JPS60170706A - Optical surface displacement detecting circuit - Google Patents

Optical surface displacement detecting circuit

Info

Publication number
JPS60170706A
JPS60170706A JP2682784A JP2682784A JPS60170706A JP S60170706 A JPS60170706 A JP S60170706A JP 2682784 A JP2682784 A JP 2682784A JP 2682784 A JP2682784 A JP 2682784A JP S60170706 A JPS60170706 A JP S60170706A
Authority
JP
Japan
Prior art keywords
signal
reflected
detector
reference signal
threshold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2682784A
Other languages
Japanese (ja)
Other versions
JPH0226161B2 (en
Inventor
Junpei Okada
岡田 淳平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsutoyo Manufacturing Co Ltd
Original Assignee
Mitsutoyo Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsutoyo Manufacturing Co Ltd filed Critical Mitsutoyo Manufacturing Co Ltd
Priority to JP2682784A priority Critical patent/JPS60170706A/en
Publication of JPS60170706A publication Critical patent/JPS60170706A/en
Publication of JPH0226161B2 publication Critical patent/JPH0226161B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To improve detection precision by detecting two intersections each of a reference signal and the 1st threshold value, and its reflected signal and the 2nd threshold value, and calculating the time interval of generation between the reference signal and reflected signal from the numbers of clock pulses between the two couples of intersections. CONSTITUTION:A laser beam is made incident on a reference light detecting element 28. The reference signal S1 outputted by the reference light detecting element 24 and the reflected signal S2 outputted by a reflected light detecting element 28 are amplified by amplifiers 46 and 48. Two intersections P11 and P12 of the reference signal S1 and the 1st threshold value Vref1 are detected by the 1st detector 54 and two intersections P21 and P22 of the reflected signal S2 and the 2nd threshold value Vref2 are detected by the 2nd detector 56. Then, the number A of clock pulses generated between the intersections P11 and P21 and the number B of clock pulses generated between the intersections P12 and P22 are counted by the 1st and the 2nd counters 62 and 64 respectively and the time interval of generation between the reference signal and reflected signal is calculated by arithmetic. Then, a displacement converter 70 converts the generation time interval into displacement, which is displayed on a display device 72.

Description

【発明の詳細な説明】 本発明は、光学式表面変位検出回路に係り、特に、遠隔
物体の厚さや変位等を非接触で測定づることができる光
学式表面変位検出装置に用いるのに好適な、ビーム走査
範囲の基準位置に対応して配設された基準光検出素子か
ら出力される基準信号と、測定対象面によるビーム反射
光のうち、ビーム照射方向とは異なる設定方向の反射光
のみを受光するようにされた反射光検出素子から出力さ
れる反射信号の発生時間間隔から、測定対象面の設定方
向変位をめるための光学式表面変位検出回路の改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical surface displacement detection circuit, and is particularly suitable for use in an optical surface displacement detection device that can measure the thickness, displacement, etc. of a remote object without contact. , out of the reference signal output from the reference light detection element arranged corresponding to the reference position of the beam scanning range and the beam reflected by the measurement target surface, only the reflected light in a set direction different from the beam irradiation direction is detected. The present invention relates to an improvement in an optical surface displacement detection circuit for determining displacement in a set direction of a surface to be measured from the generation time interval of a reflected signal output from a reflected light detection element configured to receive light.

産業界における生産の自動化、ロボット導入等に伴ない
、計測のインプロセス化、高速度化、高精度化が急速に
優勢されており、赤熱した鉄板の圧延工程における厚さ
のインプロセス測定のように、遠隔物体の厚さや1変位
等を非接触で測定できる表面変位検出装置の必要性も大
となっている。
With the automation of production and the introduction of robots in industry, in-process measurement, higher speed, and higher accuracy are rapidly gaining ground. In addition, there is a growing need for a surface displacement detection device that can measure the thickness, displacement, etc. of a remote object in a non-contact manner.

このような非接触式の表面変位検出装置としては、被測
定物体に投射した光の反射光や散乱光を変位に関する信
号とする光学的変位方式を利用したもの、磁束変化、渦
電流、容量変化等、電磁気釣場の効果を利用したもの、
放射線の吸収度を利用したもの、超音波を利用したもの
等が提案されているが、被測定物体との設定距離を大き
く取れるという点では、光学的方式を利用したちのく以
下、光学式表面変位検出装置と称する)が有利でである
Such non-contact surface displacement detection devices include those that use an optical displacement method that uses reflected light and scattered light of the light projected onto the object to be measured as signals related to displacement, magnetic flux changes, eddy currents, capacitance changes, etc. etc., which utilize the effect of electromagnetic fishing spots,
Methods that utilize radiation absorption and methods that utilize ultrasonic waves have been proposed. A surface displacement detection device (referred to as a surface displacement detection device) is advantageous.

