JPS6017026B2 - Method for applying high-temperature sintering separation agent to grain-oriented electrical steel sheets - Google Patents

Method for applying high-temperature sintering separation agent to grain-oriented electrical steel sheets

Info

Publication number
JPS6017026B2
JPS6017026B2 JP16565581A JP16565581A JPS6017026B2 JP S6017026 B2 JPS6017026 B2 JP S6017026B2 JP 16565581 A JP16565581 A JP 16565581A JP 16565581 A JP16565581 A JP 16565581A JP S6017026 B2 JPS6017026 B2 JP S6017026B2
Authority
JP
Japan
Prior art keywords
powder
magnesia
grain
oriented electrical
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16565581A
Other languages
Japanese (ja)
Other versions
JPS5867871A (en
Inventor
元治 中村
喜久司 広瀬
雅志 谷田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16565581A priority Critical patent/JPS6017026B2/en
Publication of JPS5867871A publication Critical patent/JPS5867871A/en
Publication of JPS6017026B2 publication Critical patent/JPS6017026B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 本発明は、方向性電磁鋼板の高温焼錨における鋼板の競
付防止を目的とする暁錨分離剤粉体皮膜層の形成方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a dawn anchor separation agent powder film layer for the purpose of preventing collision of steel sheets during high-temperature sintering of grain-oriented electrical steel sheets.

方向性電磁鋼板は、1回又は2回以上の冷延、焼銘を施
した後、2次再結晶により、(110)〔001〕方位
(C℃ss方位)を発達させるために、100ぴ0以上
の高温で競鈍される。
Grain-oriented electrical steel sheets are cold-rolled and branded once or twice, and then subjected to secondary recrystallization to develop a (110)[001] orientation (C°Css orientation). It is sluggish at high temperatures above 0.

この場合、鋼板の競付を防止するために高温蝿鎚分離剤
が鋼板表面に塗布される。この種の焼錨分離剤の塗布は
、一般に水との懸濁液をスプレー、又はゴムを被覆した
ロールで絞りながら、連続脱炭焼鈍炉出側で施され、乾
燥炉で乾燥後、コイル状に巻き取られるものである。
In this case, a high temperature fly hammer separating agent is applied to the surface of the steel plate to prevent the steel plates from colliding. This type of sintered anchor separation agent is generally applied on the outlet side of a continuous decarburizing annealing furnace by spraying a suspension with water or squeezing it with a rubber-coated roll, and after drying in a drying oven, it is It is something that is wound up.

燐鈍分離剤としては、各種の耐火性金属化合物を使用す
る技術が多数、公開されている(例えば、特許第179
337号及び同第185395号……CaC03、筋C
03、特公階42−27533号公報・・・・・・AZ
203、Zの2、Mg0、Ti02、特公昭42−27
531号公報・・…・Aそ203、Ca○、特公昭41
一3726号公報・・・・・Mg○など)。これらの内
、方向性電磁鋼板に対しては、例えば、特公昭51一1
2451号公報、特公昭52−31296号公報等に記
載されているように、鋼板の焼付防止と同時に、鋼板表
面に生成したSi02を主成分とするスケール層と、高
温で固相反応により、ガラス状皮膜を形成し易い、マグ
ネシアを主成分とした暁錨分離剤が一般に用いられる。
ガラス状皮膜は、絶縁皮膜の下地として、耐熱性および
絶縁性の向上に有用なものである。今日、工業的に製造
されているマグネシアには、その製造方法から、大別し
て、仮暁マグネシアと死焼マグネシアの2種に分類され
る。仮暁マグネシァは海水から採取したMよ〆2(苦汁
)をCa(OH)2との置換により、Mg(OH)2と
し、これを500〜1000qoで焼成、粉砕したもの
で、一般に、蟹質あるいは蚤質マグネシアと呼ばれるも
のが、これに属する。死競マグネシァは、Mや〆2 を
Ca(OH)2との置換により、Mg(OH)2とした
後、1500〜2100qoの高温で焼成、粉砕したも
ので、通常マグネシアクリンカと呼べれるものである。
両者の製造方法及び特性の比較を第1表及び第1図に示
す。竪質あるいは童質の仮焼マグネシアは、焼成温度が
低いために、活性で水和(吸湿)性が強く、2次粒子径
は5山肌以下のものがほとんどを占めており、1次粒子
径も300〜1000A程度であるのに対して非水和性
死競マグネシアは、高温焼成のため、不活性で、ほとん
ど水和(吸湿)しない。非水和性死競マグネシアの粒度
分布については高温焼成のために、糠結されており、焼
成のままでは塊状であり、実際の使用目的に応じて、各
種の粒度分布に粉砕、分級して、使用することが可能で
ある。また、中間生成物の水酸化マグネシウムには、C
夕やS04が含まれており、第2図に示すように、15
00qo以上で加熱しないと、これら不純物は熱分解に
よる除去ができず、さらにマグネシアは硫黄の吸収剤と
して働くため、低温焼成の仮焼マグネシアの製造では精
製が必要なことと、硫黄を含まない燃料を使用するため
に、高価なマグネシアとなっている。これらのマグネシ
アのうち、競鈍分離剤として、一般に用いられるのは竪
質あるいは重質の仮煉マグネシァである。
Many techniques using various refractory metal compounds as phosphorus dull separators have been published (for example, Patent No. 179
No. 337 and No. 185395...CaC03, Muscle C
03, Special Publication No. 42-27533...AZ
203, Z no 2, Mg0, Ti02, Special Publication Showa 42-27
Publication No. 531...Aso203, Ca○, Special Publication No. 41
Publication No. 13726...Mg○, etc.). Among these, for grain-oriented electrical steel sheets, for example, Japanese Patent Publication No. 51-11
As described in Japanese Patent Publication No. 2451, Japanese Patent Publication No. 52-31296, etc., at the same time as preventing the seizure of steel sheets, glass is formed by a solid phase reaction at high temperatures with a scale layer mainly composed of SiO2 formed on the surface of the steel sheets. A dawn anchor separation agent containing magnesia as a main component is generally used because it tends to form a transparent film.
A glassy film is useful as a base for an insulating film to improve heat resistance and insulation. Magnesia that is industrially produced today can be roughly divided into two types, depending on the method of production: false magnesia and dead burnt magnesia. Kariyo magnesia is made by replacing Myojime2 (bitter) collected from seawater with Ca(OH)2 to obtain Mg(OH)2, which is calcined and crushed at 500 to 1000 qo, and is generally made from crabmeat. Also, something called flea magnesia belongs to this category. Shikyo magnesia is made by replacing M and ㆆ2 with Ca(OH)2 to produce Mg(OH)2, which is then fired and crushed at a high temperature of 1500 to 2100 qo, and is usually called magnesia clinker. be.
Table 1 and FIG. 1 show a comparison of the manufacturing methods and characteristics of both. Vertical or childish calcined magnesia is active and has strong hydration (moisture absorption) properties due to the low firing temperature, and most of the secondary particle diameters are less than 5 grains, and the primary particle diameter is On the other hand, non-hydratable magnesia is inert due to high temperature firing and hardly hydrates (absorbs moisture). Regarding the particle size distribution of non-hydratable magnesia, it is cemented for high-temperature firing, and is lumpy when fired, so it is crushed and classified into various particle size distributions depending on the actual purpose of use. , it is possible to use. In addition, the intermediate product magnesium hydroxide contains C
It includes evening and S04, and as shown in Figure 2, 15
These impurities cannot be removed by thermal decomposition unless heated above 00 qo, and since magnesia acts as a sulfur absorbent, refining is required in the production of calcined magnesia fired at low temperatures, and sulfur-free fuel is required. Magnesia is expensive to use. Among these magnesias, vertical or heavy temporary magnesia is generally used as a competitive separation agent.

