JPS60170158A - Separator for lead storage cell - Google Patents

Separator for lead storage cell

Info

Publication number
JPS60170158A
JPS60170158A JP59025452A JP2545284A JPS60170158A JP S60170158 A JPS60170158 A JP S60170158A JP 59025452 A JP59025452 A JP 59025452A JP 2545284 A JP2545284 A JP 2545284A JP S60170158 A JPS60170158 A JP S60170158A
Authority
JP
Japan
Prior art keywords
separator
glass
acid
plates
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59025452A
Other languages
Japanese (ja)
Inventor
Sadao Furuya
定男 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59025452A priority Critical patent/JPS60170158A/en
Publication of JPS60170158A publication Critical patent/JPS60170158A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • H01M50/437Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Cell Separators (AREA)

Abstract

PURPOSE:To improve performance and assembing workability of cells by hardening the periphery of a glass mat made of glass fiber of a specific diameter with an acid-resisting synthetic resin. CONSTITUTION:The periphery of a glass mat made of glass fibers of 0.5-2mum in thread diameter is hardened with an acid-resisting synthetic resin. For example, two glass mats each of 1.5mm. thickness constituted of glass fibers of 0.5-2mum in thread diameter are put one over the other and the side faces are hardened with polypropylene resin to form a separator 3. As the cynthetic resin, instead of the polypropylene, polyethylene and polychlorovinyl having acid- resisting property can be used. In other constitution, a method of hardening the portion of thermosetting varnish adhesive such as epoxy resin protruded from between the plates can be used. The shape of the hardened portion B should be bounded to the area that does not contact the plates and the thickness is adjusted to be the same as the dimention between the plates by press rolling.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、鉛蓄電池特に負極において酸素ガスを吸収す
る密閉式鉛蓄電池用セパレータの改良に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to improvements in lead-acid batteries, particularly separators for sealed lead-acid batteries that absorb oxygen gas at the negative electrode.

従来例の構成とその問題点 この種の密閉式鉛蓄電池は、コンピュータのバックアッ
プ電源および非常用電源として大容量の密閉形電池が望
まれ、増々その需要は高まってきている。この電池は第
1図に示すように正極板1負極板2.セパレータ3.安
全弁4.電そうおよびふたからなる容器6よりなり、電
解液は正、負極板、セパレータ中に保持されている。
2. Description of the Related Art Structures of Conventional Examples and Their Problems This type of sealed lead-acid battery is desired to have a large capacity as a backup power source and an emergency power source for computers, and the demand for this type of sealed lead acid battery is increasing. As shown in FIG. 1, this battery consists of a positive electrode plate 1 a negative electrode plate 2. Separator 3. Safety valve 4. It consists of a container 6 consisting of an electrolyte and a lid, and an electrolyte is held in positive and negative electrode plates and a separator.

発生する酸素ガスの吸収方式は、充電時正極より発生す
る02 ガスを負極板においてPb−+Pt)0の変化
で吸収し、負極は放電しだ状態となってH2ガスの発生
が抑制されるサイクルであり、電解液の消費を極力抑え
た構成である。
The absorption method for the generated oxygen gas is a cycle in which the 02 gas generated from the positive electrode during charging is absorbed by the change in Pb-+Pt)0 at the negative electrode plate, and the negative electrode begins to discharge, suppressing the generation of H2 gas. This is a configuration that minimizes consumption of electrolyte.

これに用いるセパレータは含水率80%以上の特性が電
池性能上必要であり、一般には線径0,5〜2ミクロン
のガラス繊維よりなるガラスマットか用いられている。
The separator used for this purpose must have a water content of 80% or more for battery performance, and generally a glass mat made of glass fiber with a wire diameter of 0.5 to 2 microns is used.

含水率はガラスマント体積中に含まれる保持液量の割合
を示し、ガラスマットに20 KP/ 6m2の圧力を
加えている時の含水率を示す。セパレータの形状は側部
、底部、上部での短絡を防止するため極板寸法より大き
くしである。
The water content indicates the proportion of the amount of retained liquid contained in the volume of the glass mant, and indicates the water content when a pressure of 20 KP/6 m2 is applied to the glass mat. The shape of the separator is larger than the size of the electrode plates to prevent short circuits at the sides, bottom, and top.

