JPS60169796A - Controller for operation of nuclear reactor - Google Patents

Controller for operation of nuclear reactor

Info

Publication number
JPS60169796A
JPS60169796A JP59025862A JP2586284A JPS60169796A JP S60169796 A JPS60169796 A JP S60169796A JP 59025862 A JP59025862 A JP 59025862A JP 2586284 A JP2586284 A JP 2586284A JP S60169796 A JPS60169796 A JP S60169796A
Authority
JP
Japan
Prior art keywords
signal
stability
reactor
control
control rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59025862A
Other languages
Japanese (ja)
Inventor
山本 文昭
康裕 磯部
福元 龍二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP59025862A priority Critical patent/JPS60169796A/en
Publication of JPS60169796A publication Critical patent/JPS60169796A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は沸騰水型原子炉の運転制御装置に係り、とりわ
け原子炉出力の安定性あるいは、冷却材の流動安定性が
損われないように常時これらを監視し制御する原子炉安
全性制御装置を備えた原子炉の運転制御装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an operation control device for a boiling water nuclear reactor, and in particular to a system for controlling the operation of a boiling water nuclear reactor. The present invention relates to a nuclear reactor operation control device equipped with a reactor safety control device that monitors and controls these.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

沸騰水型原子炉などにおいては、予期されるいがなる運
転状態、例えば所内電源喪失後、冷却材強制循環ポンプ
が機能を喪失し自然@環状態となっても、原子炉固有の
安定性が損われないように設計されている。原子炉固有
の安定性と1ノでは、冷却材流量の振動により減速材へ
の熱の移動が妨げられたり、またそれにより原子炉出ノ
〕が振動したりするようなチャンネル内の水力学的な安
定性と、原子炉全体の反応度帰還効果による安定性とが
検討される。
In boiling water reactors, the inherent stability of the reactor may be compromised even if the expected operating conditions occur, for example, after loss of on-site power, the coolant forced circulation pump loses its function and enters a natural ring state. It is designed so that it will not be damaged. The inherent stability of the reactor and the hydraulics in the channels are such that oscillations in the coolant flow impede heat transfer to the moderator and thereby cause oscillations in the reactor outlet. The stability of the reactor and the stability due to the reactivity feedback effect of the entire reactor will be considered.

通常、これらの安定性の評価方法どしては域中比を用い
て行っている。第1図は圧力、流量等の原子炉パラメー
タと原子炉出力の関係を示す図であり、この図を用いて
域中比の説明を行う。今、ある原子炉パラメータがA。
Normally, these stability evaluation methods are performed using a mid-range ratio. FIG. 1 is a diagram showing the relationship between reactor parameters such as pressure and flow rate and reactor output, and the mid-range ratio will be explained using this diagram. Now, a certain reactor parameter is A.

で、原子炉出力がPOに保たれている時、時刻toにお
いて原子炉パラメータに△Aの微小ステップ状の入力変
化が生じたとすると、原子炉出力は第1図に示すような
振動を生ずる。減由比は、この時の原子炉出力最終整定
値P1に対する原子炉出力の第1のオーバシュートの偏
差×1と、第2のオーバシュートの偏差X との比X 
/X1により定義される。
When the reactor output is maintained at PO, if a minute step input change of ΔA occurs in the reactor parameters at time to, the reactor output oscillates as shown in FIG. The reduction ratio is the ratio of the first overshoot deviation x 1 of the reactor output to the second overshoot deviation X with respect to the final reactor output setting value P1 at this time.
/X1.

2 また、原子炉設計の観点からは、原子炉運転中に予期さ
れるあらゆる運転状態で守るべぎ減[1]比(以下「限
界基準」と称する)と、実際の運転に際し良好な安定性
上の特性が確保されるために見込んでいる設計上の余裕
としてこれ以上の値では好ましくないという域中比(以
下「運転上の設計基準」と称する)を定義している。具
体的にはチャンネルの水力学的安定性の限界基準は1.
0、運転上の設計基準は0.5であり、炉心安定性の限
界基準は1.0、運転上の設計基準は0.25である。
2 In addition, from the perspective of reactor design, the reduction [1] ratio (hereinafter referred to as the "limit standard") that should be maintained under all expected operating conditions during reactor operation and the good stability during actual operation are important. A mid-range ratio (hereinafter referred to as "operational design standard") is defined as a design margin that is expected to ensure the above characteristics, and a value larger than this is not desirable. Specifically, the limit criteria for the hydraulic stability of the channel are 1.
0, the operational design criterion is 0.5, the core stability limit criterion is 1.0, and the operational design criterion is 0.25.