特に軽質マグネシァは、水への分散性が良く鋼板への付
着性も良好である反面、活性度が高く水和による水分を
高温焼鈍時に除去するために500〜70000の1次
均熱が必要となること、さらに放出した水分により、鋼
板表面が過酸化されて、磁気特性、ガラス状皮膜形成に
悪影響を及ぼすという欠点を有している。そこで、これ
らの欠点を除くために水夫01性のやや低い車質マグネ
シア、あるいは特許第600915号、特公昭52−3
1296号公報に示されるような特殊なマグネシァの使
用も試みられたが、乾燥後の付着性が悪く、水和量の調
節が非常に簸かしかった。そこで、水への懸濁により、
塗布、乾燥する方法に対して、焼錨分離剤の粉体粒子を
直接、静電的に鋼板に付着する方法として特公昭39一
12211号公報、特開昭54一120215号公報記
載の方法が試みられた。
In particular, light magnesia has good dispersibility in water and good adhesion to steel sheets, but on the other hand, it has high activity and requires primary soaking at temperatures of 500 to 70,000 to remove water due to hydration during high-temperature annealing. Moreover, the released water peroxidizes the surface of the steel sheet, which has a negative effect on the magnetic properties and the formation of a glassy film. Therefore, in order to eliminate these drawbacks, we used magnesia, which has a slightly lower quality of sailor 01, or Patent No. 600915, Japanese Patent Publication No. 52-3.
Attempts have been made to use a special magnesia as disclosed in Japanese Patent No. 1296, but the adhesion after drying was poor and it was very difficult to control the amount of hydration. Therefore, by suspending it in water,
In contrast to the method of coating and drying, the method described in Japanese Patent Publication No. 39-12211 and Japanese Patent Application Laid-Open No. 54-120215 is a method of directly and electrostatically adhering powder particles of a sintered anchor separation agent to a steel plate. Attempted.

持公昭39−12211号公報記載の方法では、燐鈍分
離剤粉体を腸性コロナ放電している電極と鋼板表面との
間に導入し、該表面に静電的に付着させる方法が記述さ
れており、この競錨分離剤として、マグネシアの使用が
述べられているが、「酸化カルシウム、アルミナ、シリ
カ、又は他の耐熱性酸化物、石灰およびその類似のよう
な広範囲の物質を包含し、ここに示す実例の目的に対し
ては、本発明をマグネシァ例えばM幻の使用に関して記
載するが、本発明はこれに限定するものではないことは
明らかである。
The method described in Mochiko No. 39-12211 describes a method in which phosphorus dull separator powder is introduced between an electrode performing enteric corona discharge and the surface of a steel plate, and is electrostatically adhered to the surface. mentions the use of magnesia as this competitive anchor separating agent, but includes a wide range of substances such as calcium oxide, alumina, silica, or other refractory oxides, lime and the like; For purposes of the example presented herein, the invention will be described with respect to the use of magnesia, such as magnesia, although it will be clear that the invention is not so limited.

」と述べられ、マグネシア粉体として、「1インチ32
5メッシュの節を通過するか、又は約44ミクロンの粒
子の大きさを有すればよい。」とされているに過ぎない
。また、特開昭54−106009号公報記載の方法で
は、暁鎚分離剤の粉体粒子を帯電させ、対抗電極となっ
ている電磁鋼板の表面に付着させることを特徴としてい
るが、この方法においても焼鈍分離剤は、「従来のよう
な制約もなく、重質マグネシア、アルミナ、酸化ジルコ
ニウム、ケイ酸、酸化チタン、酸化ニッケル、酸化マン
ガン、酸化カルシウム、酸化クロム、酸化モリブデン、
酸化棚素の1種又は2種以上の混合物、又は複合酸化物
が用いられる。」と述べている。上記引用例の如く、静
電塗装方式には多種の酸化物が焼鎚分離剤として用いら
れるが、珪素を含有する方向性電磁鋼板の場合には鋼板
の焼付防止と同時に高温糠鎚中の脱硫性、鋼板表面のS
i02を主成分とするスケール層との固相反応によるガ
ラス状皮膜の形成性より、マグネシアが最も好ましい銃
鈍分離剤であることがわかった。
'', and as magnesia powder, ``1 inch 32
5 mesh or have a particle size of approximately 44 microns. ”. Furthermore, the method described in JP-A-54-106009 is characterized in that powder particles of the Akatsuki Separating Agent are charged and adhered to the surface of an electromagnetic steel sheet serving as a counter electrode. Also, annealing separators can be used without the constraints of conventional methods, such as heavy magnesia, alumina, zirconium oxide, silicic acid, titanium oxide, nickel oxide, manganese oxide, calcium oxide, chromium oxide, molybdenum oxide,
One type or a mixture of two or more types of oxidized shelving elements, or a composite oxide is used. "It has said. As shown in the cited example above, various oxides are used as a roasting hammer separation agent in the electrostatic coating method, but in the case of silicon-containing grain-oriented electrical steel sheets, they are used to prevent seizing of the steel sheet and at the same time desulfurize the hot rice bran hammer. S of steel plate surface
Magnesia was found to be the most preferable gun blunt separating agent based on its ability to form a glassy film through a solid phase reaction with a scale layer containing i02 as a main component.

