JPS60172007A - Laser light generator - Google Patents

Laser light generator

Info

Publication number
JPS60172007A
JPS60172007A JP59028063A JP2806384A JPS60172007A JP S60172007 A JPS60172007 A JP S60172007A JP 59028063 A JP59028063 A JP 59028063A JP 2806384 A JP2806384 A JP 2806384A JP S60172007 A JPS60172007 A JP S60172007A
Authority
JP
Japan
Prior art keywords
spacer
semiconductor laser
collimating lens
flange
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59028063A
Other languages
Japanese (ja)
Inventor
Yutaka Kaneko
豊 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP59028063A priority Critical patent/JPS60172007A/en
Priority to US06/701,514 priority patent/US4661959A/en
Publication of JPS60172007A publication Critical patent/JPS60172007A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis

Abstract

PURPOSE:To maintain the size of the spacing between a semiconductor laser and a collimating lens constant by providing means for controlling the respective supporting members for the semiconductor laser and collimating lens to a constant temp. CONSTITUTION:A semiconductor laser LD1 is supported by a spacer 10 and a flange 12 supporting a lens unit holder 11 is adhered tightly to the spacer 10. A collimating lens Lc is mounted to the inside of the holder 11. A silicone rubber sheet 13 holding a Peltier effect element 15 in sandwich is tightly adhered to the surface on the side opposite from the mounting surface of the spacer 10 and a heat radiating fin 16 is attached to the other silicone rubber sheet 14 in tight contact therewith. The spacer 10 and the flange 12 are manufactured of an Al alloy, etc. having good heat conductivity and a thermistor 17 is attached on the spacer 10 in the position spaced from the element 15. The spacer 10, the laser LD1 and the flange 12 are controlled to a constant temp. with the detection of temp. by the thermistor 17. The trouble in which the spacing between the semiconductor laser and the collimating lens changes owing to the thermal expansion or contraction of the supporting member is thus averted.

Description

【発明の詳細な説明】 (技術分野) 本発明はレーザー光発生装置に関し、よシ詳細にはレー
ザープリンタに適用しつるレーザー光発生装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a laser beam generating device, and more particularly to a laser beam generating device applied to a laser printer.

(従来技術) レーザー光源とし、て、半導体レーザーが知られている
。半導体レーザーは、ガスレーザー等のし一ザー光源に
比して小型、安価であって消費電力も小さく、なおかつ
、駆動電流によって発光強度を直線的に変調できる等の
特徴を有し、光走査装置のレーザー光源として適してい
る。
(Prior Art) A semiconductor laser is known as a laser light source. Semiconductor lasers are smaller, cheaper, and consume less power than laser light sources such as gas lasers, and have the characteristics of being able to linearly modulate the emission intensity by driving current, making them ideal for optical scanning devices. Suitable as a laser light source.

それで、半導体レーサーを光源として、光走査装置を構
成した次の例がある。
The following is an example of an optical scanning device configured using a semiconductor laser as a light source.

第1図に示す如く、半導体レーザーLDはマウント1に
支持され、サーミスタ2と温度制御素子としてのベルチ
ェ効果素子3によシ性能確保上適切な温度に定温制御さ
れる様になっている。かつ、これらの諸部材は断熱部材
4で囲まれて熱的に遮断されている。半導体レーザーL
Dの前方にはコリメートレンズを収容したレンスユニッ
ト5が支持されている。
As shown in FIG. 1, the semiconductor laser LD is supported by a mount 1, and is controlled at a constant temperature to ensure performance by a thermistor 2 and a Bertier effect element 3 as a temperature control element. In addition, these members are surrounded by a heat insulating member 4 and thermally isolated. semiconductor laser L
A lens unit 5 containing a collimating lens is supported in front of D.

コリメートレンズは半導体レーサーからの発散性光束を
平行光束に変換すべく設けられているもので、結合レン
ズの結合効率を高めるには開口数(NA)の大きいもの
程、適するが開口数を大きくすると焦点深度が浅くなシ
レンズの位置決め精度が要求されることとなる。一般的
には焦点深度との関係からNA’= 0.3程度でよい
といわれている。
The collimating lens is provided to convert the diverging light flux from the semiconductor laser into a parallel light flux.In order to increase the coupling efficiency of the coupling lens, the larger the numerical aperture (NA), the more suitable it is. Positioning accuracy of the lens with a shallow depth of focus is required. Generally, it is said that NA'=about 0.3 is sufficient in relation to the depth of focus.