これらの安定性は冷却拐流量が低い程、また原子炉出力
が高い程域中比は大きくなり、安定性は悪くなる。また
冷却材流量が低い程、また原子炉出力が高い程蒸気ボイ
ド体積率が大きく、冷却材液体単相圧力損失に対する冷
却材二相圧力損失の割合が大きくなり、チャンネルの水
力学的安定性を悪くする。またボイド体積率が大きいと
、ボイド反応度係数は大きくなり、炉心安定性は悪くな
る。
As for these stability, the lower the cooling removal flow rate and the higher the reactor output, the larger the range-to-range ratio becomes, and the stability becomes worse. In addition, the lower the coolant flow rate and the higher the reactor power, the larger the steam void volume fraction, and the larger the ratio of the coolant two-phase pressure loss to the coolant liquid single-phase pressure loss, which affects the hydraulic stability of the channel. make it worse Furthermore, when the void volume fraction is large, the void reactivity coefficient becomes large and the core stability deteriorates.

従来技術においては運転条件を伺(プて、上記のような
不安定条件下の運転に至らないよう運転の制御を行って
いた。第2図は原子炉出力と冷却材流量の相関関係で示
した、従来技術にお【プる原子炉の運転範囲を示す図で
ある。第2図において、従来技術による原子炉の運転範
囲△は、原子炉定格点aより右下方に延びる冷却材強制
循環ポンプ定速度曲線すと、キャビテーション防止イン
ターロック曲線Cと、冷却材強制循環ポンプ最低速匪曲
線dと、105%原子炉出力制御棒パターン流量制御曲
線eと、原子炉定格点aを左方へ平行移動させた時の制
御棒パターン流量制御曲線eとの交点fと原子炉定格点
aとを結ぶ直線により囲まれた範囲(杉で示す部分)で
ある。
In conventional technology, operation was controlled to prevent operation under the unstable conditions described above based on the operating conditions.Figure 2 shows the correlation between reactor output and coolant flow rate. 2 is a diagram showing the operating range of a nuclear reactor according to the prior art. In FIG. The pump constant speed curve is the cavitation prevention interlock curve C, the forced coolant circulation pump minimum speed curve d, the 105% reactor power control rod pattern flow control curve e, and the reactor rating point a to the left. This is the range (portion indicated by cedar) surrounded by a straight line connecting the intersection f with the control rod pattern flow rate control curve e when the control rod is moved in parallel and the reactor rated point a.

第3図は第2図において不安定条件(域中比が1.0を
越える)が成立する領域を示したものであり、チャンネ
ルの水力学的な不安定条件曲線q、あるいは炉心の不安
定条件曲線りより左方にある領域(斜線で示す)が、不
安定条件が成立する領域である。
Figure 3 shows the region in Figure 2 where the unstable condition (range-to-range ratio exceeds 1.0) is established, and indicates the hydraulic instability condition curve q of the channel or the instability of the core. The region to the left of the conditional curve (indicated by diagonal lines) is the region where the unstable condition holds.

従来技術においては、このような不安定条件下の運転に
至らないよう、運転員が常に監視するとともに、運転条
件を付りて運転の制限を行っていた。したがって運転員
の負担が大きいとともに、原子炉を運転し得る範囲が狭
いという問題があつ1こ 。
In the conventional technology, in order to prevent operation under such unstable conditions, an operator constantly monitors the operation and restricts operation based on operating conditions. Therefore, there is a problem that the burden on the operators is heavy and the range in which the reactor can be operated is narrow.

〔発明の目的〕[Purpose of the invention]

本発明はこのような点を考慮してなされたものであり、
従来技術にJ5けるような運転条件の制約という手法で
なく、機器構成や機器自動化技術により原子炉を監視し
、不安定領域に接近した際には、原子炉がそれ以上不安
定領域に接近するのを自動的に防止することにより、運
転員の負担軽減、運転制約条件の緩和などの原子炉運転
性能の向上とともに、より高い信頼度をもって不安定条
件の成立を未然に防止するという安全性能の向上を計る
ことのできる原子炉の運転制御装置を提供することを目
的とする。
The present invention has been made in consideration of these points,
Rather than restricting operating conditions as in conventional technology, the reactor is monitored using equipment configuration and equipment automation technology, and when the reactor approaches an unstable region, it is possible to prevent the reactor from approaching the unstable region any further. By automatically preventing such occurrences, reactor operational performance is improved by reducing the burden on operators and easing operational constraints, and safety performance is improved by preventing unstable conditions from occurring with higher reliability. The purpose is to provide a nuclear reactor operation control device that can improve the performance of nuclear reactors.

