JPS60170572A - Multi-electrode welding method - Google Patents

Multi-electrode welding method

Info

Publication number
JPS60170572A
JPS60170572A JP2413084A JP2413084A JPS60170572A JP S60170572 A JPS60170572 A JP S60170572A JP 2413084 A JP2413084 A JP 2413084A JP 2413084 A JP2413084 A JP 2413084A JP S60170572 A JPS60170572 A JP S60170572A
Authority
JP
Japan
Prior art keywords
electrode
welding
voltage
current
reference electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2413084A
Other languages
Japanese (ja)
Other versions
JPH0453618B2 (en
Inventor
Yoshihiro Jitsumatsu
實松 嘉浩
Hideo Takiguchi
瀧口 秀男
Iwao Shimizu
清水 巖
Harumichi Ichimura
治通 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Corp
Priority to JP2413084A priority Critical patent/JPS60170572A/en
Publication of JPS60170572A publication Critical patent/JPS60170572A/en
Publication of JPH0453618B2 publication Critical patent/JPH0453618B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/124Circuits or methods for feeding welding wire
    • B23K9/125Feeding of electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)

Abstract

PURPOSE:To enable easy regulation of the welding current and voltage of the entire electrode by detecting and processing the welding current and voltage of only the reference electrode among the multiple electrodes of a multi-electrode welding machine. CONSTITUTION:The current and voltage of a reference electrode 1 of a multi- electrode welding machine are set by a welding control device 2 and are outputted from a reference electrode 1 via a welding power source 3 for the reference electrode and a wire feeder 4. The signals from a current detecting part 5 and voltage detecting part 6 for the electrode 1 enter a calculator 7. The calculator 7 emits a command to a welding control device 9 for subsidiary electrodes so that the current and voltage values of a subsidiary electrode 8 attain the specified relation determined preliminarily with the current and voltage values of the electrode 1. The device 9 controls a welding power source 10 for subsidiary electrodes and a wire feeder 11 so as to attain the target current and voltage values.

Description

【発明の詳細な説明】 (発明の分野) 本発明は、多を極溶接において各電極の溶接条件を制御
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of controlling the welding conditions of each electrode in multi-polar welding.

(従来技術) 従来、多電極溶接の溶接条件設定においては、各電極の
電流、電圧をそれぞれ設定するため、各々の電極の電流
、電圧制御に対応するだけの可変抵抗あるいはスイッチ
によシ構成される操作盤を操作する必要があった。この
ため、溶接条件を適正値に維持するために溶接開始前に
予め操作者によシ各電極の溶接条件を設定、あるいは溶
接開始直後に各電極の溶接条件を各電極がタブ板上を進
行している間に調整している。
(Prior art) Conventionally, when setting welding conditions for multi-electrode welding, in order to set the current and voltage of each electrode individually, variable resistors or switches were used to control the current and voltage of each electrode. It was necessary to operate the control panel. Therefore, in order to maintain the welding conditions at appropriate values, the welding conditions for each electrode must be set by the operator in advance before welding starts, or the welding conditions for each electrode must be set immediately after welding starts so that each electrode moves on the tab plate. I'm making adjustments while I'm at it.

ところが、電極数が多くなる程、5溶接進行中に溶接条
件を修正する際、多電極溶接機全体の電流電圧値の調整
に時間を費やし、溶接者の負担になるばかシでなく、変
更の、タイミングがずれたシすることがあるため、本来
溶接者の行なうべき監視業務がおろそかになっていた。
However, as the number of electrodes increases, when modifying welding conditions during welding, it takes time to adjust the current and voltage values of the entire multi-electrode welding machine, which burdens the welder. Because the timing may be off, the monitoring work that should normally be performed by welders has been neglected.

