向を定量的に評価した。以下の実
施例、比較例において、固結度は同様にして測定した。
The crushing pressure was 0.0'5 kg/crfl, and no caking occurred. The value thus measured was defined as the degree of caking, and the caking tendency of the powder was quantitatively evaluated. In the following Examples and Comparative Examples, the degree of consolidation was measured in the same manner.

比較のため、TKDAポリマーを加えない以外は、全く
同様の操作を行った。得られたピペラジンの固結塵は5
.8 kg /cr/lで、内部まで固結していた。
For comparison, exactly the same operation was performed except that no TKDA polymer was added. The solidified dust of piperazine obtained was 5
.. It was 8 kg/cr/l and solidified to the inside.

実施例2 実施例1において、操作条件を種々変化させて得た種々
の平均分子量のTEDAポリマーを、実施例−1と同様
に添加して、TEDAポリマーの平均分子量と固結塵の
関係を調べた。その結果を第1図に示す。第1図にて明
らかなように、TEDAポリマーの平均分子量がs、 
o o oを超えると、固結塵は急激に大きくなる。逆
に、平均分子量が5.000以下になると、固結塵はほ
ぼ0に近づくことがわかる。
Example 2 In Example 1, TEDA polymers with various average molecular weights obtained by variously changing the operating conditions were added in the same manner as in Example-1, and the relationship between the average molecular weight of the TEDA polymer and solidified dust was investigated. Ta. The results are shown in FIG. As is clear from FIG. 1, the average molecular weight of the TEDA polymer is s,
When the temperature exceeds o o o, the consolidated dust rapidly increases in size. On the contrary, it can be seen that when the average molecular weight becomes 5.000 or less, the amount of solidified dust approaches almost zero.

実施例6 塩化アンモニウム65重量部、水65重量部の組成を持
つ塩化アンモニウム水溶液1.000りを内容積2I!
のフラスコに入れ、実施例1において操作条件を変化さ
せることにより得られた平均分子1j12.700のT
EDAポリマー0029を添加した。(塩化アンモニウ
ム100重量部に対してa、oo6重量部)マントルヒ
ーターで加熱し、水を300 cc 留出させた所で加
熱を止め、フラスコをウォーターバスに浸し、液温が2
0℃になるまで冷却した。晶出した塩化アンモニウム結
晶を7’scP紙で、吸引濾過して、少量の純水で洗浄
した後、真空乾燥して塩化アンモニウム結晶98ノを得
た。こうして得られた塩化アンモニウム結晶の固結塵を
測定した結果、O,05kg /ctftで、全く固結
していなかった。比較のため、TEDAポリマーを添加
しない以外は、全く同様の操作を行って得た結晶の固結
塵を測定した所、2.3 kg lcr&で固結してい
た。
Example 6 1.000 liters of an ammonium chloride aqueous solution having a composition of 65 parts by weight of ammonium chloride and 65 parts by weight of water was prepared to an internal volume of 2 I!
T of the average molecule 1j12.700 obtained by changing the operating conditions in Example 1.
EDA polymer 0029 was added. (6 parts by weight of a, oo for 100 parts by weight of ammonium chloride) Heat with a mantle heater, stop heating when 300 cc of water has been distilled out, and immerse the flask in a water bath until the liquid temperature reaches 2.
It was cooled to 0°C. The crystallized ammonium chloride crystals were suction filtered using 7'scP paper, washed with a small amount of pure water, and then vacuum dried to obtain 98 ammonium chloride crystals. As a result of measuring the amount of solidified dust of the ammonium chloride crystals thus obtained, it was found to be 0.05 kg/ctft, indicating that there was no solidification at all. For comparison, the solidified dust of crystals obtained by performing exactly the same operation except that no TEDA polymer was added was measured, and it was found to be solidified at 2.3 kg lcr&.