さて、従来技術においては、半導体レーザーLDは断熱
部材4で囲まれてかつ、温度制御もなされているが、レ
ンズユニット5を支持している支持部材6,7に関して
は熱的には外気中におかれていると同じ環境にあシ、し
かも温度制御はなされず、環境温度に直接支配される状
況にある。
Now, in the conventional technology, the semiconductor laser LD is surrounded by the heat insulating member 4 and the temperature is controlled, but the supporting members 6 and 7 supporting the lens unit 5 are thermally exposed to the outside air. They live in the same environment as they are placed in, and there is no temperature control, so they are directly controlled by the environmental temperature.

従って、このレーザー光発生装置及びこれを用いた光走
査装置を駆動することに伴なう温度変化と、室温の変化
で支持部材6.7が熱膨張(若しくは熱収縮)して半導
体レーザー LDとコリメートレンズとの間隔寸法がず
れてしまい、感光体上或いは原稿上に所要の結像光径を
得られないという問題がある。
Therefore, the support member 6.7 thermally expands (or thermally contracts) due to the temperature change associated with driving this laser beam generator and the optical scanning device using the same, and the change in room temperature, and the semiconductor laser LD. There is a problem in that the distance between the collimating lens and the collimating lens deviates, making it impossible to obtain the required imaging light diameter on the photoreceptor or document.

(目 的) 従って、この発明の目的は半導体レーザーとコリメート
レンズの物理的寸法間隔を一定に維持することのできる
レーザー光発生装置を提供することにある。
(Objective) Therefore, an object of the present invention is to provide a laser light generating device that can maintain a constant physical dimension interval between a semiconductor laser and a collimating lens.

この発明の上記目的に従って、 半導体レーザー及びコリメートレンズの各支持部材を定
温制御する湯度制御手段を具備したレーザー光発生装置
が提供される。
According to the above-mentioned object of the present invention, there is provided a laser light generating device including a hot water temperature control means for controlling the respective supporting members of the semiconductor laser and the collimating lens at a constant temperature.

(構 成) 本発明の構成を、以下、一実施例に基いて説明する。(composition) The configuration of the present invention will be explained below based on one embodiment.

第2図において、半導体レーザーLD、はスペーサ10
に支持されておシ、さらに、このスペーサ1゜にはレン
ズユニットホルダー11ヲ支持しているフランジ12が
密着して取付けられている。レンズユニットホルダー1
1内にはコリメートレンズLcが装着されている。
In FIG. 2, the semiconductor laser LD has a spacer 10
Further, a flange 12 supporting a lens unit holder 11 is attached to this spacer 1° in close contact with the lens unit holder 11. Lens unit holder 1
1, a collimating lens Lc is attached.

スペーサ10において、スペーサ1oの取付面と反対側
の面にはベルチェ効果素子15をブンドイ。
In the spacer 10, a Beltier effect element 15 is attached to the surface opposite to the mounting surface of the spacer 1o.

テ状にはさんでいるシリコンゴムシート13が、密着し
、他のシリコンゴムシート14には放熱フィン16が密
着して取付けられている。
The silicone rubber sheets 13 which are sandwiched in a Tee shape are in close contact with each other, and the radiation fins 16 are attached in close contact with the other silicone rubber sheets 14.

上記構成において、スペーサ10及びフランジ12は熱
伝導性良好な材料例えばアルミニウム合金で作製されて
いる。スペーサlo上でアって、ベルチェ効果素子15
から離間した位置にはサーミスタ17が取付けである。
In the above configuration, the spacer 10 and the flange 12 are made of a material with good thermal conductivity, such as an aluminum alloy. Vertier effect element 15 on the spacer lo
A thermistor 17 is attached at a position spaced apart from.

半導体レーザーLD、と放熱フィン16との間には、断
熱材料からなる第2スペーサ18の隔壁18aが介在し
て半導体レーザーLD、を熱的に遮断している。
A partition wall 18a of a second spacer 18 made of a heat insulating material is interposed between the semiconductor laser LD and the radiation fin 16 to thermally isolate the semiconductor laser LD.

この第2スペーサ18は又、スベーv10の一部を覆っ
ている。
This second spacer 18 also covers a portion of the base v10.

前記シリコンゴムシート13 、14は熱伝導性電絶縁
性能を有し、ベルチェ効果素子15をスペーサ10及び
放熱フィン16に密着して熱伝導を良好にする働きをす
る。
The silicone rubber sheets 13 and 14 have thermally conductive and electrically insulating properties, and function to bring the Beltier effect element 15 into close contact with the spacer 10 and the heat radiation fins 16 to improve heat conduction.