ところが、いま、競鈍分離剤として従来使用されて来た
夕軽質あるいは重質の仮暁マグネシアを静電塗装方式に
用いた場合、下記のような障害により、長時間の安定し
た連続操業に支障をきたした。‘1} マグネシア粉体
の凝集により、分散性が低下し、鋼板への付着が不均一
となる。
However, when light or heavy pseudomagnesia, which has traditionally been used as a competitive separator, is used in electrostatic coating methods, the following problems hinder stable continuous operation over long periods of time. caused. '1} Due to agglomeration of magnesia powder, dispersibility decreases and adhesion to the steel plate becomes uneven.

0‘2} マグネシア粉体粒子の帯電効率が悪く、鋼板
への付着性が低下する‘3’ マグネシア粉体の供給系
統に詰まりが生ずる。
0'2} Charging efficiency of magnesia powder particles is poor and adhesion to the steel plate is reduced.'3' Clogging occurs in the magnesia powder supply system.

■ コロナ電極付近にマグネシア粉体が堆積し、タ 帯
電性が低下する。これらの障害について、詳細な調査を
行なった結果、本発明者らはマグネシァ粉体の吸湿(水
和)性及び粒度分布が支配的な因子であることを見出し
た。
■ Magnesia powder accumulates near the corona electrode, reducing chargeability. As a result of detailed investigation into these problems, the present inventors found that the hygroscopicity (hydration) and particle size distribution of magnesia powder were the dominant factors.

一般に静電塗装に使用する粉体は、帯電性の良好なもの
、すなわち表面の電気抵抗の大きなものであることが必
要条件とされているが、第1図に示す如く軽質あるいは
軍質の仮鱗マグネシアのような吸湿性の高いマグネシア
は使用中に吸湿して、粉体粒子表面の電気抵抗が大きく
低下する結果、帯電性が次第に低下し、鋼板への付着性
が劣化する。
Generally, the powder used for electrostatic coating must have good charging properties, that is, it must have a large electrical resistance on the surface. Highly hygroscopic magnesia, such as scaly magnesia, absorbs moisture during use, and the electrical resistance of the surface of the powder particles decreases significantly, resulting in a gradual decrease in chargeability and deterioration of adhesion to steel plates.

また、吸湿により、凝集性、圧縮性が増加する結果、分
散性が悪くなり、鋼板表面への均一付着性が悪化し、さ
らに粉体供給系の詰まりやコロナ電極付近への堆積の原
因ともなる。粉度分布の影響についても調査した結果、
粉体の粒子径が小さい程凝集性が強くなって分散性が悪
くなり、長時間の連続操業が困難であることがわかった
。以上の調査結果より、静電塗装方式に使用するマグネ
シア粉体の特性として‘1)非水和性であること。
In addition, moisture absorption increases cohesiveness and compressibility, resulting in poor dispersion and uniform adhesion to the steel plate surface, which can also cause clogging of the powder supply system and deposition near the corona electrode. . As a result of investigating the influence of fineness distribution,
It was found that the smaller the particle size of the powder, the stronger the agglomeration and the worse the dispersibility, making long-term continuous operation difficult. From the above research results, the characteristics of magnesia powder used in electrostatic coating method are: 1) It is non-hydratable.

■ 粒度分布が使用目的に応じて調節可能であること。■ Particle size distribution can be adjusted depending on the intended use.

の2点が必要であることがわかった。ところが仮焼マグ
ネシアは、水和性が強く、しかも前述のようにその製造
方法の特徴すなわち、化学反応により、生成、沈降した
極めて微細なMg(OH)2を低温仮焼するため、1次
粒子の成長も30〜1000Aと小さく、粒子の結合も
あまり進行しないために、脆く、第3図に示すように、
5ム肌以下のものがほとんどを占めており、粒度分布の
調節は5仏の以上の大きさの範囲では不可能であり、よ
って静電塗装用マグネシアとしては不適当であることが
わかった。
It turns out that two points are necessary. However, calcined magnesia has strong hydration properties, and as mentioned above, the manufacturing method is characterized by the fact that extremely fine Mg(OH)2 produced and precipitated through a chemical reaction is calcined at a low temperature. The growth of the particles is small at 30 to 1000A, and the bonding of particles does not progress very much, making it brittle, as shown in Figure 3.
Most of the particles were smaller than 5 mm, and it was impossible to adjust the particle size distribution within the size range of 5 mm or larger. Therefore, it was found that magnesia was not suitable for electrostatic coating.

そこで、本発明者らは、多種のマグネシア粉体について
試験を行なった結果、静電塗装方式に使用するマグネシ
ア粉体としては、1500一210000で高温焼成し
た非水和性死焼マグネシアクリンカを粉砕し、粒径5〜
149山肌が全体の80%以上となるよう調製したもの
が最適であることを見出した。
Therefore, the present inventors conducted tests on various types of magnesia powder, and found that the magnesia powder used in the electrostatic coating method was pulverized non-hydratable dead-burned magnesia clinker fired at a high temperature of 1,500 - 210,000. and particle size 5~
It has been found that the best material is one prepared so that 149 mountain surface accounts for 80% or more of the total surface.

粉蓬5rm以下を20%以上含むと流動性が低下して配
管詰りや電極への付着が起こり、粒径が149りのより
も大きくなると、鋼板表面に凹凸が生じるため不適当で
あることが判った。水和性、非水和性を明確に区別する
ために、水和速度に関するパラメータについて調査した
If it contains more than 20% of powder with a grain size of 5rm or less, the fluidity will decrease, causing clogging of pipes and adhesion to the electrodes, and if the grain size is larger than 149, it will cause unevenness on the surface of the steel plate, making it unsuitable. understood. In order to clearly distinguish between hydratable and non-hydratable, parameters related to hydration rate were investigated.