このようなタイミングのずれが生じた場合には、この時
溶接された部位は適正電流電圧条件からのずれ、および
溶接状況の監視不足によシ、滲込不足、融合不良、オー
バーラツプ、アンダーカット等の溶接欠陥を発生させる
可能性が大きく、溶接欠陥の発生はその手直しのために
多大な時間を費やす結果となっていた。このような多電
極溶接特有の原因に起因する溶接欠陥を防止するために
は溶接者の人数を増すことによル、作業を分担すればよ
いが、この方法では人件費が増大するという欠点を有し
ている。
If such a timing shift occurs, the parts welded at this time may be affected by a deviation from the appropriate current and voltage conditions, insufficient monitoring of the welding status, insufficient seepage, poor fusion, overlap, undercut, etc. There is a large possibility that welding defects will occur, and the occurrence of welding defects results in a large amount of time being spent on rework. In order to prevent welding defects caused by causes specific to multi-electrode welding, it is possible to increase the number of welders and divide the work, but this method has the disadvantage of increased labor costs. have.

(発明の目的) 本発明は前述の様な事情に鑑み多電極溶接の複数電極の
溶接電流、電圧の一方または両方の変更操作を簡便にし
、溶接者の負担を軽くし、なおかつ、溶接条件変更に要
する時間を短かくして溶接欠陥の発生を防止する事によ
シ、品質向上および省力化に顕著な効果を得る事を目的
とするものであシ、その特徴とするところt1■多電極
溶接において、基準とする電極を定め、該基準電極の電
流、電圧と、他の電極の溶接′哨、流、電圧の一方また
は両方が一定の関係を保つように、基準電極の溶接電流
、電圧の一方または両方を検出し、演算器にて処理した
信号を用いて他の電極の溶接電流、霜、圧の一方または
両方を制御する点にある。
(Objective of the Invention) In view of the above-mentioned circumstances, the present invention simplifies the operation of changing one or both of the welding current and voltage of multiple electrodes in multi-electrode welding, lightens the burden on the welder, and furthermore, makes it possible to change the welding conditions. The purpose is to shorten the time required for welding and prevent the occurrence of welding defects, thereby achieving a remarkable effect on quality improvement and labor saving. , a reference electrode is determined, and one of the welding current and voltage of the reference electrode is adjusted so that the current and voltage of the reference electrode and one or both of the welding current and voltage of the other electrodes maintain a constant relationship. Alternatively, one or both of the welding current, frost, and pressure of the other electrodes can be controlled using the signals processed by the arithmetic unit.

又本発明においては、多電極溶接において基準となる電
極を定め、基準電極および従属電極の溶接電流、電圧の
一方まだは両方を検出し、両信号を比較演算器により処
理し、該信号を用いて従属電極の溶接電流電圧の一方ま
たは両方を制御する。
Further, in the present invention, a reference electrode is determined in multi-electrode welding, one or both of the welding current and voltage of the reference electrode and the subordinate electrode are detected, both signals are processed by a comparator, and the signals are used to to control one or both of the welding current voltages of the subordinate electrodes.

ば上記の目的が達せられる方法が提供される。Thus, a method is provided in which the above objectives are achieved.

(発明の構成) 以下実施例に基づき、第1図に則して説明する。(Structure of the invention) Hereinafter, an explanation will be given based on an example and with reference to FIG.

基葦電極1の電流電圧は溶接制御装置2によシ設定され
、基準電極用溶接電源3およびワイヤ送給装置4を通し
て基準電極1よシ出力される。この時基準電極の電流電
圧の設定は自動であっても手動であってもよい。基準電
極1の電流検出端5と電圧検出端6からの信号は演算器
7に入る。この演算器7からは従属電極8の電流電圧値
を基環電極1の電流電圧値に対して予め定めておいた一
定の関係となる様に従属電極8の溶接制御装置9へ指令
する。従属電極の溶接制御装置9は演算器7から与えら
れた目標電流電圧値になるように従属電極用溶接電源1
0およびワイヤ送給装置11の制御を行なう。
The current and voltage of the base electrode 1 are set by the welding control device 2 and outputted to the reference electrode 1 through the welding power source 3 for the reference electrode and the wire feeding device 4. At this time, the current and voltage of the reference electrode may be set automatically or manually. Signals from the current detection terminal 5 and voltage detection terminal 6 of the reference electrode 1 enter a computing unit 7. This calculator 7 issues a command to the welding control device 9 for the dependent electrode 8 so that the current and voltage value of the dependent electrode 8 has a predetermined constant relationship with the current and voltage value of the base ring electrode 1. The welding control device 9 for the subordinate electrode controls the welding power source 1 for the subordinate electrode so that the target current and voltage value given from the calculator 7 is achieved.
0 and the wire feeding device 11.