この光学式表面変位検出装置としては、種々の方式が提
案されているが、その1つに、例えば第1図に示す如く
、レーザビーム発生器20と、該レーザビーム発生器2
0から発生されたスポット状のレーザビーム21を、等
角速度で回転走査するための回転ミラー22と、該回転
ミラー22によって形成された回転走査ビーム23が、
基準位置を走査したことを検出するための基準光検出素
子24と、回転走査ビーム23の測定対象面10による
反射光のうち、測定対象面10と垂直な方向(変位測定
方向)の反射光のみを通過させるスリット26と、該ス
リット26を通過した反射光の有無を検出するための反
射光検出素子28とを備え、変位検出回路29により測
定される、前記基準光検出素子24から出力される基準
信号と前記反射光検出素子28から出力される反射信号
の発生時間間隔、即ち、回転走査ビーム23の走査角度
θから、測定対象面10の上下方向変位×をめるように
した、いわゆる、投射ビーム回転走査方式によるものが
ある。
Various methods have been proposed as this optical surface displacement detection device, and one of them, for example, as shown in FIG.
A rotating mirror 22 for rotating and scanning a spot-shaped laser beam 21 generated from zero at a constant angular velocity, and a rotating scanning beam 23 formed by the rotating mirror 22,
Of the light reflected by the reference light detection element 24 for detecting that the reference position has been scanned and the measurement target surface 10 of the rotating scanning beam 23, only the reflected light in the direction perpendicular to the measurement target surface 10 (displacement measurement direction) is detected. The reference light detecting element 24 includes a slit 26 through which the light passes through, and a reflected light detecting element 28 for detecting the presence or absence of reflected light that has passed through the slit 26, and is measured by a displacement detecting circuit 29. The vertical displacement x of the surface to be measured 10 is calculated from the generation time interval between the reference signal and the reflected signal output from the reflected light detection element 28, that is, the scanning angle θ of the rotating scanning beam 23. Some use a projection beam rotation scanning method.

又、前出第1図に示した投射ビーム回転走査方式におけ
る、回転走査ビーム23の走査角度θと変位量Xの関係
が光学的に非線形となり、複雑な補正が必要となるだけ
でなく、(ロ)転ミラー22と測定対象面10間の距m
β1、ぶ2、(3等を4締する必要があるという問題点
を解消するものとして、出願人は既に実願昭58−13
9708において、第2図に示す如く、前記回転ミラー
22と測定対象面10の間に、前記回転ミラー22によ
り扇状に回転走査される回転走査ビーム23を互いに平
行な平行走査ビーム31とするためのコリメータレンズ
30を挿入することによって、回転走査ビーム23の走
査角度θと測定対象面10の変位量×の間に光学的な線
形関係が成立するようにして、精度の高い測定を簡単に
行うことができるようにした、投射ご一ム平行走査方式
によるものを提案している。
Furthermore, in the projection beam rotational scanning method shown in FIG. b) Distance m between the rotation mirror 22 and the measurement target surface 10
β1, Bu2, (3rd etc.) need to be tightened 4 times.
9708, as shown in FIG. 2, between the rotating mirror 22 and the surface to be measured 10, there is provided a filter for converting the rotating scanning beam 23 rotated and scanned in a fan shape by the rotating mirror 22 into parallel scanning beams 31 parallel to each other. By inserting a collimator lens 30, an optical linear relationship is established between the scanning angle θ of a rotating scanning beam 23 and the displacement amount x of a surface to be measured 10, thereby easily performing highly accurate measurement. We are proposing a projection parallel scanning system that allows for

しかしながら、前出第1図あるいは第2図に示した光学
式表面変位検出装置のいずれにおいても、測定精度を高
精度とするためには、変位検出回路29で基準信号と反
射信号の発生時間間隔を精度よく測定づる必要があり、
そのためには、前記基準信号及び反射信号のエツジ位置
あるいは中心位置を精度よくめる必要がある。
However, in either of the optical surface displacement detection devices shown in FIG. 1 or FIG. It is necessary to accurately measure
For this purpose, it is necessary to precisely adjust the edge positions or center positions of the reference signal and the reflected signal.