而して、サーミスタ17で検出された温度情報に基き、
スペーサ10及び半導体レーザーLD1が定温側(至)
され、さらにこの温度制御効果はレンズユニットホルダ
ー11を支持しているフランジ12に及び、その温度も
スペーサ10と同一の定温に制御する。
Based on the temperature information detected by the thermistor 17,
Spacer 10 and semiconductor laser LD1 are at constant temperature side (toward)
Further, this temperature control effect extends to the flange 12 supporting the lens unit holder 11, and its temperature is also controlled to the same constant temperature as the spacer 10.

すなわち、ベルチェ効果素子15の温度制御効果は、コ
リメートレンズLcの支持部材にも及ぶので、従来技術
の如く、半導体レーザーとコリメートレンズとの間隔が
支持部材の熱膨張(収縮)によシ変化する弊害は回避さ
れるのである。
That is, the temperature control effect of the Beltier effect element 15 also extends to the supporting member of the collimating lens Lc, so as in the prior art, the distance between the semiconductor laser and the collimating lens changes depending on the thermal expansion (contraction) of the supporting member. Harmful effects can be avoided.

さらに、本例では、ベルチェ効果素子15の働きを一層
実効あらしめると共に駆動エネルギーの効率向上を狙い
として、スペーサ10及びフランジ12等の支持部材を
も断熱部材で包囲するようにしている。
Furthermore, in this example, supporting members such as the spacer 10 and the flange 12 are also surrounded by a heat insulating member in order to make the function of the Beltier effect element 15 more effective and to improve the efficiency of drive energy.

以下、その手段について説明する。The means for doing so will be explained below.

スペーサ10は筒状の第1断熱部材19及び、これに密
着した第2断熱部材20で囲まれている。そしてさらに
、7ランシ12は合成樹脂等の断熱部材で構成された第
2フランジ21で囲まれている。この第2フランジ21
はあだかも、第2断熱部拐20にキャップを施す如く取
付けである。
The spacer 10 is surrounded by a cylindrical first heat insulating member 19 and a second heat insulating member 20 in close contact with the first heat insulating member 19. Further, the seven runci 12 is surrounded by a second flange 21 made of a heat insulating material such as synthetic resin. This second flange 21
However, the second heat insulating part 20 is attached like a cap.

ところで、第2フランジ21にはレーザー光の光路な確
保すべく開口を形成しなければならないが、されている
Incidentally, an opening must be formed in the second flange 21 in order to ensure an optical path for the laser beam, but this is done.

ナーを用いた場合に、ホログラムによる回折効率を高め
るべくレーザー光の偏光面をホログラムの格子方向に合
わせて90°回転させる機能を有する。
When a mirror is used, it has a function of rotating the polarization plane of the laser beam by 90 degrees in accordance with the lattice direction of the hologram in order to increase the diffraction efficiency by the hologram.

1 この百波長板22はホルダー23に接着して取付けられ
た上、第2フランジ21に装着されている。
1 This hundred wavelength plate 22 is attached to the holder 23 by adhesive, and is also attached to the second flange 21.

而して、温度制御の対象となるスペーサ10.フランジ
12、半導体レーザーLD、等は断熱部材で囲まれるの
で、外部からの温度変化の影壱を受け難くなシ、ベルチ
ェ効果素子15の負担が軽減されて定温保持性能が向上
する。
Thus, the spacer 10, which is subject to temperature control. Since the flange 12, semiconductor laser LD, etc. are surrounded by a heat insulating member, they are not easily affected by temperature changes from the outside, and the load on the Bertier effect element 15 is reduced, improving constant temperature maintenance performance.

第2図に示す構成を具体的に示したのが第3図である。FIG. 3 specifically shows the configuration shown in FIG. 2.

以下、構造を組付手順に従い説明する。The structure will be explained below according to the assembly procedure.

図において、レンズユニットホルダー11は座金24、
バックプツシ防止用の波形ワッシャ25、座金26等を
介してフランジ12の筒部12aに螺合される。
In the figure, the lens unit holder 11 includes a washer 24,
It is screwed onto the cylindrical portion 12a of the flange 12 via a wave washer 25, washer 26, etc. for preventing back push.