また、従属電極の電流電圧値の制御の精度向上のため、
第2図に示すように基準電極1の電流電圧値から演算さ
れた従属電極の電流電圧の指定値と、電流検出n:14
および電圧検出端15よシ取シ出して比較、修正する比
較演算器16を設けてもよく、この場合比較演算された
後の信号を従属電極の電流電圧の基準値として用いる。
In addition, in order to improve the accuracy of controlling the current and voltage values of the dependent electrodes,
As shown in FIG. 2, the specified value of the current and voltage of the dependent electrode calculated from the current and voltage value of the reference electrode 1 and the current detection n: 14
A comparator 16 may also be provided which is taken out from the voltage detection terminal 15 for comparison and correction, and in this case, the signal after comparison and computation is used as the reference value for the current and voltage of the dependent electrode.

さらに、基剤電極と従属電極との間隔がμく溶接の進行
に伴う時間的なずれが無視し得ない場合は第1図および
第2図に示す遅延器12を設け、基準電極の電流電圧変
化に対し従属電極の電流電圧出力の変化を電極間隔と溶
接速度に合わせて遅らせてやればよい。
Furthermore, if the distance between the base electrode and the dependent electrode is μ and the time lag accompanying the progress of welding cannot be ignored, a delay device 12 shown in FIGS. 1 and 2 is installed, and the current voltage of the reference electrode is In response to the change, the change in the current and voltage output of the dependent electrode may be delayed in accordance with the electrode spacing and welding speed.

これらは2電極溶接の場合について説明したが3電極以
上の多電極溶接機に於ても同様に実施可能である。ま′
た、制御の目的と電源特性にょシ基準電極の電流電圧と
従属電極の電流電圧を同時に制御する必要はなく、電流
あるいは電圧のみ一定関係となる様に制御しても同様の
結果を得る墨ができる。
Although these have been described for the case of two-electrode welding, they can be implemented similarly in a multi-electrode welding machine with three or more electrodes. Ma'
In addition, regarding the purpose of control and power supply characteristics, it is not necessary to control the current and voltage of the reference electrode and the current and voltage of the subordinate electrode at the same time, and it is not possible to obtain the same result by controlling only the current or voltage so that they have a constant relationship. can.

ここで基準電極と従属!極の各々の電流電圧の一定の関
係について例を示す。たとえばV形開先において2電極
溶接機の電極を溶接進行方向に直列に配置して同一速度
で裏波溶接を実施する場合、適正な裏波を得ることが可
能な溶接条件、開先条件の範囲は狭く、大型構造物の溶
接施工に於ては、開先条件特にルート間隔を一定の溶接
条件で溶接可能な狭い範囲に保つ事が困難になる事が多
い。
Here the reference electrode and subordinate! An example is given for a constant relationship between current and voltage for each of the poles. For example, when performing Uranami welding at the same speed with the electrodes of a two-electrode welding machine arranged in series in the welding direction in a V-shaped groove, the welding conditions and groove conditions that can obtain an appropriate Uranami are determined. The range is narrow, and when welding large structures, it is often difficult to keep the groove conditions, especially the root spacing, within a narrow range that allows welding under constant welding conditions.