一方、光学式測定機器におけるエツジ検出装置としては
、出願人が既に特開昭58−173408、特願昭58
−102477、実願昭58−87424等において、
種々の方法を提案しているが、特開昭58−173.4
08で提案したような、測定対象物との相対移動時に生
ずる明暗に基つき、少なくとも2組の位相ずれ信号を発
生ずるよう移動面と略平行な面内に配設された4個の受
光素子からなるセンサと、前記各相の位相ずれ信号の差
を演算する第1及び第2の演算手段と、これら第1及び
第2の演算手段の出力信号の差を演算する第3の演算手
段及び和を演算器る第4の演算手段と、この第4の演算
手段の出力信号が所定レベルにある間に生じる、前記第
3の演算手段の出力イa号と基準し・ベルのクロス信号
を出力する検知手段と、を含むエツジ検出装置は、投影
機には適しているbのの、そのまま光学式表面変位検出
装置に用いるには、構成が非常に複雑である。又、特馳
昭58−102477で提案したような、受光器を、被
測定物の映像が進む方向に二分割された2つの受光要素
から形成すると共に、これらの受光要素の出力信号を各
々微分する微分回路と、これら微分回路の出力信号の差
を演算する差動回路と、この差動回路からの出力信号:
を参照信号と比較して、被測定物のエツジとなる一点を
判別する判定回路と、を含むエツジ検出装置は、2つの
出力信号の波形がほぼ同じである高速度走査型レーザ測
長機には適しているものの、一般に、散乱光の関係で見
掛上の反射光径が異なるため、基準信号と反射信号の波
形が大幅に異なり、特に反射信号が非対称波形になり易
い光学式表面変位検出装置にそのまま用いるのには適し
ていない。更に、実願昭58−87424で提案したよ
うな、光線ビームの一部を被測定物の直前で検知して、
その光量変動を電気信号に変換して出力する光量検知手
段を設けると共に、この光量検知手段を、その出力装置
が判定装置における基準信号又は受光器出力信号の補正
信号となるように光量検知手段に接続したエツジ検出装
置も、やはり、光学式表面変位検出装置にそのまま用い
るのには適していないという問題点を有していた。
On the other hand, the applicant has already developed an edge detection device for optical measuring instruments in Japanese Patent Application Laid-open No. 58-173408 and Japanese Patent Application No. 58-173.
-102477, Utility Application No. 58-87424, etc.
Although various methods have been proposed,
As proposed in 08, four light-receiving elements arranged in a plane substantially parallel to the movement plane so as to generate at least two sets of phase-shifted signals based on the brightness and darkness that occur when moving relative to the object to be measured. a sensor comprising a sensor, first and second calculation means for calculating the difference between the phase shift signals of the respective phases, a third calculation means for calculating the difference between the output signals of the first and second calculation means; A fourth calculation means for calculating the sum, and a cross signal between the output a of the third calculation means and the reference bell, which is generated while the output signal of the fourth calculation means is at a predetermined level. Although the edge detection device including the detection means for outputting the edge detection device is suitable for a projector, it has a very complicated configuration to be used as it is in an optical surface displacement detection device. In addition, as proposed in Tokuchi Sho 58-102477, the light receiver is formed from two light-receiving elements divided into two in the direction in which the image of the object to be measured travels, and the output signals of these light-receiving elements are differentiated. A differential circuit that calculates the difference between the output signals of these differentiating circuits, and an output signal from this differential circuit:
The edge detection device, which includes a judgment circuit that compares the signal with a reference signal and determines one point that is an edge of the object to be measured, is suitable for a high-speed scanning laser length measuring machine in which the waveforms of the two output signals are almost the same. However, in general, the waveforms of the reference signal and the reflected signal are significantly different because the apparent diameter of the reflected light differs due to the scattered light, and in particular, the reflected signal tends to have an asymmetrical waveform.Optical surface displacement detection Not suitable for use in equipment as is. Furthermore, as proposed in Utility Model Application No. 58-87424, a part of the light beam can be detected immediately before the object to be measured.
A light amount detection means that converts the light amount fluctuation into an electrical signal and outputs it is provided, and the light amount detection means is connected to the light amount detection means so that the output device serves as a reference signal in the determination device or a correction signal for the light receiver output signal. The connected edge detection device also had the problem that it was not suitable for use as it was in an optical surface displacement detection device.

又、基準信号と反射信号の波形の違いを克服するべく、
各出力信号の中間点を直接捉え、それらの間隔から時間
間隔を決定することが考えられるが、各出力信号の中間
点を検出するに際して、例えば2階tR2分を用いる方
法は、回路が少雑になるだけでなく、正確な中間点をめ
るのが困り1であるという問題点を有していた。
Also, in order to overcome the difference in waveform between the reference signal and the reflected signal,
It is conceivable to directly capture the midpoint of each output signal and determine the time interval from those intervals, but the method of using, for example, the second-order tR2 when detecting the midpoint of each output signal requires a small and complicated circuit. Not only that, but also it is difficult to determine the exact midpoint.

本発明は、前記従来の問題点を解消するべくなされたも
ので、基準信号と反則信号の中間点を直接求めることな
く、該中間点に対応する時間間隔を、簡単な回路で精度
よくめることかてぎる光学式表面変位検出回路を提供づ
るこ2とを目的とする。
The present invention has been made in order to solve the above-mentioned conventional problems, and it is possible to accurately determine the time interval corresponding to the intermediate point using a simple circuit, without directly determining the intermediate point between the reference signal and the foul signal. The second object of the present invention is to provide an optical surface displacement detection circuit.