この結果マグネシアの水和(吸湿)速度を示すパラメー
タとしては、クエン酸活性が一般的である。クエン酸活
性は、所定重量のマグネシアが所要重量のクエン酸を中
和するヒドロキシルイオンを与えるのに要した時間で表
わされる。試験方法は、特関昭54一3383叫号公報
に記載されている方法と同一の条件で行なった。すなわ
ち:‘11 1%のフェノールフタレィン指示薬2の‘
を含有する0.40州クエン酸水溶液100の‘を8オ
ンス広口瓶中で30℃にする。
As a result, citric acid activity is generally used as a parameter indicating the hydration (moisture absorption) rate of magnesia. Citric acid activity is expressed as the time required for a given weight of magnesia to provide hydroxyl ions that neutralize the required weight of citric acid. The test method was carried out under the same conditions as the method described in Tokukan Sho 54-3383 Publication. i.e.: '11 1% phenolphthalein indicator 2'
100' of an aqueous solution of 0.40% citric acid containing 0.40° C. is brought to 30° C. in an 8 ounce jar.

瓶にはねじ込み口金及び電磁簿梓棒を設ける。‘2’2
.00夕のマグネシアを瓶に入れ、同時にストップウオ
ッチを始動させる。
The bottle is equipped with a screw cap and an electromagnetic holder. '2'2
.. Pour 00 Yu's magnesia into the bottle and start the stopwatch at the same time.

湖 マグネシア試料を加えるとすぐに蓋をする。Lake Place the lid immediately after adding the magnesia sample.

5秒の時点で瓶と内容物とを激しく振とうする。At 5 seconds, shake the bottle and contents vigorously.

振とうは1の砂の時点で終える。‘4’ 1晩秒の時点
で試料を電磁渡洋装置上に置く。
The shaking ends at the point of 1 sand. '4' Place the sample on the electromagnetic wading device after one night.

機械的嬢梓は瓶の内径が6仇のときには、中心に約2仇
の深さの渦を生じねばならない。■ 懸濁液が淡紅色に
変わったときにストップウオッチを止め、時間を記録す
る。
If the inner diameter of the bottle is 6 mm, the mechanical azure should create a vortex about 2 mm deep in the center. ■ Stop the stopwatch when the suspension turns pink and record the time.

秒で示したこの時間がクエン酸活性である。種々の薮質
あるいは童質の仮焼マグネシアについて調査した結果、
クエン酸活性は30〜25現砂であったのに対し、焼成
温度、不純物含有量の異な0る種々の死鱗マグネシアク
リンカでは1000〜1000栃砂であった。
This time in seconds is the citric acid activity. As a result of research on various types of calcined magnesia,
The citric acid activity was 30-25 ash, whereas it was 1000-1000 ash in various dead scale magnesia clinkers with different firing temperatures and impurity contents.

このように、従来使用されて釆た仮擬マグネシアは死競
マグネシアクリンカと比較して、著しく活性の異なるこ
とがわかった。本発明において使用した非水和性死嬢マ
グネシタアクリンカは工業的に多量に生産され耐火物の
製造等に一般に使用されるもので、例えば第3図に示す
ような粉度分布を有しているが、前述のように、目的に
応じて調節可能である。また、非水勅性高温焼成マグネ
シアを競鎚分離剤として使用す0る技術に関しては、水
への懸濁により使用する方法として微粉砕ミルにより5
rm以下に粉砕して水への分散性を高め、しかも鋼板へ
の付着性を高めるためのMg(OH)2の添加等により
改善する方法が持開昭53一146101号公報で試み
られている夕が、本発明によればこのような微粉砕ミル
による粉砕や添加物の必要もないため、極めて安価であ
る。非水和性死競マグネシアクリンカの静電塗装方法と
しては、例えばまず非水和性死燈マグネシア0クリンカ
粉体を流動槽又は供孫合槽で均一に分散させ、これを粉
体輸送用気体と共に静電粉体塗装機のコロナ電極付近に
に送り込み、ここで印加された直流高電圧によって生じ
たコロナ放電により、イオン化された気体と衝突、接触
によって非水和性死嬢マグネシアクリンカ粉体粒子を正
又は負に帯電させ、これを対抗電極となっている接地さ
れた鋼板表面に付着させることができる。
Thus, it has been found that the activity of the conventionally used pseudomagnesia clinker is significantly different from that of the rival magnesia clinker. The non-hydratable magnesita aclinker used in the present invention is industrially produced in large quantities and commonly used in the manufacture of refractories, etc., and has a fineness distribution as shown in Figure 3, for example. However, as mentioned above, it can be adjusted depending on the purpose. In addition, regarding the technology of using non-water-challenged high-temperature calcined magnesia as a competitive hammer separation agent, there is a method of using it by suspending it in water and using a fine grinding mill.
An attempt was made in Japanese Patent Application No. 146101/1983 to improve the dispersibility in water by pulverizing it to less than rm, and adding Mg(OH)2 to improve adhesion to steel plates. However, according to the present invention, there is no need for pulverization using such a pulverizing mill or for additives, so it is extremely inexpensive. As an electrostatic coating method for non-hydratable magnesia clinker, for example, first, non-hydratable magnesia clinker powder is uniformly dispersed in a fluidized tank or a mixed tank, and then the powder is applied to a gas for transporting the powder. The powder particles are sent to the vicinity of the corona electrode of the electrostatic powder coating machine, and due to the corona discharge generated by the DC high voltage applied here, they collide with the ionized gas and come into contact with the non-hydratable magnesia clinker powder particles. can be positively or negatively charged and attached to the surface of a grounded steel plate serving as a counter electrode.