以上の構成の電池で充放電を繰り返して使用した際、極
板中央部の劣化が著しく、正極板では活物質の軟化、格
子腐食を、1だ負極板では酸化による劣化現象を示して
いた。第2図人は充電末期の、同図Bは完全放電時のセ
パレータ中における電解液濃度(比重)を調べた結果で
ある。充電時には極板上部の比重が下部より低くなる。
When a battery with the above configuration was repeatedly charged and discharged, the central part of the electrode plate deteriorated significantly, with the positive electrode plate showing softening of the active material and lattice corrosion, and the negative electrode plate showing deterioration due to oxidation. Figure 2 shows the results of examining the electrolyte concentration (specific gravity) in the separator at the final stage of charging, and Figure B shows the results at the time of complete discharge. During charging, the specific gravity of the upper part of the electrode plate is lower than that of the lower part.

一方放電時には極板中央部の比重が非常に低くくなり、
電解液濃度が中央部と周縁では不均一であることが判か
る。これらの原因によって電池の性能低下を早めている
と言える。このように濃度分布を生ずる原因は、大容量
に伴い極板面積が広くなったためと、セパレータの部分
的含水量が異なうためである。極板に接するセパレータ
はある一定の圧力を受けているため、この部分の含水率
は80〜95%であるが、極板に接していない周辺部E
は無圧力のため含水率は120%程度となっている。
On the other hand, during discharge, the specific gravity at the center of the electrode plate becomes very low.
It can be seen that the electrolyte concentration is non-uniform between the center and the periphery. It can be said that these causes accelerate the deterioration of battery performance. The reason why such a concentration distribution occurs is that the electrode plate area becomes wider due to the large capacity, and that the partial water content of the separator differs. Since the separator in contact with the electrode plate is under a certain pressure, the water content in this part is 80 to 95%, but the peripheral area E that is not in contact with the electrode plate is
Since there is no pressure, the water content is about 120%.

このため充放電中周辺部より供給される電解液によって
濃度分布を生じている。
For this reason, a concentration distribution occurs due to the electrolytic solution supplied from the peripheral portion during charging and discharging.

ガラスマットよりなるセパレータは、線径0.5〜2ミ
クロンの繊維を吹付は積層してつくられているが、現在
の技術では厚み2,01M以上になると厚みのバラツキ
が大きくなることから、このような大容量の電池には数
枚のセパレータを重ね合わせて使用している。しかしこ
れは作業性を非常に低下させる原因となっていた。
Separators made of glass mats are made by laminating fibers with a wire diameter of 0.5 to 2 microns, but with current technology, the variation in thickness increases when the thickness exceeds 2.01 m, so this Large-capacity batteries like these use several separators stacked on top of each other. However, this caused a significant decrease in workability.

発明の目的 本発明は」−記従来の問題点を解消し、電池性能の向上
と作業性を上けることを目的とするものである。
OBJECTS OF THE INVENTION It is an object of the present invention to solve the problems of the prior art and to improve battery performance and workability.

発明の構成 本発明の鉛蓄電池用セパレータは0.5〜2ミクロン径
のガラス繊維よりなるガラスマットの周辺部を耐酸性合
成樹脂で固めたことを特徴とするものである。このよう
な構成によれば電解液濃度の分布を従来より小さくして
、電池性能の向」−ヲ図りかつ作業性を上げることがで
きる。
Structure of the Invention The separator for lead-acid batteries of the present invention is characterized in that the periphery of a glass mat made of glass fibers having a diameter of 0.5 to 2 microns is hardened with an acid-resistant synthetic resin. With such a configuration, the distribution of the electrolyte concentration can be made smaller than before, thereby improving battery performance and workability.