このため、適正な裏波ピードを得るために、ルート間隔
が大きい場合には溶融金属の溶は落ちを防止するため先
行電極の電流電圧を下げ、ルート間隔が小さい場合には
、裏波ピードの確保のために先行電極の電流電圧を上げ
る必要があることは衆知である。
Therefore, in order to obtain an appropriate uranami peed, when the root spacing is large, the current and voltage of the leading electrode is lowered to prevent the molten metal from dripping, and when the root spacing is small, the uranami peed is lowered. It is well known that it is necessary to increase the current and voltage of the leading electrode to ensure this.

ルート間隔が大きい部分は開先断面積が広くなるにもか
かわらず、先行電極の電流電圧を下けて溶接するため、
先行電極によって得られる溶着断面積は減少する。この
ため後行電極では後行電接で溶接すべき残シのルート間
隔が広くなった事による開先断面積の増加分と先行電極
の溶着断面積が狭くなったことによる残シの開先断面積
の増加分の和で与えられる溶着断面積の増加に対応する
電流電圧の増加が必要である。そのため第3図(a)の
様な積層となる。逆にルート間隔が狭い場合は裏波ビー
ドの確保のために、先行電極では電流電圧を上げるため
、後行電極では残シの開先断面積が小さくなるので電流
電圧を下げる必要があシ第3図中)の様な8層となる。
Even though the groove cross-sectional area becomes wider in areas where the root spacing is large, the current and voltage of the leading electrode is lowered to weld.
The weld cross section obtained by the leading electrode is reduced. For this reason, the trailing electrode has an increase in the groove cross-sectional area due to the widening of the root spacing of the remaining welds to be welded during trailing electric welding, and an increase in the groove in the remaining groove due to the narrowing of the welding cross-sectional area of the leading electrode. An increase in current and voltage is required to correspond to an increase in the weld cross-sectional area given by the sum of the increases in cross-sectional area. This results in a stacked layer as shown in FIG. 3(a). On the other hand, if the root spacing is narrow, the current and voltage will be increased at the leading electrode in order to secure the Uranami bead, and the current and voltage will need to be lowered at the trailing electrode because the groove cross-sectional area of the remaining groove will become smaller. There are 8 layers as shown in Figure 3).

溶着量を制御しようとするには先行電流、電圧と後行電
流、電圧の間は、溶接電源が定電圧特性の場合は第4図
(a)、溶接電源が垂下特性の場合は第4図(b)に示
す関係であればよく、先行電極の電流電圧を基準として
後行電極の電流が第4図の関係となる様に演算器にて設
定すればよい。
To control the amount of welding, between the leading current and voltage and the trailing current and voltage, use Figure 4 (a) if the welding power source has constant voltage characteristics, or Figure 4 if the welding power source has droop characteristics. The relationship shown in (b) may be sufficient, and the calculation unit may be used to set the current of the trailing electrode to the relationship shown in FIG. 4 with reference to the current voltage of the leading electrode.

次に、溶接途中に溶接部の板厚が溶接中に変化する場合
について第5図に示す。溶接途中に於いて溶接する板厚
が増大する溶接部を、溶接線に対し電極を直列に配置し
た2電極溶接機によシ各電極を同一速度で進行させて溶
接する場合、開先断面積の増大に対処するため各電極の
電流電圧を増大させる。この場合先行、後行電極間の電
流電圧の関係は比例関係でよい。故に先行電極と後行電
極の電流電圧の関係は第5図に示す条件である。
Next, FIG. 5 shows a case where the plate thickness of the welded part changes during welding. When welding a welded part where the plate thickness increases during welding using a two-electrode welder with electrodes arranged in series with the weld line, with each electrode advancing at the same speed, the groove cross-sectional area In order to cope with the increase in the current and voltage of each electrode, the current and voltage of each electrode are increased. In this case, the current-voltage relationship between the leading and trailing electrodes may be proportional. Therefore, the relationship between the current and voltage of the leading electrode and the trailing electrode is the condition shown in FIG.