正又は負に帯電した非水和性死焼マグネシアクリンカ粉
体粒子は、コロナ電極と接地した鋼板との電位差により
形成された電界の電気力線に沿って、粉体輪送用気体の
気流と共に鋼板に向かって飛行し、静電的に付着した後
電荷を失なって吸着する。粉体の帯電の極性はコロナ電
極の極性に一致し、正又は負のいずれの極性に帯電して
も、鋼板への付着は可能であるが、負に帯電させた場合
の方がより強固な付着性が得られた。本発明により非水
和性死焼マグネシアクリンカ粉体のみを競鈍分離剤とし
て静電的に鋼板に付着した場合、鋼板の隣付防止、脱硫
性及びガラス状皮膜形成性のいずれも良好であったが、
さらに強固なガラス状皮膜を形成するには例えば、特公
昭52一31296号公報に記載された仮焼マグネシア
を主成分とする処理剤の水との懸濁液を塗布、乾燥して
、鋼板当り0.5〜3夕/あの下層皮膜を形成し、その
上に本発明の非水和性死焼マグネシアクリンカ粉体を静
電的に付着して形成した3〜20夕/めの上層皮膜を施
す方法を用いることが可能である。
The positively or negatively charged non-hydrated dead-burned magnesia clinker powder particles are transported along the lines of electric force of the electric field formed by the potential difference between the corona electrode and the grounded steel plate, along with the air flow of the powder transporting gas. It flies toward the steel plate, attaches itself electrostatically, loses its charge, and becomes attracted to it. The polarity of the charge on the powder matches the polarity of the corona electrode, and it is possible to adhere to the steel plate even if it is charged to either a positive or negative polarity, but it is stronger when it is charged negatively. Adhesion was obtained. According to the present invention, when non-hydratable dead-burned magnesia clinker powder is electrostatically attached to a steel plate as a competitive separator, all of the prevention of adhesion of the steel plate, the desulfurization property, and the glass-like film formation property are good. However,
In order to form an even stronger glass-like film, for example, a suspension of a treatment agent containing calcined magnesia as a main component in water, which is described in Japanese Patent Publication No. 52-31296, is applied and dried. 0.5 to 3 evenings/day to form that lower layer film, and then 3 to 20 evenings/day to form an upper layer film by electrostatically adhering the non-hydratable dead burnt magnesia clinker powder of the present invention thereon. It is possible to use a method of applying

また、珪素を含有し、MnS、A〆N、B、Se、Sb
、Cu、Sn等あるいは、これらの化合物を1種以上、
正常粒成長の抑制剤(ィンヒビター)として添加して製
造される方向性電磁鋼板においては上記の下層皮膜とし
て使用する仮暁マグネシアを主成分とする処理剤にチタ
ン、マンガン、棚素、ケイ素、ニオブ、クロム、ニッケ
ル、アンチモン、ストロンチウムの酸化物、窒化物、硫
化物、硫酸塩又はチオ硫酸塩の1種又は2種以上を添加
したものを使用すると、磁気特性(鉄損、磁束密度など
)も向上させることが可能であり、たとえば、特公昭5
2−31296号公報に示されている塗布剤に対して、
柵素あるし、は棚素を含む化合物を棚素として0.5〜
2.の重量パーセント(鋼板当り2.5〜60のo/め
)添加することにより、磁束密度の著しい向上が可能で
ある。従来より、方向性電磁鋼板の高温凝錨時の鋼板の
焼付防止とガラス状皮膜に関する特許発明は多数提供さ
れているが本発明の如く従来使用されて来た高価な仮競
マグネシアに変わり、極めて安価な特定の非水和怪死隣
マグネシアの使用により、静電塗装方式の長時間連続操
業が可能となった工業的意義は大きい。
Also contains silicon, MnS, A〆N, B, Se, Sb
, Cu, Sn, etc. or one or more of these compounds,
In grain-oriented electrical steel sheets that are manufactured by adding them as inhibitors of normal grain growth, titanium, manganese, shelium, silicon, and niobium are added to the treatment agent whose main component is pseudomorphic magnesia, which is used as the lower layer coating. If one or more of oxides, nitrides, sulfides, sulfates, or thiosulfates of chromium, nickel, antimony, and strontium are added, the magnetic properties (iron loss, magnetic flux density, etc.) It is possible to improve the
With respect to the coating agent shown in Publication No. 2-31296,
There is a shelf element, and a compound containing a shelf element is 0.5 ~
2. A significant improvement in magnetic flux density is possible by adding a weight percent of (2.5 to 60 o/metre per steel plate). In the past, many patented inventions have been provided regarding the prevention of seizing of grain-oriented electrical steel sheets during high-temperature anchoring and glass-like coatings, but as in the present invention, the expensive temporary magnesia used in the past has been replaced, and it is extremely The use of a specific inexpensive non-hydrated magnesia has great industrial significance as it has become possible to operate the electrostatic coating method continuously for a long period of time.

次に実施例を記載する。Next, examples will be described.

実施例 1 粒子径5〜149山肌の粉体が90%である非水和性死
競マグネシアクリンカ粉体を静電粉体塗装装置を用いて
1肌Vの高圧で負に帯電させて、対抗電極の鋼板上面に
静電的に9±1夕/〆の精度を目標に付着させ、その付
着量を測定した。
Example 1 A non-hydratable magnesia clinker powder with a particle size of 5 to 149 and 90% of which is powder on the surface was negatively charged at a high pressure of 1 skin V using an electrostatic powder coating device, and a countermeasure was applied. It was electrostatically deposited on the upper surface of the steel plate of the electrode with a target accuracy of 9±1 min., and the amount of the deposit was measured.

3時間0の連続塗布を行なったが、粉体供給系統の詰ま
り、コロナ電極付近の粉体の堆積は認められず、鋼板へ
の粉体の付着状況も均一であった。
Continuous coating was carried out for 3 hours, but no clogging of the powder supply system or accumulation of powder near the corona electrode was observed, and the adhesion of the powder to the steel plate was uniform.

粉体付着量の経時変化を第4図に示す。比較例 1 タ 粒子蓬5リの以下の粉体を95%以上有する軽質の
仮暁マグネシア及び粒子径5仏以下の粉体を70%以上
有する高温焼成マグネシアクリンカを実施例1と同一条
件で鋼板上面に付着させた。
Figure 4 shows the change in powder adhesion amount over time. Comparative Example 1 A steel plate was prepared under the same conditions as in Example 1 using light pseudomagnetic magnesia having 95% or more of the following powder particles and high-temperature calcined magnesia clinker having 70% or more of the powder with particle diameters of 5 mm or less. attached to the top surface.