〔発明の概要〕[Summary of the invention]

本発明は、原子炉出力計装と、制御棒駆@装置制御器か
らの制御棒駆動装置制御信号により制御棒を駆動する制
御棒駆動装置と、原子炉圧力容器内に導かれた冷却材の
一部を強制循環させる冷却材強制循環ポンプと、この冷
却材強制循環ポンプの流量を計測する冷却材流量計測装
置とを備えた原子炉の原子炉安全性制御装置において、
冷却材循環流量計測装置と制御棒駆動装置側m器とを接
続する回路中に、安定性監視装置、安定度設定器および
安定性制御装置を配設し、安定性監視装置において冷却
材循環流量計測装置から発せられる冷却材循環流量信号
により安定性の許容出力を演算して安定性許容出力信号
を発し、この安定性許容出力信号の信号1ノベルと原子
炉出力計装から発せられる原子炉出力信号の信号レベル
とを安定度設定器により比較し、原子炉出力信号の信号
レベルが安定性許容出力信号の信号レベルを上まわった
時に安定性保持信号を発し、この安定性保持信号を安定
性制御装置により原子炉出力信号の信号レベルに応じた
所定の安定性制御信号に変換し、制御棒引抜き阻止、選
択制御棒挿入、全制御棒緊急挿入のいずれかの動作を行
なわせることにより、原子炉を安定に制御する原子炉安
定性制御装置を備えていることを特徴としている。
The present invention provides reactor power instrumentation, a control rod drive device that drives control rods based on a control rod drive device control signal from a control rod drive device controller, and a control rod drive device that drives a control rod using a control rod drive device control signal from a control rod drive device controller, and In a reactor safety control system for a nuclear reactor, which includes a coolant forced circulation pump that forcedly circulates a portion of the coolant, and a coolant flow rate measuring device that measures the flow rate of the coolant forced circulation pump,
A stability monitoring device, a stability setting device, and a stability control device are installed in the circuit that connects the coolant circulation flow rate measurement device and the control rod drive side meter, and the stability monitoring device measures the coolant circulation flow rate. The stability allowable output signal is calculated by calculating the stability allowable output signal based on the coolant circulation flow rate signal emitted from the measuring device, and the reactor power output emitted from the reactor power instrumentation and the signal 1 novel of this stability allowable output signal are calculated. The signal level of the signal is compared with the stability setting device, and when the signal level of the reactor output signal exceeds the signal level of the stability allowable output signal, a stability maintenance signal is generated, and this stability maintenance signal is used as the stability setting device. The control device converts the reactor output signal into a predetermined stability control signal according to the signal level, and performs any of the following actions: preventing control rod withdrawal, selective control rod insertion, or emergency insertion of all control rods. It is characterized by being equipped with a reactor stability control device that stably controls the reactor.

〔発明の実施例〕[Embodiments of the invention]

以下、第4図および第5図を参照して本発明の実施例に
ついて説明する。
Embodiments of the present invention will be described below with reference to FIGS. 4 and 5.

第4図において符号401は沸騰水型原子炉の圧力容器
であり、この圧力容器401内に炉心支持板402に支
えられIC炉心403、制御棒404、原子炉出力信号
を発する原子炉出力計装405などが配設されており、
冷却材は給水管406より圧力容器4.01内に導かれ
、圧力容器401内で蒸発した後、主蒸気管407より
圧力容器401外へ導かれるようになっている。また、
圧力容器401内に導かれた冷却材の一部は、冷却材強
制循環ポンプ408により吸入配管409から導出され
、吐出配管410を通って再び圧力容器401内に環流
する。
In FIG. 4, reference numeral 401 is a pressure vessel of a boiling water reactor, and inside this pressure vessel 401, an IC core 403, control rods 404, and a reactor power instrumentation device that emits a reactor output signal are supported by a core support plate 402. 405 etc. are arranged,
The coolant is guided into the pressure vessel 4.01 through the water supply pipe 406, evaporated within the pressure vessel 401, and then guided out of the pressure vessel 401 through the main steam pipe 407. Also,
A part of the coolant introduced into the pressure vessel 401 is led out from the suction pipe 409 by the coolant forced circulation pump 408, passes through the discharge pipe 410, and flows back into the pressure vessel 401.