さらに、直立する板状母材の横向き溶接を両面溶接装置
にて両方の面の電極を溶接進行方向の位置を一致させて
実施する場合について述べる。この溶接法に於て第6図
(a)に示すごとく良好なビード形状を得るためには、
両面での相対する電極の電流、電圧をほぼ一致させる必
要がある。電流については10チの差が生じても問題が
ないが、電圧については2%以上の差が生じた場合、第
6図Φ)に示すごとく溶融メタルが片面にふかれビード
が片寄って形成される。このため両面を同時に仕上ける
事が不可能となシ両面横向き溶接の意味が薄れてしまう
。電圧値を0.5層以内に一致させる事は、溶接部によ
る電圧メーターの読み取υによる調整では誤差が太き過
ぎる本によシ正確な設定が困難である。また、正確な電
流、電圧の設定が可能な装置を使用しても、アーク起動
時、電圧変動による外乱発生時などでは相対する電極の
電圧バランスが取れないため、片寄ったビードが形成さ
れ安定ビードとなるまでに手直しを要する溶接ビードが
生じる事となる。この様な横向き両面溶接装置において
片面の電極を基準電極とし、相対する電極を従属電極と
し、両者の電流電圧を一致する様に制御すれば前記の問
題は解決される。
Furthermore, a case will be described in which sideways welding of an upright plate-shaped base material is carried out using a double-sided welding device with the electrodes on both surfaces aligned in the same position in the welding direction. In this welding method, in order to obtain a good bead shape as shown in Figure 6(a),
It is necessary to make the current and voltage of opposing electrodes on both sides almost the same. There is no problem even if there is a difference of 10 inches in current, but if there is a difference in voltage of 2% or more, the molten metal will be blown to one side and the bead will be formed unevenly, as shown in Figure 6 Φ). Ru. For this reason, it is impossible to finish both sides at the same time, and the meaning of double-sided horizontal welding is diminished. In order to match the voltage values within 0.5 layers, it is difficult to accurately set the voltage values by adjusting the voltage meter reading υ at the welded part because the error is too large. In addition, even if a device that allows accurate current and voltage settings is used, the voltage balance between opposing electrodes cannot be achieved when starting an arc or when disturbances occur due to voltage fluctuations, resulting in the formation of a biased bead and a stable bead. Until this happens, a weld bead will occur that requires rework. In such a horizontal double-sided welding device, the above problem can be solved by using the electrode on one side as a reference electrode, the opposing electrode as a dependent electrode, and controlling the current and voltage of both to match.

さらにこの場合の制御は以下の様に簡略化される。電流
電圧制御を溶接電源として定電圧特性のものを使用する
場合、電流はワイヤ突出長さアーク長一定では定速送給
されるワイヤ送シ速度のみで決定される。横向き溶接で
は狙い位置精度が良いため、ワイヤ突出長さとアーク長
の和ははff 一定となる。ワイヤ送シ速度は5%以内
の精度で設定可能であるので溶接ビードのバランスを取
るためには基準を極と従属電極の電流は特に同一となる
様に制御する必要はなく、電圧のみ基準電極と従属電極
が同一となる様に制御すればよい。この様に制御の目的
と電源特性によっては、基準電極と従属電極の電流電圧
を同時に制御する必要はなく電流または電圧のみ一定関
係となる様に制御しても同様の結果を得る事ができる。
Furthermore, the control in this case is simplified as follows. When a welding power source with constant voltage characteristics is used for current/voltage control, the current is determined only by the wire feed speed, which is fed at a constant speed when the wire protrusion length and arc length are constant. Since the aiming position accuracy is good in horizontal welding, the sum of the wire protrusion length and the arc length is constant. Since the wire feed speed can be set with an accuracy of within 5%, in order to balance the weld bead, it is not necessary to control the reference electrode and slave electrode currents to be the same, and only the voltage at the reference electrode is required. Control may be performed so that the and subordinate electrodes are the same. As described above, depending on the purpose of control and the power supply characteristics, it is not necessary to control the current and voltage of the reference electrode and the dependent electrode at the same time, and the same result can be obtained by controlling only the current or voltage to have a constant relationship.