実施例−4 トリエチレンジアミンモノマー40mmm、メタノール
60重量部の組成を持つトリエチレンジアミンモノマー
のメタノール溶液1.0009ヲ内容積21のフラスコ
に入れ、実施例1で得られた平均分子量2,500のT
EDAポリマー0049(トリエチレンジアミンモノマ
ー 100 重量部に対し、001重量部)を添加した
。マントルヒーターで加熱し、メタノールを350 c
c 留出させた所で加熱を止め、フラスコをウォーター
バスに浸し、液温か20℃になるまで冷却した。晶出し
たトリエチレンジアミンモノマーをA 5 (! Ff
[Eて吸引濾過して、少量の特級メタノールで洗浄した
後、真空乾燥してトリエチレンジアミンモノマー113
!17を得た。こうして得られたトリエチレンジアミン
モノマーの固結塵は、0.03 kg/cr/Iで全く
固結していなかった。
Example 4 A methanol solution of triethylenediamine monomer having a composition of 40 mm and 60 parts by weight of methanol was placed in a flask with an internal volume of 21 mm, and T with an average molecular weight of 2,500 obtained in Example 1 was put into a flask with an internal volume of 21.
EDA polymer 0049 (001 parts by weight per 100 parts by weight of triethylenediamine monomer) was added. Heat methanol to 350 c using a mantle heater.
c After distillation, heating was stopped, the flask was immersed in a water bath, and cooled to the liquid temperature of 20°C. The crystallized triethylenediamine monomer was converted into A5 (! Ff
[After suction filtration and washing with a small amount of special grade methanol, vacuum drying yields triethylenediamine monomer 113.
! I got 17. The solidified dust of the triethylenediamine monomer thus obtained was 0.03 kg/cr/I and was not solidified at all.

実施例−5 実施例−4においてTEDAポリマーの添加量を種々変
化させて、同様の操作を行った時の固結塵と、TKDA
ポリマー添加爪の関係を第2図に示す。第2図にて明ら
かなように、トリエチレンジアミンモノマー100重量
部に対し、TEDAポリマーの添加量が0002重量部
より少なくなると、固結塵は大きくなり始め、0001
重量部より少なくなると、固結塵はさらに急激に大きく
なる。逆に添加量が増えた場合は、0.02重量部以上
増えても固結塵にほとんど差がないことがわかる。
Example-5 Consolidated dust and TKDA were obtained by performing the same operation as in Example-4 by varying the amount of TEDA polymer added.
The relationship between polymer-added nails is shown in Figure 2. As is clear from FIG. 2, when the amount of TEDA polymer added to 100 parts by weight of triethylenediamine monomer becomes less than 0002 parts by weight, the consolidated dust begins to grow and becomes 0001 parts by weight.
When the amount is less than parts by weight, the size of the solidified dust increases rapidly. On the other hand, when the amount added increases, it can be seen that there is almost no difference in the amount of solidified dust even if the amount increases by 0.02 parts by weight or more.

実施例−6 硫酸アンモニウム40重1部、水60重量部よりなる硫
酸アンモニウム水溶液1.0009を、内容積21のフ
ラスコに入れ、実施例1て得られた平均分子[2,50
0のTEDAポリマー0029(硫酸アンモニウム10
0重量部に対し、0005重量部)を加え、マントルヒ
ーターで加熱した。
Example-6 An aqueous ammonium sulfate solution (1.0009 g) consisting of 40 parts by weight of ammonium sulfate and 60 parts by weight of water was put into a flask having an internal volume of 21, and the average molecule obtained in Example 1 was [2,50 parts by weight].
0 TEDA polymer 0029 (ammonium sulfate 10
0005 parts by weight relative to 0 parts by weight) was added and heated with a mantle heater.

水を、400 cc 留出させた所で加熱を止め、実施
例−6と同様の操作を行って、硫酸アンモニウム241
9を得た。こうして得られた硫酸アンモニウムの固結塵
は、0.1 kg / cnlで全く固結していなかっ
た。これに対し、TEDAポリマーを添加しなかった場
合は、固結塵は4.1 kg /crdで内部まで固結
していた。
When 400 cc of water was distilled off, heating was stopped and the same operation as in Example 6 was carried out to obtain 241 ammonium sulfate.
I got a 9. The solidified ammonium sulfate dust thus obtained was 0.1 kg/cnl and was not solidified at all. On the other hand, when the TEDA polymer was not added, the solidified dust was solidified to the inside at 4.1 kg/crd.

