JPS601712A - Power breaker - Google Patents

Power breaker

Info

Publication number
JPS601712A
JPS601712A JP10935283A JP10935283A JPS601712A JP S601712 A JPS601712 A JP S601712A JP 10935283 A JP10935283 A JP 10935283A JP 10935283 A JP10935283 A JP 10935283A JP S601712 A JPS601712 A JP S601712A
Authority
JP
Japan
Prior art keywords
current
voltage
carrying
fusible
commutation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10935283A
Other languages
Japanese (ja)
Other versions
JPH0474807B2 (en
Inventor
稲葉 次紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP10935283A priority Critical patent/JPS601712A/en
Publication of JPS601712A publication Critical patent/JPS601712A/en
Publication of JPH0474807B2 publication Critical patent/JPH0474807B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は電力用遮断器、特に高電圧用直流遮断器に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power circuit breaker, particularly a high voltage DC circuit breaker.

交流のように電圧、電流に零点をもたない直流の回路、
特に高電圧直流回路の遮断は交流回路に比して困難であ
る。
A DC circuit that does not have a zero point for voltage or current like AC.
In particular, it is more difficult to interrupt high-voltage DC circuits than AC circuits.

そこで遮断能力の向上のだめの一方策として、第1図に
示す回路図のような遮断方式が提案されている。この方
式は通電回路(1)に直列に接続された通電断路部A1
例えば6弗化硫黄ガス遮断器の電極(2)と並列に、高
電圧発生部B例えばフユーズのような可溶電通素子(3
)を、電気絶縁性をもつ緩衝材(消弧羽) (4)と共
に、電気絶縁性をもつ高耐圧圧力容器(5)に封入した
ものを接続すると同時に、この可溶通電素子(3)の溶
断が電極(2)の絶縁耐力の回復後に行われるように選
定して、以下に説明する作用により遮断を行うものであ
る。即ち開極指令Sにより時刻toにおいて開極し始め
ると電極(2)間にアークが発生し、アーク電圧は時間
の経過と共に犬となる電極間隔の増大により、第2図(
d)のように時間の経過と共に増大する。すると電極(
2)に流れる第2図(b)の電流■Aはアーク電圧によ
る逆電圧作用により、第2図(C)のように電流IBと
して可溶通電素子(3)に転流を始め、時刻tlにおい
てアーク電圧が第2図(d)の■1になると、全量の転
流が終了する。その結果電極(2)を流れる電流■9は
零になるため、この間のアークは消滅して電極(2)間
の絶縁耐力は高い値に戻る。
Therefore, as a measure to improve the breaking ability, a breaking method as shown in the circuit diagram shown in FIG. 1 has been proposed. This method consists of a current-carrying disconnection section A1 connected in series to a current-carrying circuit (1).
For example, in parallel with the electrode (2) of a sulfur hexafluoride gas circuit breaker, the high voltage generating section B is connected to a fusible current-carrying element (3) such as a fuse.
) is sealed in an electrically insulating high-pressure container (5) together with an electrically insulating buffer material (arc-extinguishing blade) (4), and at the same time, this fusible current-carrying element (3) is connected. The fuse is selected to be cut off after the dielectric strength of the electrode (2) is recovered, and cut-off is performed by the action described below. That is, when the electrodes (2) start to open at time to according to the opening command S, an arc is generated between the electrodes (2), and the arc voltage increases as time passes due to the increase in the electrode spacing.
d) increases over time. Then the electrode (
Due to the reverse voltage action caused by the arc voltage, the current ■A in FIG. 2(b) flowing in 2) begins to commutate to the fusible current-carrying element (3) as current IB as shown in FIG. 2(C), and at time tl When the arc voltage reaches 1 in FIG. 2(d), the entire amount of commutation ends. As a result, the current 9 flowing through the electrode (2) becomes zero, so the arc during this period disappears and the dielectric strength between the electrodes (2) returns to a high value.