本発明は、ビーム走査範囲の基準位置に対応して配設さ
れた雑事光検出素子から出力される基準15号と、測定
対象面によるビーム反射光のうち、ビーム照射方向とは
異なる設定方向の反射光のみを受光するようにされた反
射光検出素子から出力される反則信号の発生時間間隔か
ら、測定対象面の設定方向変位をめるための光学式表面
変位検出回路において、前記基準信号と2つの位置で交
差する第1閾値を発生づる第1設定器と、前記反射信号
と2つの位置で交差する第2閾値を発生する第2設定器
と前記基準信号と第1間隔の2つの交差位置を検出する
第1検出器と、前記反射信号と第2閾値の2つの交差位
置を検出する第2検出器と、各検出器で検出される、対
応づけられた一対の交差位置間に発生するクロックパル
スを計数する第1カウンタと、各検出器で検出される、
対応づけられた他の一対の交差位置間に発生するクロッ
クパルスを計数する第2カウンタと、両カウンタで計数
された両パルス数を演算して、前記基準信号ど反射信号
の発生時間間隔をめる演算器と、を備えることにより、
前記目的を達成したものである。
The present invention uses the reference No. 15 output from the miscellaneous light detection element arranged corresponding to the reference position of the beam scanning range and the beam reflected by the measurement target surface in a setting direction different from the beam irradiation direction. In an optical surface displacement detection circuit for determining displacement in a set direction of a surface to be measured from the generation time interval of a foul signal output from a reflected light detection element configured to receive only reflected light, the reference signal and a first setter that generates a first threshold that intersects at two positions; a second setter that generates a second threshold that intersects the reflected signal at two positions; and two intersections of the reference signal and the first interval. A first detector that detects the position, a second detector that detects the two intersection positions of the reflected signal and the second threshold value, and a second detector that detects the intersection position between the corresponding pair of intersection positions detected by each detector. a first counter that counts clock pulses detected by each detector;
A second counter that counts clock pulses generated between another pair of correlated intersection positions, and the number of pulses counted by both counters is calculated to calculate the generation time interval of the reflected signal such as the reference signal. By having a computing unit that
The above objective has been achieved.

又、本発明の実施態様は、前記第1設定器及び第2設定
器を、前記基準光検出素子出力又は反射光検出素子出力
の最大値を保持し、該保持信号を分圧して前記第1閾値
又は第2閾値を発生するものとして、散乱光や電源変動
等による基準信号や反射信号の波高値変動の影響を受け
ることなく、又、非対称波形においても、精度の高い測
定が行えるようにしたものである。
Further, in an embodiment of the present invention, the first setting device and the second setting device hold the maximum value of the reference light detection element output or the reflected light detection element output, and divide the holding signal to set the first setting device. As a device that generates the threshold value or the second threshold value, it is not affected by fluctuations in the peak value of the reference signal or reflected signal due to scattered light or power fluctuations, etc., and can perform highly accurate measurements even with asymmetric waveforms. It is something.

更に、本発明の他の実施態様は、前記第1検出器及び第
2検出器を、前記基準信号又は反射信号と第1閾値又は
第21JI鎖を比較する比較器と、該比較器出力の矩形
波イ菖号をデジタル処理して2つの交差位置に対応する
パルス信号を発生づるデジタル微分回路とから構成して
、基準信号又は反射信号と第1閾値又は第2閾値の2つ
の交差位置を容易に検出できるようにしたものである。
Furthermore, another embodiment of the present invention provides a comparator for comparing the first detector and the second detector with the reference signal or the reflected signal and a first threshold value or a 21st JI chain, and a rectangular shape of the output of the comparator. It is composed of a digital differentiation circuit that digitally processes the wave Iris signal and generates a pulse signal corresponding to the two crossing positions, and easily determines the two crossing positions of the reference signal or reflected signal and the first threshold value or the second threshold value. It is designed so that it can be detected.

本光明においては、基準信号と第1閾値の2つの交差位
置、及び、反射信号と第2闇値の2つの交差位置をそれ
ぞれ検出し、対応づけられた二対の交差位置間に発生づ
るクロックパルスをそれぞれ計数し、両パルス数を演綽
して、基準fg号と反射伝号の発生時間間隔をめるよう
にしたので、基準信号又は反IJJ信号の中間点を直接
求めることなく、該中間点の間隔に相当するパルス信号
、即ち、基準信号と反射信号の発生時間間隔を精度よく
めることかできる。
In this light, two crossing positions of the reference signal and the first threshold value and two crossing positions of the reflected signal and the second dark value are respectively detected, and a clock generated between the two pairs of corresponding crossing positions is detected. By counting each pulse and calculating the number of both pulses, the time interval between the occurrence of the reference fg signal and the reflected signal is determined. It is possible to precisely adjust the generation time interval between the pulse signal, that is, the reference signal and the reflected signal, which corresponds to the interval between the intermediate points.

以下図面を参照して、本発明の実施例を詳細に説明(る
Embodiments of the present invention will be described in detail below with reference to the drawings.