ここで、レンズユニットホルダー11に形成された切欠
11aは上記螺合を行なう際のレンチ保合用であシ、焦
点位置合せにも用いられる。
Here, the notch 11a formed in the lens unit holder 11 is used for holding a wrench when performing the above-mentioned screwing, and is also used for focus positioning.

こうして、レンズユニットホルダー11を装着さ次に、
半導体レーザーLD、はスペーサ10の係合穴10a1
に係合されその段部座面に当接された上、押さえ板29
で後側から押さえられる様にねじ30゜31で締付は固
定される。その際、半導体レーザーII)、の切欠32
は押さえ板29に形成された半導体レーザーLD、の係
合穴29aの内側よシ突出したピノ状の部材と係合して
半導体レーサーの接合面苧 の方向が特定される。さらに、係合穴29a形成せる筒
部には断熱性を考慮したスペーサ33が係合し、その背
部より半導体レーザー駆動用のプリント基板34が取付
けられる。符34aは端子を示す。サーミスタ17モス
ペーサlOに螺合される。
In this way, after attaching the lens unit holder 11,
The semiconductor laser LD is in the engagement hole 10a1 of the spacer 10.
The presser plate 29 is engaged with and abuts on the stepped seat surface.
It is tightened with screws 30° and 31 so that it can be held down from the rear. At that time, the notch 32 of the semiconductor laser II)
is engaged with a pin-shaped member protruding from the inside of the engagement hole 29a of the semiconductor laser LD formed on the holding plate 29, thereby specifying the direction of the joint surface of the semiconductor laser. Further, a spacer 33 designed for heat insulation is engaged with the cylindrical portion in which the engagement hole 29a is formed, and a printed circuit board 34 for driving a semiconductor laser is attached from the back thereof. Reference numeral 34a indicates a terminal. The thermistor 17 is screwed to the moss spacer lO.

こうして、半導体レーザーLD、等を取付けられたスペ
ーサ10は2本の取付ねじによシフプツシ12のねじ穴
12az+ 12bzに取付けられる。このねじの一本
を符号35(示す。この取付は時に、穴10b。
In this way, the spacer 10 to which the semiconductor laser LD and the like are attached is attached to the screw holes 12az+12bz of the shift pusher 12 using two attachment screws. One of these screws is indicated by reference numeral 35. This installation is sometimes done through hole 10b.

10c#iに工具を係合させて半導体レーザーLD。Engage the tool with 10c#i and turn on the semiconductor laser LD.

の発光点をコリメートレンズの光軸に合わせる調整も合
わせて行なう。具体的にはスペーサ10をフランジ12
に押し付けてその押付は面内で僅かに動かすことによシ
行なう。
Adjustments are also made to align the light emitting point with the optical axis of the collimating lens. Specifically, the spacer 10 is connected to the flange 12
This is done by slightly moving within the plane.

こうして、光軸上に上記発光点を一致させたなで回転さ
せ出射光が平行となる様に調節する。
In this way, the light emitting point is aligned with the optical axis and rotated so that the emitted light becomes parallel.

それから、第2フランジ21の開口部に形成された切欠
21a 、 21b k介しテホルダー23の爪23a
、”23bを挿入し、然る後ホルダー23を回動させて
該ホルダー23を装着する。なお、あらがじめボルタ−
次に、第2断熱部材2o及び、これに重ねて第1断熱部
材19をフランジ12に押し当て、さらに、第2スペー
サ18をスペーサ10に押し当てた上で、第2スペーサ
18の開口18a+f介してスペーサ1oの座面10a
 Kシリコンゴムシート13、ベルチェ効果素子15、
シ1)コンゴムシ−) 14の順に押し当テつつ、放熱
フィン16の3つの穴16e 、 16f t 16g
を介してさらに第1断熱部材19の穴及び第2スペーサ
18の3つの穴ヲ負通し、スペーサ1oの3つのねじ穴
10e 、 10f 、 10gにねじで締付ける。上
記中の一本のねじを符号35で示す。
Then, the claws 23a of the holder 23 are inserted through the notches 21a and 21b formed in the opening of the second flange 21.
," 23b, and then rotate the holder 23 to attach the holder 23. Note that the bolt
Next, the second heat insulating member 2o and the first heat insulating member 19 stacked thereon are pressed against the flange 12, and further, the second spacer 18 is pressed against the spacer 10, and then Seat surface 10a of spacer 1o
K silicon rubber sheet 13, Bertier effect element 15,
1) Rubber Seat) While pressing in the order of 14, insert the three holes 16e, 16f, 16g of the radiation fin 16.
Further, the hole in the first heat insulating member 19 and the three holes in the second spacer 18 are passed through the hole through the hole in the first heat insulating member 19 and the three holes in the second spacer 18, and the screws are tightened into the three screw holes 10e, 10f, and 10g in the spacer 1o. One of the screws mentioned above is designated by the reference numeral 35.