冷却材強制循環ポンプ408には、このポンプの流量を
計測し冷却材循環流量信号414を発する冷却材循環流
量計測装置413が接続されている。また、冷却材循環
流量計測装置413は、冷却材循環流量計測装置413
から発せられた冷却材循環流量信号414により原子炉
の安定性許容出力を演算する安定性監視装置415に接
続されている。この安定性許容出力の演算は、第5図に
示すような、冷却材循環流量Wの関数で表わされた原子
炉の安定性許容出力Y=f (w)の特性曲線を用いて
行われる。例えば、冷却材強制循環ポンプ408の流量
をW。とすれば、この冷却材循環流量W。におりる安定
性許容出力Yに関しては、警報表示及び制御棒引抜き阻
止曲線Z1がら警報表示及び制御棒引抜き阻止出力Y1
、選択制御棒挿入出力曲線Z2から選択制御棒挿入出力
Y2、全制御棒緊急挿入出力曲線Z3から全制御棒緊急
挿入出力Y3が決定される。なお、この3つの特性曲線
は予め設定されており、任意の冷却材循環流(iw。に
対しその安定性許容出力Yは、Yl〈Y2 〈Y3の関
係が常に保たれている。安定性監視装置415で演算さ
れた安定性許容出力Yは、安定性許容用 力信号416に変換されて、安定性監視装置415に接
続された安定度設定器412に入力される。
A coolant circulation flow rate measuring device 413 is connected to the coolant forced circulation pump 408, which measures the flow rate of this pump and generates a coolant circulation flow rate signal 414. Further, the coolant circulation flow rate measurement device 413 is a coolant circulation flow rate measurement device 413.
It is connected to a stability monitoring device 415 that calculates the stability allowable output of the reactor based on the coolant circulation flow rate signal 414 emitted from the reactor. This calculation of the stability allowable output is performed using the characteristic curve of the reactor's stability allowable output Y=f (w), which is expressed as a function of the coolant circulation flow rate W, as shown in Figure 5. . For example, the flow rate of the coolant forced circulation pump 408 is W. If so, this coolant circulation flow rate W. Regarding the stability allowable output Y that falls below the alarm display and control rod withdrawal prevention curve Z1, the alarm display and control rod withdrawal prevention output Y1
, selected control rod insertion output Y2 is determined from the selected control rod insertion output curve Z2, and all control rod emergency insertion output Y3 is determined from the all control rod emergency insertion output curve Z3. These three characteristic curves are set in advance, and the stability allowable output Y for any given coolant circulation flow (iw) always maintains the relationship Yl < Y2 < Y3. Stability monitoring The stability allowable output Y calculated by the device 415 is converted into a stability allowable power signal 416 and input to the stability setting device 412 connected to the stability monitoring device 415.

なおここで、それぞれの安定性許容出力Y1 ・Y・Y
 に対応する安定性許容出力信号をyl ・3 y2・y3とする。
Here, each stability allowable output Y1 ・Y・Y
Let the stability permissible output signal corresponding to yl.3 y2.y3.

安定度設定器412には原子炉出)〕計装405も接続
されており、安定度設定器412において、原子炉出力
計装405より発せられた原子炉出力信号411の信号
レベルと、安定性監視装置415より発せられた安定性
許容出力信号416の信号レベルトとが比較され、原子
炉出力信号411の信号レベルが安定性許容出力信号4
16の信号レベルを上まわった時、安定性保持信号41
7を発するようになっている。
The stability setting device 412 is also connected to the reactor output instrumentation 405, and the stability setting device 412 determines the signal level of the reactor output signal 411 issued from the reactor power instrumentation 405 and the stability. The signal level of the stability allowable output signal 416 emitted from the monitoring device 415 is compared, and the signal level of the reactor output signal 411 is the stability allowable output signal 4.
When the signal level of 16 is exceeded, the stability maintenance signal 41
It is designed to emit a number 7.

安定度設定器412は、安定性保持信号417により原
子炉出力信号411の信号レベルに応じた安定性制御信
号420A、、420B、420Cを発する安定性制御
装置418に接続されている。
The stability setting device 412 is connected to a stability control device 418 that issues stability control signals 420A, 420B, and 420C according to the signal level of the reactor output signal 411 based on the stability maintenance signal 417.

安定性制御装置418は、警報表示装置421に接続さ
れるとともに、制御棒引抜き阻止信号425を発する制
御棒引抜き阻止信号発生装置422、選択制御棒挿入信
号426を発する選択制御棒挿入信号発生装置423、
全制御棒緊急挿入信号427を発する全制御棒緊急挿入
信号発生装置424に接続されている。これらの装置4
22.423.424は、制御棒駆動装置制御信号42
9を発する制御棒駆動装置制御器428に接続され、制
御棒駆動装置制御信号429は制御棒駆動装置430に
入力されて、制御棒404が制御されるようになってい
る。
The stability control device 418 is connected to an alarm display device 421, and includes a control rod withdrawal prevention signal generation device 422 that generates a control rod withdrawal prevention signal 425, and a selective control rod insertion signal generation device 423 that generates a selective control rod insertion signal 426. ,
It is connected to a full control rod emergency insertion signal generator 424 that generates a full control rod emergency insertion signal 427 . These devices 4
22.423.424 is the control rod drive control signal 42
9 is connected to a control rod drive controller 428 , and a control rod drive control signal 429 is input to a control rod drive 430 to control the control rods 404 .

次にこのような構成からなる本実施例の作用について説
明する。
Next, the operation of this embodiment having such a configuration will be explained.

安定性監視装置415から発せられた安定性許容出力信
号416と原子炉出力信号411とを安定度設定器41
2において比較し、原子炉出力信号411の信号レベル
が安定性許容出力信号416の3つの信号y1 ・y2
 ・y3のいずれの信号レベルよりも小さい場合には、
原子炉出力は安定な運転領域にあると判断され、安定度
設定器412からは安定性保持信号417は発ぜられな
い。
The stability allowable output signal 416 emitted from the stability monitoring device 415 and the reactor output signal 411 are sent to the stability setting device 41.
2, the signal level of the reactor output signal 411 is the three signals y1 and y2 of the stability allowable output signal 416.
・If it is smaller than any signal level of y3,
It is determined that the reactor output is in a stable operating range, and the stability setting device 412 does not generate the stability maintenance signal 417.