本実施例は、第3図に示1如く、前出第2図に示した従
来例と同様の、レーザビーム発生器20と、回転ミラー
22と、例えばフォトダイオ−、ドかうなる基準光検出
素子24と、スリット26と、例えばフォトダイオード
からなる反射光検出素子28と、変位検出回路29と、
コリメータレンズ30とを有する光学式表面変位検出装
置において、平行走査ビーム31中の基準位置にミラー
40を設け、該ミラー40により前記基準光検出素子2
8にレンズ41及びスリット42を介してレーザビーム
を大剣するように構成すると共に、前記変位検出回路2
9を、前記M単光検出素子24出力の基準信号S1及び
前記反射光検出素子28出力の反射信号S2を各々増幅
するアンプ46.48と、前記基準信号81と2つの位
置で交差する第1閾値vrf3F+を発生でる第1設定
器50と、前記反射信号82と2つの位置で交差する第
2I8I値Vrerzを発止ダる第2設定器52と、前
記基準信号S1と第1閾11Vrer、の2つの交差位
1ifP11、P 12を検出する第1検出器54と、
前記反射信号S2と第2閾値vref2の2つの交差位
置P21TP22を検出する第2検出器56と、各検出
器54.56で検出される交差位置のうち、対応づ1)
られた二対、例えばP 1+とP 21、P 12とP
22を選択するためのシフトレジスタ58と、クロック
パルス発生器60と、各検出器54.56で検出される
、対応づけられた一対の交差位置P u〜P2+間に発
生ずるクロックパルス数Aを計数する第1カウンタ62
と、各検出器54.56で検出される、対応づけられた
他の一対の交差位置P +2〜P22間に発生するクロ
ックパルス数Bを計数する第2カウンタ64と、両カウ
ンタ62.64で計数された両パルス数を演紳して、前
記基準信号と反射信号の発生時間間隔をめる演算器66
と、発生時間間隔と変位11xを関係づける設定値を入
力づるための第3設定器68と、該第3設定器68の設
定(1へを利用して前記演稗器66出力の発生時間間隔
を変位に検線づるための変位換算器70と、該変位換算
器70出力を表示器るだめの表示器72と、から構成し
たものである。第3図において、44は、反射光検出素
子28に大剣される反射光を集光するためのレンズであ
る。
As shown in FIG. 3, this embodiment uses a laser beam generator 20, a rotating mirror 22, a photodiode, and a reference light detector, similar to the conventional example shown in FIG. an element 24, a slit 26, a reflected light detection element 28 made of, for example, a photodiode, a displacement detection circuit 29,
In the optical surface displacement detection device having a collimator lens 30, a mirror 40 is provided at a reference position in the parallel scanning beam 31, and the mirror 40 allows the reference light detection element 2 to be detected by the mirror 40.
8 is configured to emit a laser beam through a lens 41 and a slit 42, and the displacement detection circuit 2
9, amplifiers 46 and 48 that amplify the reference signal S1 of the output of the M single light detection element 24 and the reflection signal S2 of the output of the reflected light detection element 28, respectively, and a first amplifier that intersects the reference signal 81 at two positions. a first setter 50 that generates a threshold value vrf3F+; a second setter 52 that generates a second I8I value Vrerz that intersects the reflected signal 82 at two positions; a first detector 54 that detects two cross points 1ifP11, P12;
The second detector 56 detects the two intersection positions P21TP22 of the reflected signal S2 and the second threshold value vref2, and the corresponding intersection positions detected by each detector 54, 56 (1)
For example, P 1+ and P 21, P 12 and P
22, the clock pulse generator 60, and each detector 54. First counter 62 for counting
and a second counter 64 that counts the number of clock pulses B generated between the other pair of correlated intersection positions P+2 to P22 detected by each detector 54.56, and both counters 62.64. a calculator 66 which calculates the generation time interval between the reference signal and the reflected signal by calculating the number of both pulses counted;
and a third setter 68 for inputting a set value that relates the generation time interval and the displacement 11x, and the generation time interval of the output of the calculator 66 using the setting (to 1) of the third setter 68. It is composed of a displacement converter 70 for converting the displacement into a line, and a display 72 for displaying the output of the displacement converter 70. In FIG. 3, 44 is a reflected light detection element. This is a lens for condensing the reflected light reflected by the lens 28.

前記第1設定器50及び第2設定器52は、それぞれ、
前記アンプ46を介して入力される基準光検出素子24
出力又は前記アンプ48を介して入力される反射光検出
素子28出力の最大値を保持するためのコンデンサ50
A又は52Aと、該コンデンサ50A又は52Aによる
保持電圧を、例えば1/2に分圧して前記第1閾値Vr
ef+又は第2閾1! V +・er 2を発生する可
変型の分圧抵抗50B又は52Bと、から構成されてい
る。
The first setting device 50 and the second setting device 52 each have
Reference photodetection element 24 inputted via the amplifier 46
a capacitor 50 for holding the output or the maximum value of the reflected light detection element 28 output input via the amplifier 48;
A or 52A and the voltage held by the capacitor 50A or 52A, for example, is divided into 1/2 to obtain the first threshold value Vr.
ef+ or second threshold 1! It is comprised of a variable voltage dividing resistor 50B or 52B that generates V + ·er 2.