こうして、一体的に構成されたレーザー元発生装置は所
要の光走査装置本体に取付けられる。この取付けは放熱
フィン16に形成された2つの穴16a 、 16b 
’!a’介して行なわれる。ちなみにこの中の一本のね
じを符号36で示せば、このねじ36は穴16aを貫通
して第1断熱部材19の側部切欠19a f通り、第2
断熱部材2oの穴2oaを貫通し、さらに、フランジ1
2の穴12a2に嵌合している断熱材料としての合成樹
脂からなるブツシュ12aIを貫通し、第27ランン2
1の穴21d′la:貫通してから図示を省略した光走
査装置の本体側板に螺合される。。
In this way, the integrated laser generator is attached to the main body of the optical scanning device. This installation is done through two holes 16a and 16b formed in the radiation fin 16.
'! This is done via a'. By the way, if one of the screws is designated by the reference numeral 36, this screw 36 passes through the hole 16a and passes through the side notch 19a of the first heat insulating member 19.
It penetrates through the hole 2oa of the heat insulating member 2o, and furthermore, the flange 1
The 27th run 2
No. 1 hole 21d'la: is passed through and screwed into the main body side plate of the optical scanning device (not shown). .

上記説明中、断熱材料で形成されている部材を整理の意
味で今一度列挙すれば、合成樹脂材料からなるハウジン
グ本体21’、口1じく合成樹脂材料からなるプツシ−
12al、発泡ポリウレタンからなる第1FF熱部材1
9、第2断熱部材2o、合成樹脂が本例において、例え
ば、焦点距離がg mmのコリメートレンスト焦点距離
が300 mmのofレンズ及ヒP)r要の光学系並び
にスキャナーを組合せて走査装置を構成した場合に、コ
リメートレンズと半導体レーザーとの間隔が変化するこ
とに伴なう被走査面上における光束径の変化の関係は第
4図に示す通シであシ、実線で示す副走査方向走査手段
による走査方向に直交する被走査面の送シ方向上での変
化量は殆んど無視してよい程度であるが、礁線で示す主
走査方向(走査手段による走査方向)については画像形
成上無視できない光束径の変化を生ずる。
In the above explanation, for the sake of organization, the members made of heat insulating materials are enumerated once more: the housing body 21' made of synthetic resin material, and the pushbutton made of synthetic resin material.
12al, first FF thermal member 1 made of polyurethane foam
9. In this example, the second heat insulating member 2o and the synthetic resin are, for example, a collimator lens with a focal length of g mm, an OF lens with a focal length of 300 mm, and the necessary optical system and scanner to form a scanning device. When configured, the relationship between the change in the beam diameter on the scanned surface due to the change in the distance between the collimating lens and the semiconductor laser is as shown in Fig. 4, and in the sub-scanning direction as shown by the solid line. The amount of change in the scanning direction of the scanned surface perpendicular to the scanning direction by the scanning means is almost negligible, but in the main scanning direction (scanning direction by the scanning means) shown by the reef line, the image This causes a non-negligible change in the diameter of the luminous flux.

支持部材?アルミニウム(線膨張係数=23.6X10
−6art/cm deg )とし、想定される温度変
化の最大値ヲ35℃とすれば、何らの温度制御手段を施
さない場合には半導体1ノ−ザーのコリメートレンズに
対する変化量は8μmとなシこれに対応する被走査面上
での光束径の変化量は画像形成用、実用に耐える範囲を
越えてしまう。
Support member? Aluminum (linear expansion coefficient = 23.6X10
-6 art/cm deg) and the maximum expected temperature change is 35°C, the amount of change in the semiconductor 1 noser with respect to the collimating lens will be 8 μm if no temperature control means are applied. The amount of change in the diameter of the light beam on the surface to be scanned corresponding to this exceeds the range that can be used in practical applications for image formation.

しかし、本発明を実施した場合には、温度制御は±1℃
以内におさえることができ、これは半導体レーザー位置
の相対的変化量で047μm程度であシ、画像形成上何
ら問題は生じない。
However, when implementing the present invention, temperature control is ±1°C.
The amount of relative change in the position of the semiconductor laser can be kept within 0.47 μm, which does not cause any problem in image formation.