高圧印加後、約20分で両者ともにコロナ電極の周囲に
厚0い堆積層が認められ、鋼板への付着も不均一となっ
た。粉体付着量の経時変化を第4図に示す。実施例 2
Si:3.16%を含有する0.3帆厚さ×320柳中
x400k9の方向性電磁鋼板を製造するに際して、仕
タ上冷延後、圧延油を除去し、ついで日2:75%、N
2:25%、露点460雰囲気中で840午C×4分間
運続焼鈍した後、競錨分離剤として粒子径5〜149仏
肌の粉体を95%有する非水和性死焼マグネシアクリン
カ粉体を静電粉体塗装装置を用いて、0100kVの高
圧を印加して負に帯電させ、対抗電極の鋼板上面に静電
的に8.7夕/め付着させて、直ちにコイル状に巻き取
った。
Approximately 20 minutes after high voltage was applied, a thin deposited layer was observed around the corona electrode in both cases, and the adhesion to the steel plate became non-uniform. Figure 4 shows the change in powder adhesion amount over time. Example 2
When manufacturing grain-oriented electrical steel sheets of 0.3 sail thickness x 320 willow medium x 400 k9 containing Si: 3.16%, after finishing cold rolling, rolling oil was removed, and then 2:75% Si was applied. N
2: Non-hydratable dead-burned magnesia clinker powder with 95% particle size 5-149 grain powder as a competitive anchor separator after being continuously annealed for 4 minutes at 840 pm in a 25%, dew point 460 atmosphere. The body was negatively charged by applying a high voltage of 0,100 kV using an electrostatic powder coating device, electrostatically adhered to the upper surface of the steel plate of the counter electrode for 8.7 days, and immediately wound into a coil shape. Ta.

これを水素気流中で1200q0×10h岱高温暁鈍し
た。冷却後、コイルを巻き戻したが嫌付は認められず、
未反応マグネシタアクリンカを除去後、表面を観察した
ところ、中方向、長手方向、上下面とも均一な灰色のガ
ラス状皮膜が形成されており、地鉄の化学分析より、脱
硫も完全に進行していることがわかった。皮膜特性を第
2表に示す。0比較例 2 実施例2と同一材料、同一条件で蓮続焼鈍し、ついで焼
錨分離剤として粒子径5仏の以下の粉体を95%以上有
する竪質の仮暁マグネシア10礎部、チタン酸化物3部
に水400部を混合、婿拝し、つし、でゴムロールで絞
りながら、均一に塗布し400℃×3$ec.で乾燥し
、直ちにコイル状に巻き取った。
This was annealed at high temperature for 1200q0×10h in a hydrogen stream. After cooling, the coil was rewound, but no damage was observed.
After removing the unreacted magnetoraclinker, we observed the surface and found that a uniform gray glassy film had been formed in the middle, longitudinal direction, and upper and lower surfaces, and chemical analysis of the steel base revealed that desulfurization had completely progressed. I found out that The film properties are shown in Table 2. 0 Comparative Example 2 The same materials and continuous annealing as in Example 2 were used under the same conditions, and then a vertical pseudomorphic magnesia 10 base part containing 95% or more of the following powder with a particle size of 5 mm as a sintered anchor separation agent, titanium Mix 3 parts of oxide with 400 parts of water, apply it evenly while squeezing it with a rubber roll, and heat at 400°C x 3$ec. It was dried and immediately wound into a coil.

乾燥後の粉体付着量は上下面それぞれ65夕/で、7.
0夕/めであった。又、その水和率は(QO/Mg0)
×100=9.0%であった。これを水素気流中で60
0℃×1則rs.1次均熱し、ついで1200℃×1M
e岱.高温蛾鈍した。冷却後、コイルを巻き戻し、過剰
の粉体を水洗除去した。鋼板の競付は認められなかった
が、コイル中方向の両端50〜low桝ま繊密な濃い灰
色の良好なガラス状皮膜が形成されていたが、中央部で
は部分的に白味を帯びた、粗な、密着性の悪いガラス状
皮膜が認められた。皮膜特性を第2表に示す。比較例
3 実施例2と同一材料、同一焼成条件で蓮続焼鈍し、次い
で比較例2で使用した用じ竪質マグネシァを競錨分離剤
として静電粉体塗装装置を用いて、100kVの高圧で
負に帯電させて、対抗電極の鋼板表面に静電的に10.
0夕/で上面に付着させて、直ちにコイル状に巻き取っ
た。
The powder adhesion amount after drying was 65 mm/day on each of the upper and lower surfaces, and 7.
It was midnight. Also, its hydration rate is (QO/Mg0)
×100=9.0%. This was heated for 60 minutes in a hydrogen stream.
0°C x 1 rule rs. First soak, then 1200℃ x 1M
e Dai. High temperature made the moth dull. After cooling, the coil was unwound and excess powder was removed by washing with water. Although no competition was observed in the steel plate, a fine, dark gray, glass-like film was formed at both ends of the coil in the middle direction of the coil, but in the center it was partially whitish. A rough, glassy film with poor adhesion was observed. The film properties are shown in Table 2. Comparative example
3 The same materials as in Example 2 were used, and they were subjected to continuous annealing under the same firing conditions, and then negative coating was performed at a high pressure of 100 kV using an electrostatic powder coating device using the same vertical magnesia used in Comparative Example 2 as a competitive anchor separating agent. The steel plate surface of the counter electrode is electrostatically charged to 10.
It was applied to the upper surface at 0.000 m/m and immediately wound into a coil.