一方可溶通電素子(3)は徐々に増加する、転流電流I
Bによるジュール損失のだめ発熱し、その温度が時刻t
2において融点に達すると溶断して、これを取囲む緩衝
拐(4)や高耐圧圧力容器(5)などの助けを借りて高
電圧のアークを発生する。そしてこのアーク電圧が時刻
t3において第2図(山の回路電圧vsに達すると、電
流IB従って回路電流■は零となって回路は遮断される
On the other hand, the fusible current-carrying element (3) gradually increases commutation current I
Due to the Joule loss caused by B, heat is generated, and the temperature reaches time t.
When it reaches the melting point at 2, it melts and generates a high voltage arc with the help of the surrounding buffer (4) and high pressure vessel (5). When this arc voltage reaches the circuit voltage vs of the peak in FIG. 2 at time t3, the current IB and therefore the circuit current 2 become zero and the circuit is cut off.

この従来方式は以上のような遮断動作を行うものである
ことから、前記のように電極(2)の絶縁耐力の回復が
行われてから、可溶通電素子(3)の溶断が行われるこ
とが遮断のだめの要件であって、これが満されない場合
には高電圧発生部Bにおいて発生したアーク電圧により
、電極(2)において再点弧を生じて転流の失敗を招き
、遮断不能になるおそれが大きい。ところでこの方式で
は第2図(b)。
Since this conventional method performs the above-mentioned breaking operation, the fusible current-carrying element (3) is cut off after the dielectric strength of the electrode (2) is restored as described above. is a requirement for a shutoff, and if this is not met, the arc voltage generated in the high voltage generating part B will cause re-ignition in the electrode (2), leading to failure of commutation, and there is a risk that it will not be possible to shut off. is large. By the way, in this method, Fig. 2(b).

(c)によって前記したように、可溶通電素子(3)へ
の転流完了までの間に、電流が徐々に大きくなる期間を
有する。従って転流完了後の電流のみに対応して、電極
(2)における絶縁耐力の回復後溶断が行われるように
可溶通電素子(3)の太さを選定すると、転流の開始よ
り完了までにおける電流によって可溶通電素子(3)は
温度上昇して、電極(2)の絶縁耐力の回復以前に溶断
が行われて、要件を満すことができない場合がある。そ
こで転流を完了する寸での電流による温度上昇を考慮し
て、可溶通電素子(3)の太さを太くすることが行われ
る。
As described above in (c), there is a period in which the current gradually increases until the commutation to the fusible energizing element (3) is completed. Therefore, if the thickness of the fusible current-carrying element (3) is selected so that fusing occurs only after recovery of the dielectric strength in the electrode (2) in response to the current after completion of commutation, from the start of commutation to the completion of commutation. The temperature of the fusible current-carrying element (3) rises due to the current in the electrode (2), and the melting element (3) is blown out before the dielectric strength of the electrode (2) is recovered, so that the requirements may not be met. Therefore, the thickness of the fusible current-carrying element (3) is increased in consideration of the temperature rise due to the current at the point where commutation is completed.

しかしこれでは電極(2)間に入る可溶通電素子(3)
の蒸発量がそれだけ増大することから、溶断後発生する
アーク電圧は低下し、その逆電圧作用による転流機能を
低下させる結果となるので、遮断に不利となる欠点があ
る。まだ電極(2)に直接可溶通 3− 型素子(3)が常時並列接続されているため、両回路の
もつ抵抗値に反比例して回路電流の一部が常時可溶通電
素子(3)に流れることになり、可溶通電素子(3)は
これによっても発熱する。そこでこれを考慮して可溶通
電素子(3)の太さが決定されるため、更に太さを太く
せざるを得なくなってアーク電圧を低下させ、遮断性能
をそれだけ低下させる。
However, in this case, the fusible energizing element (3) inserted between the electrodes (2)
Since the amount of evaporation increases accordingly, the arc voltage generated after fusing decreases, resulting in a decrease in commutation function due to the reverse voltage effect, which is disadvantageous for interrupting. Since the fusible 3-type element (3) is still connected directly to the electrode (2) in parallel, part of the circuit current is always connected to the fusible energized element (3) in inverse proportion to the resistance value of both circuits. This causes the fusible energizing element (3) to generate heat as well. Therefore, since the thickness of the fusible current-carrying element (3) is determined in consideration of this, the thickness has to be further increased, which lowers the arc voltage and reduces the interrupting performance accordingly.