(効 果) 本発明では、サーミスタとベルチェ効果素子及び放熱フ
ィン等による温圧制御効果が半導体レーザー及びコリメ
ートレンズの支持部材に顕著に及ぶため上記支持部材の
温度が一定に制御されるので、半導体レーザーとコリメ
ートレンズ間の間隔に熱膨張(収縮)による影響が及ば
ず、好都合である。
(Effect) In the present invention, the temperature and pressure control effect by the thermistor, the Bertier effect element, the radiation fins, etc. significantly affects the supporting member of the semiconductor laser and the collimating lens, so the temperature of the supporting member is controlled to be constant. This is advantageous because thermal expansion (contraction) does not affect the distance between the laser and the collimating lens.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術に係るレーザー光発生装置の断面図、
第2図は本発明に係るレーザー光発生装置の断面図、第
3図は本発明に係るレーザー光発生装置の分解斜視図、
第4図は半導体レーサーの位置ずれによる被走査面上で
の光束径の変化量を説明したグラフである。 10・・・スペーサ、12・・・フランジ、15・・・
ベルチェ効果素子、16・・・放熱フィン、17・・・
サーミスタ。
FIG. 1 is a cross-sectional view of a laser beam generator according to the prior art;
FIG. 2 is a cross-sectional view of the laser beam generator according to the present invention, FIG. 3 is an exploded perspective view of the laser beam generator according to the present invention,
FIG. 4 is a graph illustrating the amount of change in the beam diameter on the scanned surface due to positional deviation of the semiconductor laser. 10... Spacer, 12... Flange, 15...
Beltier effect element, 16...radiating fin, 17...
thermistor.

Claims (1)

【特許請求の範囲】 光源としての半導体レーザーと、この半導体レーザーか
らの発散性光束を平行光束に変換するコリメートレンズ
と、これら半導体レーザー及びコリメートレンズを所定
の結像態位にて機械的に保持する支持部材を有するレー
ザー光発生装置において、 該支持部材を定温に保持する温度制御手段を有すること
を特徴とするレーザー光発生装置。
[Scope of Claims] A semiconductor laser as a light source, a collimating lens that converts a diverging light beam from the semiconductor laser into a parallel light beam, and mechanically holding the semiconductor laser and collimating lens in a predetermined imaging position. What is claimed is: 1. A laser beam generation device having a support member that is characterized in that the device includes a temperature control means for maintaining the support member at a constant temperature.
JP59028063A 1984-02-17 1984-02-17 Laser light generator Pending JPS60172007A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59028063A JPS60172007A (en) 1984-02-17 1984-02-17 Laser light generator
US06/701,514 US4661959A (en) 1984-02-17 1985-02-14 Lasing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59028063A JPS60172007A (en) 1984-02-17 1984-02-17 Laser light generator

Publications (1)

Publication Number Publication Date
JPS60172007A true JPS60172007A (en) 1985-09-05

Family

ID=12238303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59028063A Pending JPS60172007A (en) 1984-02-17 1984-02-17 Laser light generator

Country Status (1)

Country Link
JP (1) JPS60172007A (en)

Similar Documents

Publication Publication Date Title
US4661959A (en) Lasing device
US4993801A (en) Optical head
US5872803A (en) Laser diode pumped solid-state laser apparatus
US5561684A (en) Laser diode pumped solid state laser construction
JP4824548B2 (en) Window mounting for optical sensor
US20020162338A1 (en) Laser module, peltier module, and peltier module integrated heat spreader
US4948221A (en) Athermalized optical head
JP2006171398A (en) Optical transmission module
JP2006524609A5 (en)
JPH0679915A (en) Nonthermally-compensative optical head for laser scanner
JP2006324524A (en) Light emitting module
JPH04179180A (en) Short-wave laser ray source
JP3624797B2 (en) Temperature control device
US20210184424A1 (en) Optical module
JPS60172007A (en) Laser light generator
JP2008153529A (en) Optical transmitter
JPS60172017A (en) Laser light generating device
JP2007123541A (en) Device with built-in functional part
US20020154428A1 (en) System and method for adjusting angular orientation of optical filter and optical module
JP2591666B2 (en) Laser unit
JP2000357340A (en) Optical head device
JPS61166194A (en) Semiconductor laser device
JP2007171491A (en) Optical crystal holding structure and wavelength converter
JP2004241438A (en) Light beam generator
WO2021157396A1 (en) Semiconductor laser device