これを水素気流中で1200oC×10hers.高温
焼成した。粉体の付着状況は不均一な部分が多く、コイ
ル状に巻き取る際に一部剥離も認められた。冷却後、コ
イルを巻き戻し、過剰の粉体を水洗除去したところ、鋼
板両端部で一部焼付が認められ、長手方向にガラス状皮
膜の形成不良が認められた。実施例 3 Si:2.9%を含有する0.3肌厚さ×300脚中×
350kgの方向性電磁鋼板を製造するに際して、仕上
冷延後、圧延油を除去し、ついで比:75%、N2:2
5%、霧点4500の雰囲気中で840qo×4分間連
続競鈍し、ついで、先ずガラス状皮膜形成用として粒子
径5仏肌以下の粉体を95%以上有する竪質の仮競マグ
ネシア10碇都、チタン酸化物3部を水600部に混合
、燈拝し、ゴムロールで絞りながら均一に塗布し、30
0℃×4$ec.乾燥した。
This was heated at 1200oC x 10hers in a hydrogen stream. Fired at high temperature. The adhesion of the powder was uneven in many areas, and some peeling was observed when the powder was wound into a coil. After cooling, the coil was rewound and the excess powder was washed away with water, and it was found that some burning was observed at both ends of the steel plate, and poor formation of a glass-like film was observed in the longitudinal direction. Example 3 Si: 0.3 skin thickness containing 2.9% x 300 legs x
When manufacturing 350 kg of grain-oriented electrical steel sheets, after finish cold rolling, rolling oil was removed, and then the ratio: 75%, N2:2
5%, and 840 qo x 4 minutes in an atmosphere with a fog point of 4500, and then, first, 10 grains of vertical magnesia having 95% or more of powder with a particle size of 5 cm or less was used for forming a glassy film. Mix 3 parts of titanium oxide with 600 parts of water, stir, and apply evenly while squeezing with a rubber roll.
0℃×4$ec. Dry.

乾燥後の粉体付着量は、上下面それぞれ2.2夕/〆、
1.8夕/めであった。また、その水和率は(比○/M
g0)×100=11.0%であった。
The amount of powder adhering after drying is 2.2 days per day on the top and bottom surfaces, respectively.
It was the 1.8th evening. In addition, the hydration rate is (ratio ○/M
g0)×100=11.0%.

続いて、鋼板の競付防止用として粒子径5〜149〃m
の粉体を85%以上有する非水和性死競マグネシァクリ
ンカ粉体を静電粉体塗装装置を用いて、100kVの高
圧で帯電させて、対抗電極の鋼板表面に8.0夕/め上
面に付着させて、直ちにコイル状に巻き取った。これを
水素気流中で1200℃×1比てs.高温競鈍した。冷
却後、コイルを巻き戻し、過剰の粉体を水洗除去したが
、鋼板の競付は認められず、中方向、長手方向ともに均
一で繊密な灰色のガラス状皮膜が形成されていた。皮膜
特性を第2表に示す。実施例 4 Si:2.8%、酸可溶Aそ:0.03%を含有する方
向性電磁鋼板を製造するに際して、板厚0.3肌に仕上
圧延後、圧延油を除去し、ついで日2:75%、N2:
25%、露点45℃の雰囲気中で850qox4分間連
続燐鈍し、ついで先ずガラス状皮膜形成用として、持公
昭52一31296号公報に示されている塗布剤10礎
都、チタン酸化物5部に棚素を含むマグネシウム酸化物
を棚素:〔B〕として、1部添加し、水600部に混合
、損拝し、ゴムロールで絞りながら、鋼板表面に均一に
塗布後、400ごC×3瓜ec.乾燥した。
Next, a particle size of 5 to 149 m was added to prevent steel sheets from colliding.
A non-hydrated magnesia clinker powder having a powder content of 85% or more is charged at a high voltage of 100 kV using an electrostatic powder coating device, and coated on the surface of the steel plate of the counter electrode at 8.0 μm/min. It was attached to the top surface and immediately wound into a coil. This was heated at 1200°C x 1 s in a hydrogen stream. High temperature competition slowed down. After cooling, the coil was rewound and excess powder was washed away with water, but no cracking of the steel plate was observed, and a uniform, dense, gray glassy film was formed in both the middle and longitudinal directions. The film properties are shown in Table 2. Example 4 When producing a grain-oriented electrical steel sheet containing 2.8% Si and 0.03% acid-soluble A, after finishing rolling to a thickness of 0.3 skin, the rolling oil was removed, and then Day 2: 75%, N2:
25%, dew point 45° C., for 4 minutes at 850 qox, and then mixed with 5 parts of titanium oxide and 10 parts of the coating agent shown in Jikko No. 52-31296 for the purpose of forming a glassy film. Add 1 part of magnesium oxide containing shelf elements as [B], mix with 600 parts of water, mix, apply evenly on the surface of the steel plate while squeezing with a rubber roll, and apply 400 pieces of C x 3 melons. ec. Dry.

乾燥後の粉体付着量は上下面それそれ1.9多/力、2
.3夕/めであった。また、その水和率は(日20/M
g○)×100=10.5%であった。続いて、鋼板の
暁付防止用として、粒子径5〜149仏のの粉体を95
%有する非水和怪死暁マグネシアクリンカ粉体を静電粉
体塗装装置を用いて、100kVの高圧で負に帯電させ
て、対抗電極の鋼板表面に7.5夕/め上面に付着させ
、これを水素気流中で120000×1皿岱.高温暁鈍
した。冷却後、過剰の粉体を水洗、除去したが、鋼板の
焼付は認められず、鋼板の上下面全体に、均一で繊密な
光沢性の灰色のガラス状皮膜が形成されていた。皮膜特
性を表2に、磁束密度(B.o)を第5図に示す。第1
表 マグネシァの製造方法、特性の比較第2表 皮膜特
性の比較x絶縁皮膜処理条件:処理液:車リン酸アルミ
ニウム+クロム酸ス溶、暁付条件:850℃×70se
c塗布量:4夕/〆
The amount of powder attached after drying was 1.9/force on the top and bottom surfaces, 2
.. It was the third evening. In addition, its hydration rate is (20/M/day)
g○)×100=10.5%. Next, 95% of powder with a particle size of 5 to 149 mm was added to prevent rusting of steel plates.
% non-hydrated magnesia clinker powder was negatively charged at a high pressure of 100 kV using an electrostatic powder coating device, and deposited on the upper surface of the steel plate of the counter electrode for 7.5 days. 120,000 x 1 plate size in a hydrogen stream. The high temperature was dull. After cooling, excess powder was removed by washing with water, but no seizure was observed on the steel plate, and a uniform, dense, glossy, gray glassy film was formed on the entire upper and lower surfaces of the steel plate. The film characteristics are shown in Table 2, and the magnetic flux density (B.o) is shown in FIG. 1st
Table Comparison of magnesia manufacturing methods and properties Table 2 Comparison of film properties
cAmount of application: 4 evenings/final