本発明は上記の如き欠点の除去を目的としてなされたも
ので、次に図面を用いてその詳細を説明する。
The present invention has been made with the aim of eliminating the above-mentioned drawbacks, and will now be described in detail with reference to the drawings.

上記従来方式の欠点が、電流が電極(2)から可溶通電
素子(3)に徐々に転流して行く期間を有し、これによ
り可溶゛通電素子(3)が自己発熱作用により温度上昇
する過程をもつことに基因する。従ってこれにもとづく
欠点を排除するためには、電極(2)を流れる電流を瞬
時に可溶通電素子(3)の回路に転流させるようにすれ
ば、可溶通電素子(3)の太さを転流完了までの過程に
おける電流を考慮して決定する必要がなくなり、転流か
ら溶断までの時間が、電極(2)におけるアークの消滅
から絶縁耐力の回復 4− までの時間以上になるように、転流電流に対して可溶通
電素子(3)の太さを選定すればよい。
The disadvantage of the above conventional method is that there is a period in which the current gradually commutates from the electrode (2) to the fusible current-carrying element (3), which causes the temperature of the fusible current-carrying element (3) to rise due to self-heating effect. This is due to the fact that it has a process of Therefore, in order to eliminate the drawbacks based on this, if the current flowing through the electrode (2) is instantaneously commutated to the circuit of the fusible current-carrying element (3), the thickness of the fusible current-carrying element (3) It is no longer necessary to determine the current in the process up to the completion of commutation, and the time from commutation to fusing is longer than the time from the extinction of the arc at the electrode (2) to the recovery of dielectric strength. What is necessary is to select the thickness of the fusible current-carrying element (3) with respect to the commutation current.

本発明は以上の着想からなきれたものであって、その特
徴とするところは次の点にある。即ち第3図に示す一実
施例回路図(第1図と同一符号は同等部分を示す。)の
ように、可溶通電素子(3)と直列に、特定の動作電圧
を越える電圧が印加されたときにのみ、急激に通電する
機能をもたせた裁断通電部C例えばギャップ(6)を接
続し、これを電極(2)を開極したとき現われる電圧に
より可溶通電素子(3)を介して通電させるようにし、
また動作電圧を〔可溶通電素子(3)の抵抗R×回路電
流IB+截断通電部Cの導通後の端子電圧〕の値を十分
越えるように設定することを特徴とするものである。
The present invention is based on the above idea and is characterized by the following points. That is, as shown in the circuit diagram of an embodiment shown in FIG. 3 (the same symbols as in FIG. 1 indicate the same parts), a voltage exceeding a specific operating voltage is applied in series with the fusible current-carrying element (3). For example, a gap (6) is connected to the cutting current-carrying part C, which has the function of suddenly applying current only when Turn on the electricity,
Further, the operating voltage is set to sufficiently exceed the value of [resistance R of fusible current-carrying element (3) x circuit current IB + terminal voltage after conduction of cut-off current-carrying portion C].

このようにすれば第4図の時刻toにおける電極(2)
の開極開始によるアーク電圧が、時刻ticにおいてギ
ャップ(6)の動作電圧VIC以上になって通電が行わ
れたとき、第4図(b)に示すように電極(2)を流れ
る電流■□は裁断的に零となり、第4図(C)に示すよ
うに可溶通電素子(3)の回路に瞬時に転流を完了する
。そして可溶通電素子(3)は時刻t2で溶断し、溶断
部に現われるアーク電圧が、時刻t3において第4図(
d)のように回路電圧Vsに達すると、第4図(a)の
ように電流1B、従って回路電流■は遮断される。
In this way, the electrode (2) at time to in FIG.
When the arc voltage due to the start of electrode opening exceeds the operating voltage VIC of the gap (6) at time tic and energization is performed, the current flowing through the electrode (2) as shown in FIG. 4(b) becomes zero, and commutation is instantaneously completed in the circuit of the fusible energizing element (3) as shown in FIG. 4(C). Then, the fusible current-carrying element (3) is fused at time t2, and the arc voltage appearing at the fused portion is increased at time t3 as shown in FIG.
When the circuit voltage Vs is reached as shown in d), the current 1B, and thus the circuit current ■, is cut off as shown in FIG. 4(a).