原子炉出力信号411が安定性許容出力信号416のy
lとy2の間又はylと同一のレベルにあるときは、安
定度設定器412より安定性保持信@417が安定性制
御装置418に向けて発せられ、安定性制御装@418
はこの信号417に基づいて、警報表示信号41つと安
定性制御信号420Aを発する。これにより、警報表示
信号419を受信した警報表示装@421から運転員に
警報が表示されるとともに、安定性制御信号420Aを
受信した制御棒引抜き阻止信号発生装置422から制御
棒引抜ぎ阻止信号425が制御棒駆動装置制御器428
に対して発せられる。制御棒駆動装置制御器428は、
原子炉内に存在する複数個の制御棒駆動装置430の全
部に対し、制御棒駆動装置制御信号429を発し、制御
棒404がこれ以上引抜かれるのを阻止する。これによ
り制御棒404の引抜きにより原子炉がより不安定な運
転領域に接近するのが阻止され、原子炉の安定性が保た
れる。
Reactor output signal 411 is y of stability allowable output signal 416
When the level is between l and y2 or at the same level as yl, the stability setting device 412 issues a stability maintenance signal @417 to the stability control device 418, and the stability control device @418
Based on this signal 417, it issues one alarm display signal 41 and a stability control signal 420A. As a result, an alarm is displayed to the operator from the alarm display device @421 that has received the alarm display signal 419, and a control rod withdrawal prevention signal 425 is sent from the control rod withdrawal prevention signal generator 422 that has received the stability control signal 420A. is the control rod drive controller 428
issued against. The control rod drive controller 428 is
A control rod drive device control signal 429 is issued to all of the plurality of control rod drive devices 430 existing in the nuclear reactor to prevent the control rods 404 from being pulled out any further. This prevents the reactor from approaching a more unstable operating region due to withdrawal of the control rods 404, and maintains the stability of the reactor.

次に、原子炉出力信号411が安定性許容出力信号41
6のy2とy3の間又はy2と同一のレベルにあるとき
は、安定度設定器412より安定性保持信号417が安
定性制御装置418に対して発せられ、安定性制御装置
418はこの信号417に基づいて、安定性制御信号4
20Bを発する。安定性制御信号420Bは選択制御棒
挿入信号発生装置423に入力され、選択制御棒挿入信
号426が制御棒駆動装置制御器428に対して発せら
れる。これにより制御棒駆動装置制御器428は、複数
個の制御棒駆動装置430の全部に対し、制御棒404
のこれ以上の引抜きを阻止するとともに複数個のうちの
一部の制御棒駆動装置430に対し、制御棒404の挿
入を命じる制御棒駆動装置制御信号429を発する。こ
の結果、制御棒404の挿入が選択的に行われ、原子炉
の運転状態がより安定な運転範囲に移行される。
Next, the reactor output signal 411 is the stability allowable output signal 41
When the level is between y2 and y3 of 6 or at the same level as y2, the stability setting device 412 issues a stability maintenance signal 417 to the stability control device 418, and the stability control device 418 receives this signal 417. Based on the stability control signal 4
Emit 20B. Stability control signal 420B is input to select control rod insertion signal generator 423 and select control rod insertion signal 426 is issued to control rod drive controller 428. As a result, the control rod drive device controller 428 controls the control rod 404 for all of the plurality of control rod drive devices 430.
A control rod drive device control signal 429 is issued to prevent further withdrawal of the control rods 404 and to command some of the control rod drive devices 430 to insert the control rods 404 . As a result, the control rods 404 are selectively inserted, and the operating state of the reactor is shifted to a more stable operating range.

原子炉出力信号411が安定性許容出力信号416のy
3と等しいか又はそれ以上のレベルにあるときも、安定
度設定器412から安定性制御装置418に対して安定
性保持信号417が発せられ、安定性制御装置418は
この信号417に基づいて安定性制御信号420Cを発
する。安定性制御信8420Cは全制御棒緊急挿入信号
発生装置424に入力され、全制御棒緊急挿入信号42
7が制御棒駆動装置制御器428に対して発せられる。
Reactor output signal 411 is y of stability allowable output signal 416
3, the stability setting device 412 also issues a stability maintenance signal 417 to the stability control device 418, and the stability control device 418 maintains the stability based on this signal 417. A sex control signal 420C is issued. The stability control signal 8420C is input to the all control rod emergency insertion signal generator 424, and the all control rod emergency insertion signal 42
7 is issued to the control rod drive controller 428.