(発明の効果) 上記のように本発明を用いれば、多電極溶接においても
基準電極のみの溶接電流電圧を調整するのみで、全電極
の溶接電流電圧調整が可能となることから、溶接者の負
担が非常に軽くなシ、また各電極の電流電圧の調整がタ
イミング良く正確に行なわれるため溶接欠陥の発生が防
止でき、品質8−の向上、能率の向上に顕著な効果が認
められる。
(Effect of the invention) As described above, if the present invention is used, even in multi-electrode welding, it is possible to adjust the welding current and voltage of all electrodes by simply adjusting the welding current and voltage of only the reference electrode. The load is very light, and since the current and voltage of each electrode are adjusted accurately and in a timely manner, welding defects can be prevented, and a remarkable effect is recognized in improving quality and efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は基準電極の電流電圧信号で従属電極の電流電圧
を制御する本発明の第1の実施例を示すプロ、り図であ
る。 第2図は本発明の他の実施例を示すブロック図である。 第3図はV形開先において2電極溶接機の電極を溶接進
行方向に直列に配置して裏波溶接を本発明を用いて実施
した場合の積層図で、(a)はルート間隔が広い場合、
(b)はルート間隔が狭い場合を示す。 第4図は第3図(a)、(b)の条件を満たすための先
行電極と後行電極の電流電圧の関係を示すグラフである
。 第5図は溶接中に溶接部の板厚が変化する場合の先行電
極と後行電極の電流電圧の関係を示すグラフである。 第6図は横向き両面溶接に於て、両面の電極を溶接進行
方向に一致させて実施する場合の1パス目の積層図で、
(a)は本発明を用いて得られる良好なビード形状を示
し、(b)は本発明を用いない場合に生じる事がある不
良ビードを示す。 1・・・基準電極 2・・・基準電極溶接制御装置 3
・・・基準電極溶接電源 4・・・基準電極ワイヤ送給
装置 5・・・基準を極電流検出端 6・・・基準電極
電圧検出端 7・・・演算器 8・・・従属電極 9・
・・従&電極溶接制側j装置 10・・・従属宵、@1
溶接電源 11−・・従属電極ワイヤ送給装置 12・
・・遅延器 13・・・母材 14・・・従属電極電流
検出端 15・・・従属電極電圧検出端 16・・・比
較演算器量 願人 新日本製鐵株式会社(ほか1名)代
理人弁理士 青 柳 稔 第1図 第2図 第3図 (a) (b) 第4図 (d) (b) 光行電種電;糺 → 先イ〒電4÷電万−第5 (a) 第6 (a) 図 (1)) ↑ 図 (b)
FIG. 1 is a diagram showing a first embodiment of the present invention in which the current and voltage of a subordinate electrode are controlled by the current and voltage signals of a reference electrode. FIG. 2 is a block diagram showing another embodiment of the invention. Figure 3 is a lamination diagram when Uranami welding is performed using the present invention with the electrodes of a two-electrode welding machine arranged in series in the welding progress direction in a V-shaped groove, and (a) shows a wide root spacing. case,
(b) shows the case where the route spacing is narrow. FIG. 4 is a graph showing the relationship between the current and voltage of the leading electrode and the trailing electrode to satisfy the conditions of FIGS. 3(a) and 3(b). FIG. 5 is a graph showing the relationship between the current and voltage of the leading electrode and the trailing electrode when the thickness of the welded portion changes during welding. Figure 6 is a lamination diagram of the first pass in horizontal double-sided welding when the electrodes on both sides are aligned in the welding direction.
(a) shows a good bead shape obtained using the present invention, and (b) shows a defective bead shape that may occur when the present invention is not used. 1... Reference electrode 2... Reference electrode welding control device 3
...Reference electrode welding power source 4...Reference electrode wire feeding device 5...Reference electrode current detection end 6...Reference electrode voltage detection end 7...Arithmetic unit 8...Subordinate electrode 9.
...Slave & electrode welding control side equipment 10...Slave night, @1
Welding power source 11-...Subordinate electrode wire feeding device 12-
... Delay device 13... Base material 14... Subordinate electrode current detection terminal 15... Subordinate electrode voltage detection terminal 16... Comparison calculation equipment Applicant Nippon Steel Corporation (and one other person) Agent Patent Attorney Minoru Aoyagi Figure 1 Figure 2 Figure 3 (a) (b) Figure 4 (d) (b) Light conduction type electric; ) 6 (a) Figure (1)) ↑ Figure (b)