以上のように本発明では、従来方式のように徐々に転流
電流が上昇する過程をもたず、しかも常時においては可
溶通電素子(3)の回路は不導通のギャップ(6)によ
り、電極(2)との並列接続関係を解かれて、前記のよ
うに回路電流■の一部が流れて自己発熱作用による温度
上昇を生ずることがない。
As described above, in the present invention, there is no process in which the commutation current gradually increases as in the conventional method, and moreover, the circuit of the fusible current-carrying element (3) is normally closed due to the non-conducting gap (6). Since the parallel connection relationship with the electrode (2) is broken, a part of the circuit current (2) will not flow as described above and a temperature rise due to self-heating effect will not occur.

従って従来のように転流完了までの過程および回路電流
の一部による温度上昇を考慮して、可溶通電素子(3)
の太さを決定する必要が全くなく、電極(2)における
絶縁耐力の回復後溶断が行われるように、転流完了後の
電流IBに対して可溶通電素子(3)の太さを決定すれ
ばよい。その結果従来方式のように1可溶通電素子(3
)を太くする必要がなくなり、それたけアーク電圧、の
低下を少なくして、電極(2)から可溶通電素子(3)
への転流を確実にして、遮断性能を向上でき従来の欠点
は除去される。
Therefore, in consideration of the process up to the completion of commutation and the temperature rise due to part of the circuit current, as in the past, the fusible current-carrying element (3)
The thickness of the fusible current-carrying element (3) is determined for the current IB after completion of commutation so that there is no need to determine the thickness of the electrode (2), and fusing occurs after recovery of the dielectric strength in the electrode (2). do it. As a result, unlike the conventional method, one fusible current-carrying element (three
), it is no longer necessary to make the electrode (2) thicker, and the drop in arc voltage is reduced accordingly.
This ensures the commutation of current to and improves the shutoff performance, eliminating the drawbacks of the conventional method.

以上、本発明を一実施例により説明したが、ギャップ(
6)の代りにツェナーダイオードのような政断通電部C
を用いることができる。丑だ回路の電磁エネルギが大き
い場合には、第3図中に点線によって示すようにエネル
ギ吸収部D1例えば酸化亜鉛形避雷器などの非線形抵抗
器を並列に接続すればよい。
The present invention has been explained above using one embodiment, but the gap (
6) In place of ``C'', use a current-carrying part C such as a Zener diode.
can be used. If the electromagnetic energy of the circuit is large, a nonlinear resistor such as a zinc oxide arrester may be connected in parallel to the energy absorbing portion D1, as shown by the dotted line in FIG.

以上の説明から明らかなように、本発明によれば可溶通
電素子を用いた高電圧発生部を通電断路部に並列接続し
、通電断路部の電流を高電圧発生部に転流して遮断を行
う電力用遮断器の遮断性能を向上して、特に直流回路の
遮断を容易にするもので、実用上の効果は大きい。
As is clear from the above description, according to the present invention, a high voltage generating section using a fusible current-carrying element is connected in parallel to a current-carrying disconnecting section, and the current in the current-carrying disconnecting section is commutated to the high-voltage generating section to perform the interruption. This improves the breaking performance of power circuit breakers, making it easier to break DC circuits in particular, and has great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来遮断器の回路図、第2図はその動作を説明
するだめの遮断器の電流と端子電圧の時間特性図、第3
図は本発明の一実施例回路図、第4図はその動作を説明
するだめの遮断器の電流と 7一 端子電圧の時間特性図である。 A・通電断路部、S・開極指令、(1)・回路、(2)
・・・電極、B・・・高電圧発生部、(3)・・可溶通
電素子、(4)・・絶縁性緩衝材(消弧材)、(5)・
・・高耐圧圧力容器、C・・・政断通電部、(6)・・
・ギヤング。 特許出願人 財団法人電力中央研究所 式 理 人 犬 塚 学 外1名  8−
Fig. 1 is a circuit diagram of a conventional circuit breaker, Fig. 2 is a time characteristic diagram of current and terminal voltage of a normal breaker to explain its operation, and Fig. 3
The figure is a circuit diagram of one embodiment of the present invention, and FIG. 4 is a time characteristic diagram of the current of the circuit breaker and the voltage at one terminal to explain its operation. A. Current-carrying disconnection section, S. Opening command, (1). Circuit, (2)
...electrode, B...high voltage generating part, (3)...fusible energizing element, (4)...insulating buffer material (arc extinguishing material), (5)...
・・High-pressure pressure vessel, C... Political power supply section, (6)...
・Gi Young. Patent applicant: Central Research Institute of Electric Power Industry, Researcher: Inuzuka, 1 external person: 8-