これにより制御棒駆動装置制御器428は、原子炉内に
存在する全部の制御棒駆動装置430に対し、制御棒4
04の緊急挿入を命じる制御棒駆動装置制御信号429
を発し、いわゆるスクラムにより原子炉は安全に停止さ
れる。
As a result, the control rod drive device controller 428 controls all control rod drive devices 430 in the reactor.
Control rod drive control signal 429 commanding emergency insertion of 04
The reactor is safely shut down by a so-called scram.

尚、安定度設定器412、冷却材循環流量目測装置41
3、安定性監視装置415の機能は計算機等の機能を用
いて実現することも可能である。
In addition, the stability setting device 412 and the coolant circulation flow rate measuring device 41
3. The functions of the stability monitoring device 415 can also be realized using functions such as a computer.

〔発明の効果〕〔Effect of the invention〕

このように、本発明によれば、冷却材強制循環ポンプの
流量の関数である安定性許容出力の信号を、原子炉出力
信号と比較し、その信号レベルに応じて最適な原子炉の
制御方法を選択し、原子炉の運転状態を安定に維持する
か、あるいは安全に停止することができる。
As described above, according to the present invention, the signal of the stability allowable output, which is a function of the flow rate of the coolant forced circulation pump, is compared with the reactor output signal, and the optimum nuclear reactor control method is determined according to the signal level. The reactor can be maintained in a stable operating state or shut down safely.

第6図は本発明の効果をチャンネルの水力学的安定性の
域中比と原子炉出力との関係で示した図である。図にお
いて斜線部は域中比が1.0を越える領域であり、第3
図で示したチャンネルの水力学的不安定領域に対応して
いる。また各破線は安定性制御信号の各レベルを示して
おり、点線は第5図の警報表示及び制御棒引抜き阻止出
力曲線に対応する信号レベルL1、−転鎖線は第5図の
選択制御棒挿入出力曲線に対応する信号レベルL2、二
点鎖線は第5図の全制御棒緊急挿入出力曲線に対応する
信号レベルL3である。このように本発明によれば、域
中比が大きくなる(安全性が厳しくなる)出力線上で、
各運転状態のチャンネルの水力学的安定性の域中比に応
じた、最適な出力制御を行うことができる。
FIG. 6 is a diagram showing the effect of the present invention in terms of the relationship between the midrange ratio of the hydraulic stability of the channel and the reactor output. In the figure, the shaded area is the area where the range ratio exceeds 1.0, and the third
This corresponds to the hydraulically unstable region of the channel shown in the figure. In addition, each broken line indicates each level of the stability control signal, the dotted line is the signal level L1 corresponding to the alarm display and control rod withdrawal prevention output curve in Figure 5, and the dashed line is the selected control rod insertion in Figure 5. The signal level L2 corresponds to the output curve, and the two-dot chain line is the signal level L3 corresponding to the all control rod emergency insertion output curve in FIG. In this way, according to the present invention, on the output line where the mid-range ratio becomes large (safety becomes strict),
Optimal output control can be performed according to the hydraulic stability ratio of the channel in each operating state.

第7図は炉心安定性の域中比と原子炉出力との関係を示
した図であり、第6図と同様、斜線部は域中比が1.0
を越える領域であり、第3図で示した炉心の不安定領域
に対応している。また各破線は安定性制御信号の各レベ
ルを示しており、点線は第5図の警報表示及び制御棒引
抜き阻止出力曲線に対応する信号レベルL1、一点鎖線
は第5図の選択制御棒挿入出力曲線に対応する信号レベ
ルL2、二点鎖線は第5図の全制御棒緊急挿入出力曲線
に対応する信号レベルL3である。この第7図から明ら
かなように、本発明によれば、各運転状態の炉心安定性
の域中比に応じた、最適な出力制御を行うことができる
Figure 7 is a diagram showing the relationship between the mid-range ratio of core stability and the reactor output; similar to Figure 6, the shaded area indicates the mid-range ratio of 1.0.
, which corresponds to the unstable region of the reactor core shown in FIG. In addition, each broken line indicates each level of the stability control signal, the dotted line is the signal level L1 corresponding to the alarm display and control rod withdrawal prevention output curve in Figure 5, and the dashed line is the selected control rod insertion output in Figure 5. The signal level L2 corresponding to the curve is the signal level L2, and the two-dot chain line is the signal level L3 corresponding to the all control rod emergency insertion output curve in FIG. As is clear from FIG. 7, according to the present invention, it is possible to perform optimal power control according to the core stability ratio in each operating state.

第8図は本発明の総合的効果を原子炉出力と冷却材流量
の相関関係に対応させて示した図である。
FIG. 8 is a diagram showing the overall effect of the present invention in relation to the correlation between reactor output and coolant flow rate.