実施例の説明 蓄電池用セパレータ3の平面図および側面図である。こ
のセパレータは線径0,5〜2ミクロンのガラス繊維か
ら構成された厚み1.5間のガラスマットを2枚合わせ
その側面をポリプロピレンの樹脂で固めて形成されてい
る。このセパレータの製造は大板のガラスマットを2枚
合わせ、その上に溶融状態のポリプロピレンを流し、プ
レスローラを通して冷却固化し、固定後切断される。貼
り合せるだめの合成樹脂はポリプロピレンの他、ポリエ
チレン、ポリ塩化ビニル等耐酸性を有するものが使用可
能である。寸だエポキシ樹脂等の熱硬化樹脂接着剤で極
板からはみ出る部分を固化してもよい。同化部Bの形状
は極板に接しない部分とし、才だその厚みは極板間寸法
と同じにプレスローラで調整する。
DESCRIPTION OF THE EMBODIMENTS FIG. 1 is a plan view and a side view of a separator 3 for a storage battery. This separator is formed by combining two glass mats with a thickness of 1.5 and 1.5 and made of glass fibers with a wire diameter of 0.5 to 2 microns, and hardening the sides with polypropylene resin. To manufacture this separator, two large glass mats are put together, molten polypropylene is poured on top of the mat, cooled and solidified through press rollers, fixed, and then cut. As the synthetic resin for bonding, in addition to polypropylene, acid-resistant materials such as polyethylene and polyvinyl chloride can be used. The portion protruding from the electrode plate may be solidified with a thermosetting resin adhesive such as epoxy resin. The shape of the assimilation part B is such that it does not touch the electrode plates, and its thickness is adjusted using a press roller to be the same as the dimension between the electrode plates.

第4図A、Bは本発明の他の実施例を示す。人は左右の
側部と下部、Bは左右の側部と下部、上部のすべてを固
定したものである。Bは特性上鏝もよい方法であるが、
作業性を低下させる欠点がある。
4A and 4B show another embodiment of the invention. A person's left and right sides and lower part are fixed, and B's left and right sides, lower part, and upper part are all fixed. For B, a trowel is also a good method due to its characteristics, but
It has the disadvantage of reducing workability.

さらにガラスマットは2枚以上重ねることも可能である
Furthermore, it is also possible to stack two or more glass mats.

第3図に示す実施例のセパレータを用いて10時間率で
100Ahの電池を試作し評価した。用いた極板は幅1
41×高さ138×厚みは正極3.1ff 、負極2.
O#11とした。またセパレータは幅160×高さ14
4×厚3.0朋とし、極板群構成は正極7枚、負極8枚
とした。この結果、充放電時の電解液の濃度分布は従来
より少なくなりこの電池を用いたトリクル充電寿命試験
も第5図人に示すように従来Bよりも10〜2o%向上
することかできた。なお、試験条件は、2.3vのトリ
クル充電で6ケ月毎にo、1C(10人)放電を周囲温
度25°Cで行った。
Using the separator of the example shown in FIG. 3, a 100 Ah battery was fabricated and evaluated at a 10 hour rate. The electrode plate used has a width of 1
41 x height 138 x thickness: positive electrode 3.1ff, negative electrode 2.
It was set as O#11. Also, the separator is width 160 x height 14
4 x thickness 3.0 mm, and the electrode plate group configuration was 7 positive electrodes and 8 negative electrodes. As a result, the concentration distribution of the electrolyte during charging and discharging is smaller than before, and the trickle charge life test using this battery was also improved by 10 to 20% over conventional B, as shown in Figure 5. The test conditions were 2.3V trickle charging, o, 1C (10 people) discharge every 6 months at an ambient temperature of 25°C.

寿命に至った電池は全体的に劣化しており、従来のよう
な中央部の劣化度合の違いがなかった。
The batteries that reached the end of their lifespans had deteriorated overall, and there was no difference in the degree of deterioration in the center like in conventional batteries.

さらに作業上、これまでのように2枚以上重ね合わせて
極板を包むのに比べて、周辺部を固定することで簡単に
セパレータが取扱えるため、機械化が可能となった。
Furthermore, in terms of work, mechanization is now possible because separators can be handled more easily by fixing the periphery, compared to the conventional method of wrapping two or more plates on top of each other.