実施例−7 塩化す) IJウム28重量部、水72重量部よりなる
、塩化す) IJウムの水溶液1.500 !;lを、
内容積21のフラスコに入れ、実施例1で得られた平均
分子jj’12.500のTEDAポリマー0059(
塩化ナトリウム100重量部に対して0.012重量部
)を加え、マントルヒーターで加熱した。
Example-7 An aqueous solution of IJium chloride, consisting of 28 parts by weight of IJium chloride and 72 parts by weight of water, 1.500 parts by weight! ;l,
The TEDA polymer 0059 (with an average molecular weight of 12.500 obtained in Example 1) was placed in a flask with an internal volume of 21 mm.
0.012 parts by weight per 100 parts by weight of sodium chloride) was added and heated with a mantle heater.

水を蒸発させながら塩化ナトリウムを晶出せしめ最終的
に水50 ’Occ を留出させたところで晶出操作を
止め、塩化ナトリウム136gを得た。
Sodium chloride was crystallized while water was evaporated, and when 50 Occ of water was finally distilled off, the crystallization operation was stopped and 136 g of sodium chloride was obtained.

こうして得られた塩化ナトリウムの固結度は、0、11
(9/CH7で全く固結していなかった。これに対し、
TEDAポリマーを添加しなかった場合は、塩化すトリ
ウムの固結度は、2.8 kg /Cnlで固結してい
た。
The degree of solidification of the sodium chloride thus obtained is 0.11.
(9/CH7 was not solidified at all. On the other hand,
When the TEDA polymer was not added, the degree of consolidation of thorium chloride was 2.8 kg/Cnl.

実施例8 塩化ナトリウム20重量部、水70重量部、不純物とし
てアルキルピラジン類及びポリエチレンアミン類10重
量部を含む塩化す) IJウム水溶液1、8009を内
容積27?のフラスコに入れ、実施例1で得られた平均
分子H2,sooのTEDAポリマーを0.0431;
l(塩化ナトリウム100重量部に対して、0012重
量部)加え、マントルヒーターで加熱した。水を600
9留出させて加熱を止め、あとは、実施例−7と同様の
操作を行って、塩化ナトリウム107gを得た。こうし
て得られた塩化す) IJウムの固結度は、0.1 k
g 1crdで全く固結していなかった。これに対し、
TEDAホリマーを添加しなかった場合は、固結度は2
.7kg /cr/lで固結していた。
Example 8 20 parts by weight of sodium chloride, 70 parts by weight of water, and 10 parts by weight of alkyl pyrazines and polyethylene amines as impurities. 0.0431;
1 (0,012 parts by weight per 100 parts by weight of sodium chloride) was added and heated with a mantle heater. 600 yen of water
9 was distilled off, the heating was stopped, and the rest of the procedure was carried out in the same manner as in Example 7 to obtain 107 g of sodium chloride. The degree of consolidation of the IJium chloride obtained in this way is 0.1 k
g 1crd and was not solidified at all. On the other hand,
If TEDA polymer was not added, the degree of consolidation was 2.
.. It was solidified at 7 kg/cr/l.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、TEDAポリマーの平均分子量と、固結度の
関係を示す図。 第2図は、TED’Aポリマーの添加量と固結度の関係
を示す図である。 特許出願人 東洋曹達工業株式会社 第7図 10.000 20.000 T E D A ホリv −(7) sl<均分子−、
i、i第21ズ
FIG. 1 is a diagram showing the relationship between the average molecular weight of a TEDA polymer and the degree of consolidation. FIG. 2 is a diagram showing the relationship between the amount of TED'A polymer added and the degree of consolidation. Patent applicant Toyo Soda Kogyo Co., Ltd. Figure 7 10.000 20.000 T E D A Hori v - (7) sl<uniform molecular weight -,
i, i 21st

Claims (1)