【図面の簡単な説明】[Brief explanation of drawings]

第1図はの吸湿性の比較図、第2図は焼成温度とマグネ
シア中のC〆及びS04の変化図、第3図はマグネシア
の粒度分布の一例図、第4図は粉体付着量の経時変化を
示す図表、第5図は磁束密度を示す図表である。 多/図 第2図 髪3図 第4図 多ぅ図
Figure 1 is a comparison diagram of the hygroscopicity of Figure 5 is a chart showing changes over time, and Fig. 5 is a chart showing magnetic flux density. Multi/Figure 2 Hair 3 Figure 4 Multi figure

Claims (1)

【特許請求の範囲】 1 方向性電磁鋼板の表面に粒子径5〜149μmの粉
体を80%以上有するように粒度調整した非水和性死焼
マグネシアクリンカ粉体を静電的に付着させることを特
徴とする方向性電磁鋼板の高温焼鈍分離剤塗布方法。 2 マグネシアを主成分とする懸濁液の塗布により方向
性電磁鋼板の表面に被膜を形成後、この被膜上に粒子径
5〜149μmの粉体を80%以上有するように粒度調
整した非水和性死焼マグネシアクリンカ粉体を静電的に
付着させることを特徴とする方向性電磁鋼板の高温焼鈍
分離剤塗布方法。
[Scope of Claims] 1. Electrostatically adhering non-hydratable dead-burned magnesia clinker powder whose particle size is adjusted so that 80% or more of the powder has a particle size of 5 to 149 μm on the surface of a grain-oriented electrical steel sheet. A method for applying a high-temperature annealing separator to a grain-oriented electrical steel sheet. 2 After forming a film on the surface of a grain-oriented electrical steel sheet by applying a suspension containing magnesia as a main component, a non-hydrated powder whose particle size is adjusted so that 80% or more of powder with a particle size of 5 to 149 μm is on this film. A method for applying a high-temperature annealing separator to a grain-oriented electrical steel sheet, the method comprising electrostatically adhering dead-burned magnesia clinker powder.
JP16565581A 1981-10-19 1981-10-19 Method for applying high-temperature sintering separation agent to grain-oriented electrical steel sheets Expired JPS6017026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16565581A JPS6017026B2 (en) 1981-10-19 1981-10-19 Method for applying high-temperature sintering separation agent to grain-oriented electrical steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16565581A JPS6017026B2 (en) 1981-10-19 1981-10-19 Method for applying high-temperature sintering separation agent to grain-oriented electrical steel sheets

Publications (2)

Publication Number Publication Date
JPS5867871A JPS5867871A (en) 1983-04-22
JPS6017026B2 true JPS6017026B2 (en) 1985-04-30

Family

ID=15816476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16565581A Expired JPS6017026B2 (en) 1981-10-19 1981-10-19 Method for applying high-temperature sintering separation agent to grain-oriented electrical steel sheets

Country Status (1)

Country Link
JP (1) JPS6017026B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039122A (en) * 1983-08-10 1985-02-28 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet having extremely high magnetic flux density and low iron loss
US4582547A (en) * 1984-05-07 1986-04-15 Allegheny Ludlum Steel Corporation Method for improving the annealing separator coating on silicon steel and coating therefor
JP2530521B2 (en) * 1991-01-04 1996-09-04 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet with low iron loss
JP2006321577A (en) * 2005-05-17 2006-11-30 Mitsubishi Electric Corp Passenger conveyor

Also Published As

Publication number Publication date
JPS5867871A (en) 1983-04-22

Similar Documents

Publication Publication Date Title
JPS6138870A (en) Continuous mechanical plating and mixture powder therefor
US3956029A (en) Annealing separator for heat treatment of silicon steel sheets
CN112534083B (en) Insulating film treating liquid, grain-oriented electrical steel sheet with insulating film, and method for producing same
JP3536775B2 (en) Magnesia for annealing separator of grain-oriented electrical steel, method for producing the same, and method for producing grain-oriented electrical steel sheet with excellent coating properties
JPS6017026B2 (en) Method for applying high-temperature sintering separation agent to grain-oriented electrical steel sheets
KR910006010B1 (en) Method for improving the annealing separator coating on silicon steel and coating therefor
US4537792A (en) Method of applying an annealing separator to grain oriented magnetic steel sheets
JPS62156226A (en) Production of grain oriented electrical steel sheet having uniform glass film and excellent magnetic characteristic
KR20200120736A (en) Grain-oriented electrical steel sheet and method of manufacturing grain-oriented electrical steel sheet
JPH03130376A (en) Production of unidirectionally oriented silicon steel sheet excellent in magnetic characteristic
JPS6017027B2 (en) Stable slurry of inert magnesia and its manufacturing method
JP2007246290A (en) Magnesium oxide for grain-oriented electromagnetic steel sheet, and method for producing grain-oriented electromagnetic steel sheet excellent in magnetic properties and glass coating properties using the same
US4781769A (en) Separating-agent composition and method using same
JP4310996B2 (en) Method for producing grain-oriented electrical steel sheet and annealing separator used in this method
US2351811A (en) Process of preparing fritted foundations for the enameling of metallic articles
US4948675A (en) Separating-agent coatings on silicon steel
JPS62156227A (en) Annealing and separation agent for grain-oriented magnetic steel sheet having superior film characteristic and magnetic characteristic
KR102380420B1 (en) Magnesium oxide and grain-oriented electrical steel sheet for annealing separator
CN106833038B (en) A kind of nano thermal spraying coating of automobile absorber spring base mold
JP2749783B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely excellent glass coating performance and magnetic properties
JP3091088B2 (en) Annealing separation agent having extremely excellent reactivity and method of using the same
JP7181441B1 (en) Magnesium oxide for annealing separator and grain-oriented electrical steel sheet
JPS6179781A (en) Formation of glass film on grain oriented silicon steel sheet
RU2771766C1 (en) Grain-oriented electrical steel sheet having excellent insulating coating adhesion without forsterite coating
JPH1088241A (en) Production of grain oriented silicon steel sheet excellent in film characteristic