又、前記第1検出器54及び第2検出器56は、それぞ
れ、前記アンプ46を介して入力される基準光検出素子
24出力又は前記アンプ4.8を介して人力される反射
光検出素子28出力と前記第1@1iaVref、又は
第2閾値”、/ref2を比較づる比較器54A又は5
6Aと、第4図に示す如く、該比較器54A又は56A
出力の矩形波信号Sp1.5l12を微分し、一方を反
転して論理和を取ることによって、又は、第5図に示す
如く、矩形波信@8p1、Sp 2を微小時間だけ遅延
し、元の信号との排他的論理和を取ることによって、基
準信号81又は反射信号S2の立上り及び立下り、即ち
、2つの交差位置に対応するパルス(8号PnとP 1
2又はP21と−F22を光生ずるデジタル微分回路5
4B又(ま56Bと、から構成されている。
Further, the first detector 54 and the second detector 56 each have the output of the reference light detection element 24 inputted via the amplifier 46 or the reflected light detection element 28 manually inputted via the amplifier 4.8. A comparator 54A or 5 that compares the output with the first @1iaVref or the second threshold value /ref2.
6A and the comparator 54A or 56A as shown in FIG.
By differentiating the output rectangular wave signal Sp1.5l12, inverting one and taking the logical sum, or by delaying the rectangular wave signal @8p1, Sp2 by a minute time as shown in Fig. 5, the original By taking the exclusive OR with the reference signal 81 or the reflected signal S2, the pulses (No. 8 Pn and P1
2 or a digital differentiation circuit 5 that generates P21 and -F22.
It is composed of 4B or 56B.

本実施例における各部信号波形の例を第6図に示づ。図
から明らかな如く、例えば基準信号S1の立上りP 1
1と反射信号82の立上りP 21の時間間隔を計数し
たパルスpilA及び基準信号S2の立下りP12と反
射信号S2の立下りP22の時間間隔を計数したパルス
数Bを加算して、2で劃ることによって、基準信号S1
の中間点と反射イに号S2の中間点に対応づるパルス数
<A十B)/2を、精度良くめることかできる。
FIG. 6 shows examples of signal waveforms at various parts in this embodiment. As is clear from the figure, for example, the rising edge P 1 of the reference signal S1
1 and the pulse pilA, which is calculated by counting the time interval of the rising edge P21 of the reflected signal 82, and the pulse number B, which is calculated by counting the time interval of the falling edge P12 of the reference signal S2 and the falling edge P22 of the reflected signal S2, and the pulse number B is calculated by 2. By doing so, the reference signal S1
The number of pulses corresponding to the midpoint of S2 and the midpoint of reflection A can be calculated with high precision.

本実施例においては、第1閾1!Vl・e[1及び第2
閾値Vref2を、いずれも、基準信号S1の最大値又
は反則信号S2の最大値に応して変動させるようにして
いるので、散乱光や電源変動等による出力信号の波高鎮
変動に拘らず、精度の良い測定を行うことができる。又
、非対称波形である場合の中間点を狙うことも容易であ
る。なお、分圧抵抗50B、52Bによる分圧比は1/
2に限定されず、又、第1riIAIlfWVref+
及び第2閾値vref2を定電圧設定とすることも可能
である。
In this embodiment, the first threshold 1! Vl・e[1st and 2nd
Since the threshold value Vref2 is varied depending on the maximum value of the reference signal S1 or the maximum value of the foul signal S2, the accuracy can be maintained regardless of fluctuations in the output signal due to scattered light, power fluctuations, etc. good measurements can be taken. Furthermore, it is also easy to aim for the midpoint in the case of an asymmetric waveform. Note that the voltage dividing ratio by the voltage dividing resistors 50B and 52B is 1/
2, but also the first riIAIlfWVref+
It is also possible to set the second threshold value vref2 to a constant voltage.

又、本実施例においては、第1カウンタ62と第2カウ
ンタ64の計数値の和(A+B)を2で割ることによっ
て、クロックパルス数と変位iを従来と同様に対比させ
ていたが、例えば、クロックパルス数を従来の1/2と
することによって、2で割る演算を省略することも可能
である。
Further, in this embodiment, the number of clock pulses and the displacement i are compared by dividing the sum (A+B) of the count values of the first counter 62 and the second counter 64 by 2 as in the conventional case. , it is also possible to omit the operation of dividing by 2 by reducing the number of clock pulses to 1/2 of the conventional number.

なお、IIIj記実施例においては、基準信号S1の立
上り1〕11と反射信号S2の立上りP 2+の時間間
隔、及び、基準信号S1の立下りP12と反射信号82
の立下りP22の時間間隔をそれぞれ計数するようにし
ていたが、計数づる対象はこれに限定されず、例えば、
基準信号S1の立上りP ++と反aJ信号S2の立下
りP22の時間間隔及び基準15号S1の立下りP 1
2と反射信号S2の立上りP 21の時間間隔を測定し
て演算しても、結果は同じである。
In the embodiment IIIj, the time interval between the rising edge 1]1 of the reference signal S1 and the rising edge P2+ of the reflected signal S2, and the time interval between the falling edge P12 of the reference signal S1 and the reflected signal 82
Although the time interval of each falling P22 of
The time interval between the rising edge P ++ of the reference signal S1 and the falling edge P 22 of the anti-aJ signal S2 and the falling edge P 1 of the reference signal S1
Even if the calculation is performed by measuring the time interval between P21 and the rising edge P21 of the reflected signal S2, the result is the same.