【特許請求の範囲】[Claims] 1、 晶出操作で粉体を得るに際し、平均分子量3、0
00以下のトリエチレンジアミンポリマーをあらかしめ
粉体が溶解している溶液中に添加しておくことを特徴と
する粉体の固結防止力aり。
1. When obtaining powder by crystallization operation, the average molecular weight is 3.0
The anti-caking power of powder is characterized by adding a triethylenediamine polymer having a particle size of 0.00 or less to a solution in which the powder is dissolved.
JP2725484A 1983-12-20 1984-02-17 Process for preventing caking of powder body obtained by crystallization Granted JPS60172303A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2725484A JPS60172303A (en) 1984-02-17 1984-02-17 Process for preventing caking of powder body obtained by crystallization
US06/683,484 US4559384A (en) 1983-12-20 1984-12-19 Process for preventing agglomeration of powders by using triethylenediamine polymers
DE8484115843T DE3469849D1 (en) 1983-12-20 1984-12-19 Process for preventing agglomeration of powders
CA000470566A CA1247852A (en) 1983-12-20 1984-12-19 Process for preventing agglomeration of powders
EP84115843A EP0149186B1 (en) 1983-12-20 1984-12-19 Process for preventing agglomeration of powders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2725484A JPS60172303A (en) 1984-02-17 1984-02-17 Process for preventing caking of powder body obtained by crystallization

Publications (2)

Publication Number Publication Date
JPS60172303A true JPS60172303A (en) 1985-09-05
JPS6362241B2 JPS6362241B2 (en) 1988-12-01

Family

ID=12215938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2725484A Granted JPS60172303A (en) 1983-12-20 1984-02-17 Process for preventing caking of powder body obtained by crystallization

Country Status (1)

Country Link
JP (1) JPS60172303A (en)

Also Published As

Publication number Publication date
JPS6362241B2 (en) 1988-12-01

Similar Documents

Publication Publication Date Title
FI90248B (en) Process for preparing a particulate carrier for olefin polymerization catalysts
DK167284B1 (en) METHOD OF PREPARING POLYAMIDE POWDER
US4111835A (en) Catalysts for polymerizing olefins to spheroidal-form polymers
SE411550B (en) CATALYST FOR POLYMERIZATION OF OLEFINES CONTAINING THE REACTIVE PRODUCT OF A METAL ORGANIC COMPOUND OF ALUMINUM WITH A PRODUCT CONSISTING OF ANhydrous MAGNESIUM HALOGENIDE AND HALOGENATED TITANIC SUBSTANCE ...
US5196496A (en) Syndiotactic crystalline copolymers of propylene and 1-butene
JP2001508077A (en) Novel modification of 2-amino-4- (4-fluorobenzylamino) -1-ethoxycarbonyl-aminobenzene and process for producing the same
CN112390812A (en) Crystalline and amorphous solids of Ruogeli compounds and methods of making the same
Feuer et al. The Synthesis and Reactions of Unsaturated N-Methylolamides1, 2, 3
JP2001504835A (en) Method for producing aryl cyanate
KR20150114481A (en) Process for the production of polyamides
JPS60172303A (en) Process for preventing caking of powder body obtained by crystallization
DK150981B (en) PROCEDURE FOR THE PREPARATION OF DIESTER DIAMIDS
US3952051A (en) Method for crystallization of diamine dicarboxylate
SU555847A3 (en) The method of obtaining 2,5-disubstituted benzamides or their salts
EP0149186B1 (en) Process for preventing agglomeration of powders
JPS6227064B2 (en)
EP0006490A1 (en) Process for the recuperation of unreacted propylene in bulk polymerization
EP0371271A1 (en) Preparation of alkanesulfonamides
EP0470774B1 (en) Method for preventing agglomeration of powder
JPH0472329A (en) Production of polyamide resin powder
JPH0474522A (en) Method for preventing solidification of powder
US2709707A (en) Process for preparing vinyl sulfonamide
JPH0445836A (en) Method for preventing caking of powder
JP2640100B2 (en) Antifungal agent using antifungal polymer obtained from polymerizable halogen compound
JPH04164077A (en) Method for preventing powder from consolidating