第8図において斜線部分は、本発明による原子炉安定性
制御装置を採用したことにより、従来技術に比べ拡大し
た原子炉運転範囲を示している。すなわち、本発明によ
れば、原子炉の安定性を常に監視することにより、原子
炉が不安定な運転領域に接近すると、警報表示及び制御
棒引抜き阻止、選択制御棒挿入、あるいは全制御棒緊急
挿入が行われて、原子炉の安定な制御がなされ、従来に
比べ原子炉を停止させる必要がなくなった部分だけ、原
子炉の運転範囲を拡大することができる。
In FIG. 8, the shaded area indicates a nuclear reactor operating range expanded compared to the conventional technology by employing the reactor stability control device according to the present invention. That is, according to the present invention, by constantly monitoring the stability of the reactor, when the reactor approaches an unstable operating region, an alarm is displayed, control rod withdrawal is prevented, selected control rods are inserted, or all control rods are emergency activated. With the insertion, stable control of the reactor is achieved, and the operating range of the reactor can be expanded to the extent that it is no longer necessary to shut down the reactor compared to before.

以上のように本発明によれば、運転員の負担を軽減する
とともに、最適な安定性維持手段を講することにより、
原子炉のスクラム回数を減少させることができ、原子炉
運転の経済性の向上を図ることができる。
As described above, according to the present invention, the burden on the operator is reduced, and by providing optimal stability maintenance means,
The number of scrams in the reactor can be reduced, and the economic efficiency of reactor operation can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は圧力、流量等の原子炉パラメータと原子炉出力
の関係を示す図、第2図は原子炉出力と冷却材流量の相
関関係で示した従来技術における原子炉の運転範囲を示
す図、第3図は第2図において不安定条件が成立する領
域を原子炉出力と冷却材流量の相関で示した図、第4図
は本発明による原子炉の運転制m装置を示すブロック図
、第5図は原子炉安定性許容出力の特性曲線を示す図、
第6図は本発明ににる効果を原子炉出力とチ1?ンネル
の熱水力学的安定性域中比で示した図、第7図は本発明
による効果を原子炉出力と炉心安定性域中比で示した図
、第8図は本発明による総合的効果を原子炉出力と冷却
材流量の相関で示した図である。 4、05・・・原子炉出力計装、408・・・冷却材強
制循環ポンプ、411・・・原子炉出力信号、412・
・・安定度設定器、413・・・冷却材循環流量計測装
置、414・・・冷却材循環流量信号、415・・・安
定性監視装置、416・・・安定性許容出力信号、41
7・・・安定性保持信号、418・・・安定性制御装置
、420A、420B、420G・・・安定性制御信号
、428・・・制御棒駆動装置制御器、430・・・制
御棒駆動装置。 出願人代理人 猪 股 清 ろ 1 図 言0 時間 62 圀 53 囚 64 図 ろ 5 図 々jYイ(砺fx流童 −6圓 )六ナスif力(憎
Figure 1 is a diagram showing the relationship between reactor parameters such as pressure and flow rate and reactor output, and Figure 2 is a diagram showing the operating range of a nuclear reactor in the conventional technology as shown by the correlation between reactor output and coolant flow rate. , FIG. 3 is a diagram showing the region where the unstable condition is satisfied in FIG. 2 as a correlation between reactor output and coolant flow rate, FIG. 4 is a block diagram showing a nuclear reactor operation control device according to the present invention, Figure 5 is a diagram showing the characteristic curve of reactor stability allowable power;
Figure 6 shows the effects of the present invention on reactor output and CH1? Figure 7 shows the effect of the present invention in terms of reactor output and core stability range ratio, and Figure 8 shows the overall effect of the present invention. FIG. 2 is a diagram showing the correlation between reactor output and coolant flow rate. 4,05... Reactor power instrumentation, 408... Coolant forced circulation pump, 411... Reactor output signal, 412...
...Stability setting device, 413... Coolant circulation flow rate measuring device, 414... Coolant circulation flow rate signal, 415... Stability monitoring device, 416... Stability allowable output signal, 41
7... Stability maintenance signal, 418... Stability control device, 420A, 420B, 420G... Stability control signal, 428... Control rod drive device controller, 430... Control rod drive device . Applicant's agent Kiyoro Inomata 1 Illustration 0 Time 62 Kuni 53 Prisoner 64 Illustration 5 Illustration

Claims (1)