Claims (1)

【特許請求の範囲】[Claims] 通電断路部と並列に、可溶通電素子を高耐圧圧力容器内
に封入した高電圧発生部を≠轡≠接続し、通電断路部の
開極によるアーク電圧により通電断路の流通電流を高電
圧発生部に転流させ、これによる上記高電圧発生部の可
溶通電素子の溶断により、回路電圧に対する逆電圧作用
により転流電流を遮断しうる大きさのアーク電圧を発生
させて遮断を行うようにした電力用遮断器において、上
記高電圧発生部と直列に通電断路部の端子電圧が特定の
値以上のときにのみ導通するギャップのような截断通電
部を接続し、電流を通電断路部から高圧発生部に裁断的
に瞬時に転流させることを特徴とする電力用遮断器。
A high-voltage generating section in which a fusible current-carrying element is sealed in a high pressure vessel is connected in parallel with the current-carrying disconnection section, and the flowing current of the current-carrying disconnection circuit is generated as a high voltage by the arc voltage caused by the opening of the current-carrying disconnection section. This causes the fusible current-carrying element of the high voltage generating part to melt, thereby generating an arc voltage large enough to interrupt the commutation current due to the reverse voltage action on the circuit voltage. In this type of power circuit breaker, a cutting current-carrying part, such as a gap, which conducts only when the terminal voltage of the current-carrying and disconnecting part is above a certain value, is connected in series with the high-voltage generating part, and the current is passed from the current-carrying disconnecting part to the high voltage. A power circuit breaker characterized by instantaneous commutation of current to the generating part.
JP10935283A 1983-06-20 1983-06-20 Power breaker Granted JPS601712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10935283A JPS601712A (en) 1983-06-20 1983-06-20 Power breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10935283A JPS601712A (en) 1983-06-20 1983-06-20 Power breaker

Publications (2)

Publication Number Publication Date
JPS601712A true JPS601712A (en) 1985-01-07
JPH0474807B2 JPH0474807B2 (en) 1992-11-27

Family

ID=14508043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10935283A Granted JPS601712A (en) 1983-06-20 1983-06-20 Power breaker

Country Status (1)

Country Link
JP (1) JPS601712A (en)

Also Published As

Publication number Publication date
JPH0474807B2 (en) 1992-11-27

Similar Documents

Publication Publication Date Title
KR101116087B1 (en) Protection apparatus
US5629658A (en) Methods of arc suppression and circuit breakers with electronic alarmers
JPH0576136A (en) Power supply system
JP2001515652A (en) Circuit breaker with improved arc breaking performance
WO2021057163A1 (en) Surge protection device having high breaking capacity
US4870386A (en) Fuse for use in high-voltage circuit
JPS6253894B2 (en)
JPS601712A (en) Power breaker
CN106887822B (en) A kind of over-pressure safety device
JP2869896B2 (en) Overvoltage protection components
US3454831A (en) Quick-opening,low cost,current limiting circuit breaker
CN220208763U (en) Self-triggering arc-extinguishing intelligent switch
KR200267634Y1 (en) Thermal-cut-off varistor
CN2399872Y (en) Protector
KR100661685B1 (en) PTC current limiting circuit breaker having function of prevention of leakage current
JPS58214235A (en) High voltage dc breaker
JP2023074076A (en) circuit breaker
KR100706453B1 (en) PTC current limiting circuit breaker
JP3088588U (en) Fuse composite varistor
JPH11265644A (en) Switching device
JPS61260516A (en) Arc extinguishing for high pressure load switch
JPH0362008B2 (en)
JPS6017826A (en) Sealed line breaking device
JPH09231891A (en) Current limiting breaker
JPH03178120A (en) Aluminum electrolytic capacitor