Claims (1)

【特許請求の範囲】[Claims] 多電極溶接において基準とする電極を定め該基準iV杉
の溶接電流、電圧と、他の電極の溶接電流、電圧の一方
または両方が一定の関係を保つように、基準電極の溶接
電流、電圧の一方または両方を検出し、演算器にて処理
し、該処理信号を用いて他の電極の溶接電流、電圧の一
方または両方を制御することを特徴とする多電極溶接方
法。
In multi-electrode welding, a reference electrode is determined, and the welding current and voltage of the reference electrode is adjusted so that the welding current and voltage of the reference iV cedar and one or both of the welding current and voltage of the other electrodes maintain a constant relationship. A multi-electrode welding method characterized by detecting one or both of them, processing them in a computing unit, and using the processed signals to control one or both of the welding current and voltage of other electrodes.
JP2413084A 1984-02-10 1984-02-10 Multi-electrode welding method Granted JPS60170572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2413084A JPS60170572A (en) 1984-02-10 1984-02-10 Multi-electrode welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2413084A JPS60170572A (en) 1984-02-10 1984-02-10 Multi-electrode welding method

Publications (2)

Publication Number Publication Date
JPS60170572A true JPS60170572A (en) 1985-09-04
JPH0453618B2 JPH0453618B2 (en) 1992-08-27

Family

ID=12129724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2413084A Granted JPS60170572A (en) 1984-02-10 1984-02-10 Multi-electrode welding method

Country Status (1)

Country Link
JP (1) JPS60170572A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015009271A (en) * 2013-07-02 2015-01-19 株式会社ダイヘン Output control method of welding power source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015009271A (en) * 2013-07-02 2015-01-19 株式会社ダイヘン Output control method of welding power source

Also Published As

Publication number Publication date
JPH0453618B2 (en) 1992-08-27

Similar Documents

Publication Publication Date Title
US4302655A (en) Method and device for adaptive control of the weld parameters in automatic arc welding processes
US4201906A (en) Method and apparatus for arc welding
US20020117489A1 (en) Method and system for hot wire welding
US6051807A (en) Pulse arc welding apparatus
US6201216B1 (en) Method and system for welding railroad rails
JPH0341757B2 (en)
EP3676040B1 (en) Systems and method for adaptive control of wire preheating
US4302656A (en) Controlling the operations of an electric arc welder
US8440935B2 (en) Automatic welding equipment
US4584457A (en) Device for arc welding, in particular submerged-arc welding, with one or several fusible electrodes
JPS60170572A (en) Multi-electrode welding method
JP4151777B2 (en) Hot wire welding method and apparatus
JP2019188406A (en) Consumable electrode type arc welding method and consumable electrode type arc welding device
US5124521A (en) Method and apparatus for controlling welding current in resistance welding
JPH07328769A (en) Arc welding equipment and arc welding method
US3582607A (en) Arc welding for controlling weld penetration
KR100313484B1 (en) Optimum fill area control method according to variation of groove area by using constant voltage characteristic
JPS59130682A (en) Arc welding method
JP2591357B2 (en) Distance calculation device and consumable electrode type arc welding power supply device using the same
JPH0584574A (en) Consumable electrode arc welding machine
JPH06142916A (en) Method for automatically controlling melt-stuck amount by automatic multielectrode welding machine
JPH07178551A (en) Wire feed speed controller for consumable electrode type arc welder
JPS6341677B2 (en)
JPS62240167A (en) Weld line profiling method in automatic welding
KR20040020355A (en) Power Control Method for the Resistor Welder