本光明は、実施例で示したような投射ビーム平行走査方
式の光学式表面変位検出装置に用いるのに特に好適なも
のであるが、本発明の適用範囲はこれに限定されず、前
出第1図に示したような投射ビーム回転走査方式の光学
式表面変位検出装置や、他の方式の光学式表面変位検出
装置、更には、一般の光学式測定機器にも同様に適用で
きることは明らかである。
Although this light is particularly suitable for use in an optical surface displacement detection device using a projection beam parallel scanning method as shown in the embodiments, the scope of application of the present invention is not limited thereto, and is applicable to the above-mentioned It is clear that the present invention can be similarly applied to optical surface displacement detection devices using a projection beam rotation scanning method as shown in Figure 1, optical surface displacement detection devices using other methods, and even general optical measuring instruments. be.

以上説明した通り1、本発明によれば、基準信号と反則
信号の中間点を直接求めることなく、該中間点に対応す
る時間間隔を簡単な回路で精庶良くめることができると
いう優れた効果を有する。
As explained above, 1. According to the present invention, the excellent effect is that the time interval corresponding to the midpoint between the reference signal and the foul signal can be finely adjusted with a simple circuit without directly finding the midpoint between the reference signal and the foul signal. has.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の投射ビーム回転走査方式による光学式
表面変位検出装置の一例の構成を示タブロック線図、第
2図は、出願人が既に提案した、投射ビーム平行走査方
式による光学式表面変位検出装置の構成を示ずブロック
線図、第3図は、本発明に係る光学代表り変位検出回路
の実施例が採用された、光学式表面変位検出装置の構成
を示すブロック線図、第4図は、前記実施例で用いられ
ているデジタル微分回路の作用の一例を示す線図、第5
図は、同じくデジタル微分回路の作用の他の例を示す線
図、第6図は、前記実施例の各部勅作波形を示11j1
図である。 10・・・測定対象面、 20・・・レーザヒーム光生
器、22・・・回転ミラー、 24・・・基準光検出素
子、26・・・スリット、28・・・反則光検出素子、
50.52・・・設定器、 50A、52A・・・コンデンサ、 50B、52B・・・分圧抵抗、 54.56・・・検出器、 54A、56A・・・比較器、 54[3,56B・・・デジタル微分回路、58・・・
シフトレジスタ、 60・・・クロックパルス発生器、 62.64・・・カウンタ、66・・・演算器、Sl・
・・基準信号、 Sl・・・反射信号、V rer +
 、V rer 2−閾値、P ++、P 12、P2
1.P2.2・・・交差位置、A、B・・・クロックパ
ルス数。 代理人 高 矢 論 (ほか1名) 第1図 第2図 4図 第5図 第・ 6 図 2′
FIG. 1 is a block diagram showing the configuration of an example of an optical surface displacement detection device using a conventional projection beam rotation scanning method, and FIG. 2 is an optical surface displacement detection device using a projection beam parallel scanning method already proposed by the applicant. FIG. 3 is a block diagram showing the structure of an optical surface displacement detection device in which an embodiment of the optical representative displacement detection circuit according to the present invention is adopted; FIG. FIG. 4 is a diagram showing an example of the operation of the digital differentiation circuit used in the above embodiment;
The figure is a diagram showing another example of the operation of the digital differential circuit, and FIG. 6 shows the waveforms of each part of the above embodiment.
It is a diagram. DESCRIPTION OF SYMBOLS 10... Measurement target surface, 20... Laser beam light generator, 22... Rotating mirror, 24... Reference light detection element, 26... Slit, 28... Foul light detection element,
50.52... Setting device, 50A, 52A... Capacitor, 50B, 52B... Voltage dividing resistor, 54.56... Detector, 54A, 56A... Comparator, 54[3,56B ...Digital differentiation circuit, 58...
Shift register, 60...Clock pulse generator, 62.64...Counter, 66... Arithmetic unit, Sl.
...Reference signal, Sl...Reflected signal, V rer +
, V rer 2-threshold, P ++, P 12, P2
1. P2.2...Cross position, A, B...Clock pulse number. Agent Takaya Ron (and 1 other person) Figure 1 Figure 2 Figure 4 Figure 5 6 Figure 2'

Claims (1)