発明の効果 以上のように本発明によれば、セパレータの周辺部を耐
酸性合成樹脂で固めたことによって電池性能および作業
性が向上した鉛蓄電池を実用化することができる。
Effects of the Invention As described above, according to the present invention, it is possible to put into practical use a lead-acid battery whose battery performance and workability are improved by solidifying the peripheral portion of the separator with an acid-resistant synthetic resin.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の鉛蓄電池の構成図を示す概略断面図、第
2図A、Bは充電時および放電時のセパレータ中におけ
る電解液濃度を示す図、第3図ABは本発明の第1の実
施例における鉛蓄電池用セパレータを示す平面図および
側面図、第4図A。 Bid他の実施例におけるセパレータの平面図、第5図
は寿命特性図である。 1・・・・・・正極板、2・・・・・負極板、3 ・・
・セパレータ、B・・・・・・セパレータ周辺部固化部
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 第4図 第5図 時間(駒
Figure 1 is a schematic sectional view showing the configuration of a conventional lead-acid battery, Figures 2A and B are diagrams showing the electrolyte concentration in the separator during charging and discharging, and Figure 3AB is a diagram showing the electrolyte concentration in the separator during charging and discharging. FIG. 4A is a plan view and a side view showing a separator for a lead-acid battery according to an embodiment of the present invention. A plan view of a separator in another embodiment of Bid et al., and FIG. 5 is a life characteristic diagram. 1... Positive electrode plate, 2... Negative electrode plate, 3...
・Separator, B... Solidified area around the separator. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 4 Figure 5 Time (pieces)

Claims (1)

【特許請求の範囲】[Claims] 線径0,6〜2ミクロンのガラス穂維よりなるガラスマ
ットの周辺部を4酸性合成樹脂で固めたことを特徴とす
る鉛蓄電池用セパレータ。
A separator for a lead-acid battery, characterized in that the periphery of a glass mat made of glass fibers with a wire diameter of 0.6 to 2 microns is hardened with a 4-acid synthetic resin.
JP59025452A 1984-02-14 1984-02-14 Separator for lead storage cell Pending JPS60170158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59025452A JPS60170158A (en) 1984-02-14 1984-02-14 Separator for lead storage cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59025452A JPS60170158A (en) 1984-02-14 1984-02-14 Separator for lead storage cell

Publications (1)

Publication Number Publication Date
JPS60170158A true JPS60170158A (en) 1985-09-03

Family

ID=12166414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59025452A Pending JPS60170158A (en) 1984-02-14 1984-02-14 Separator for lead storage cell

Country Status (1)

Country Link
JP (1) JPS60170158A (en)

Similar Documents

Publication Publication Date Title
JPS60170158A (en) Separator for lead storage cell
JPS5956367A (en) Sealed lead-acid battery
JPH02236963A (en) Sealed lead-acid battery
JPS58154171A (en) Lead-acid battery
JPS60207262A (en) Sealed lead storage battery
JP2982545B2 (en) Sealed storage battery
JPH01149376A (en) Sealed lead-acid battery
JPS58206074A (en) Non-leakage enclosed type lead storage battery
JPH1050337A (en) Sealed lead-acid battery
JP4719962B2 (en) Manufacturing method of sealed lead-acid battery
JPS58206046A (en) Enclosed type lead storage battery and production thereof
JPS63152871A (en) Sealed lead-acid battery
JPS60198052A (en) Sealed lead storage battery
JPS59138062A (en) Lead storage battery
JPS62165877A (en) Storage battery
JPH0733377Y2 (en) Sealed lead acid battery
JPS60107272A (en) Lead storage battery
JPH01149375A (en) Sealed lead-acid battery
JPH02236965A (en) Sealed lead-acid battery
JPS58214274A (en) Lead-acid battery
JPH10172542A (en) Sealed lead acid storage battery
JPS63148538A (en) Separator for enclosed lead storage battery
JPS63291370A (en) Sealed type lead storage battery
JPH1032018A (en) Sealed type lead-acid battery
JPS6030053A (en) Storage method of lead-acid battery