【特許請求の範囲】 1 原子炉出力を計装し原子炉出力信号を発する原子炉
出力計装と、冷却材強制循環ポンプの流量を計測し冷k
]材流量信号を発する冷却材循環流量計測装置と、前記
原子炉出力信号と冷却材循環流量信号とに基づいて制御
棒挿入信号を制御捧駆動装置制御墓へ入力し原子炉の安
全性を制御する原子炉安全性制御装置とを備えた沸騰水
型原子炉の運転制御装置において、前記原子炉安全性制
御装置は、前記冷却材循環流量信号により安定性許容出
力を演算し安定性許容出力信号を発する安定性監視装置
と;前記原子炉出力信号と安定性許容出力信号の信号レ
ベルを比較し、原子炉出力信号の信号レベルが安定性許
容出力信号の信号レベルを上まわった時に安定性保持信
号を発する安定度設定器と、前記安定性保持信号により
原子炉出力信号の信号レベルに応じた安定性制御信号を
発する安定性制御装置と;この安定性制御信号に基づい
て制御棒挿入信号を初する制御棒挿入信号発生装置とか
ら構成されていることを特徴とする原子炉の運転制御装
置。 2 制御棒挿入信号発生装置がら発せ−られる制御棒゛
挿入信号は、制御棒引抜き阻止信号、選択制御棒挿入信
号あるいは全制御棒緊急挿−入信号のいずれかの信号で
あることを特徴とする特許請求の範囲第1項記載の原子
炉の運転制御装置。
[Scope of Claims] 1. Reactor power instrumentation that measures the reactor output and issues a reactor output signal, and reactor power instrumentation that measures the flow rate of the coolant forced circulation pump and cools the coolant.
] A coolant circulation flow rate measuring device that emits a material flow rate signal, and a control rod insertion signal is input to a control shaft drive device control head based on the reactor output signal and the coolant circulation flow rate signal to control the safety of the reactor. In the operation control device for a boiling water reactor, the reactor safety control device calculates a stability allowable output based on the coolant circulation flow rate signal, and calculates a stability allowable output signal. a stability monitoring device that emits; compares the signal level of the reactor output signal and the stability allowable output signal, and maintains stability when the signal level of the reactor output signal exceeds the signal level of the stability allowable output signal; a stability setting device that generates a signal; a stability control device that generates a stability control signal according to the signal level of the reactor output signal based on the stability maintenance signal; and a control rod insertion signal that generates a control rod insertion signal based on the stability control signal; 1. A nuclear reactor operation control device comprising a first control rod insertion signal generator. 2. The control rod insertion signal emitted by the control rod insertion signal generator is characterized in that it is a control rod withdrawal prevention signal, a selective control rod insertion signal, or an emergency all control rod insertion signal. A nuclear reactor operation control device according to claim 1.
JP59025862A 1984-02-14 1984-02-14 Controller for operation of nuclear reactor Pending JPS60169796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59025862A JPS60169796A (en) 1984-02-14 1984-02-14 Controller for operation of nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59025862A JPS60169796A (en) 1984-02-14 1984-02-14 Controller for operation of nuclear reactor

Publications (1)

Publication Number Publication Date
JPS60169796A true JPS60169796A (en) 1985-09-03

Family

ID=12177613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59025862A Pending JPS60169796A (en) 1984-02-14 1984-02-14 Controller for operation of nuclear reactor

Country Status (1)

Country Link
JP (1) JPS60169796A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896283A (en) * 1981-12-02 1983-06-08 株式会社東芝 Reactor stability control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896283A (en) * 1981-12-02 1983-06-08 株式会社東芝 Reactor stability control device

Similar Documents

Publication Publication Date Title
KR100399759B1 (en) Digital online active test plant protection system and method for nuclear power plant
JPH0365693A (en) Method of obstructing real time output increase
US4337118A (en) Nuclear reactor power monitoring system
JP3875021B2 (en) Maximum extended load line limit analysis for boiling water reactors
JP2015515614A (en) How to protect nuclear reactors from core thermal / neutron instability
JPS60169796A (en) Controller for operation of nuclear reactor
JP2008256548A (en) Control rod withdrawal monitoring method, and control rod withdrawal monitoring system
KR20080048150A (en) Method and apparatus for adjusting trip set values of programmable logic controller based digital reactor protection system
JPS60169795A (en) Controller for operation of nuclear reactor
JPS5950396A (en) Reactor operation control device
JPS6140591A (en) Controller for recirculation flow rate of nuclear reactor
JP3011451B2 (en) Reactor power control system for boiling water nuclear power plant
JP2603990B2 (en) Core stabilization system for boiling water reactor
JPH04258791A (en) Nuclear reactor output control method and device thereof
JPS5896283A (en) Reactor stability control device
JPS61117486A (en) Nuclear-reactor nuclear thermal hydrualic power stability controller
JPS58187895A (en) Reactor operation monitoring device
JPH063476A (en) Regulating equipment of reactor power
JP2023163787A (en) Water supply controller and water supply control method
JPS6248993A (en) Device for preventing cavitation of recirculating system pump for reactor
JPS60210796A (en) Device for monitoring and controlling region of operation
JPS62228980A (en) Safety monitor device for nuclear reactor
JPH03293590A (en) Apparatus for monitoring pulling-out of control rod
JPH0666994A (en) Nuclear reactor water level controller
JPH05249271A (en) Reactor core monitor