【特許請求の範囲】 く1)ビーム走査範囲のM*位置に対応して配設された
基準光検出素子から出力される基準信号と、測定対象面
によるヒーム反躬光のうち、ビーム照射方向とは異なる
設定方向の反則光のみを受光するようにされた反射光検
出素子から出力される反射信号の発生時間間隔から、測
定対象面の設定方向変位をめるための光学式表面変位検
出回路において、 前記基準信号と2つの位置で交差する第1閾舶を発生す
る第1設定器と、 前記反射信号と2つの位置で交差する第2聞娘を発生す
る第2設定器と、 前記基準信号と第1閾値の2つの交差位置を検出する第
1検出器と、 前記反射信号と第2間1山の2つの交差位置を検出する
第2検出器と、 各検出器で検出される、対応づけられた一対の交差位置
間に発生ずるクロックパルスを計数する第1カウンタと
、 各検出器で検出される、対応づけられた他の一対の交差
位置間に発生するクロックパルスを計数する第2カウン
タと、 両カウンタで計数された両パルス数を演算して、前記基
準55号と反射信号の発生時間間隔をめる演算器と、 を備えたことを特徴とする光学式表面変位検出回路。 (2)前記第1設定器及び第2設定器が、前記基準光検
出素子出力又は反射光検出素子出力の最大値を保持し、
該保持信号を分圧して前記第1閾値又は第2閾値を発生
するものとされている特許請求の範囲第1項記載の光学
式表面変位検出回路。 (3)前記第1検出器及び第2検出器が、前記基準信号
又は反射信号と第1閾値又は第2間値を比較する比較器
と、該比較器出力の矩形波信号をデジタル処理して2つ
の交差位置に対応するパルス信号を発生するデジタル微
分回路とから構成されている特許請求の範囲第1項記載
の光学式表面変位検出回路。
[Claims] 1) The reference signal output from the reference light detection element arranged corresponding to the M* position in the beam scanning range and the beam irradiation direction among the beam reflection light due to the measurement target surface. An optical surface displacement detection circuit that calculates the displacement of a surface to be measured in a set direction from the generation time interval of reflection signals output from a reflected light detection element configured to receive only reflected light in a set direction different from the set direction. a first setter that generates a first threshold that intersects the reference signal at two positions; a second setter that generates a second threshold that intersects the reflected signal at two positions; and a second setter that generates a second threshold that intersects the reflected signal at two positions; a first detector that detects two intersection positions between the signal and the first threshold; a second detector that detects two intersection positions between the reflected signal and the second threshold; a first counter that counts clock pulses that occur between a pair of associated intersection positions; and a first counter that counts clock pulses that occur between another pair of associated intersection positions that are detected by each detector. An optical surface displacement detection circuit comprising: 2 counters; and an arithmetic unit that calculates the generation time interval of the reference No. 55 and the reflected signal by calculating both pulse numbers counted by both counters. . (2) the first setter and the second setter hold the maximum value of the reference light detection element output or the reflected light detection element output;
2. The optical surface displacement detection circuit according to claim 1, wherein the first threshold value or the second threshold value is generated by dividing the holding signal. (3) The first detector and the second detector include a comparator that compares the reference signal or reflected signal with a first threshold value or a second intermediate value, and digitally processes a rectangular wave signal output from the comparator. 2. The optical surface displacement detection circuit according to claim 1, further comprising a digital differentiation circuit that generates pulse signals corresponding to two intersection positions.
JP2682784A 1984-02-15 1984-02-15 Optical surface displacement detecting circuit Granted JPS60170706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2682784A JPS60170706A (en) 1984-02-15 1984-02-15 Optical surface displacement detecting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2682784A JPS60170706A (en) 1984-02-15 1984-02-15 Optical surface displacement detecting circuit

Publications (2)

Publication Number Publication Date
JPS60170706A true JPS60170706A (en) 1985-09-04
JPH0226161B2 JPH0226161B2 (en) 1990-06-07

Family

ID=12204100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2682784A Granted JPS60170706A (en) 1984-02-15 1984-02-15 Optical surface displacement detecting circuit

Country Status (1)

Country Link
JP (1) JPS60170706A (en)

Also Published As

Publication number Publication date
JPH0226161B2 (en) 1990-06-07

Similar Documents

Publication Publication Date Title
JPH0374763B2 (en)
US5473436A (en) Surface shape measurement device with slit plate and single photoelectric converter
JPH0652170B2 (en) Optical imaging type non-contact position measuring device
US4043673A (en) Reticle calibrated diameter gauge
JP3300803B2 (en) Displacement gauge, displacement measurement method, thickness gauge
JPH035845Y2 (en)
JPH0233186Y2 (en)
JPS60170706A (en) Optical surface displacement detecting circuit
JPS62144014A (en) Photoelectric position detector
JPS6111684A (en) Optical detecting circuit for surface displacement
JPH056667B2 (en)
JPH0331367B2 (en)
JPH0371044B2 (en)
JPS5826325Y2 (en) position detection device
JP2903283B2 (en) Fine wire diameter measuring device
JP3085341B2 (en) Outline measuring device and method of arranging object to be measured
JPH0318887Y2 (en)
JPS6029087B2 (en) Focus position detection method
JPH02272310A (en) Rotation angle measuring instrument
JPS59226802A (en) Edge detector of optical measuring equipment
SU651390A1 (en) Photoelectric shaft angular position-to-code converter
JPH0460526B2 (en)
JPH0552521A (en) Optical dimension measuring apparatus
JPH0355048Y2 (en)
JPH0420527B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term