JPS62228980A - Safety monitor device for nuclear reactor - Google Patents

Safety monitor device for nuclear reactor

Info

Publication number
JPS62228980A
JPS62228980A JP61070763A JP7076386A JPS62228980A JP S62228980 A JPS62228980 A JP S62228980A JP 61070763 A JP61070763 A JP 61070763A JP 7076386 A JP7076386 A JP 7076386A JP S62228980 A JPS62228980 A JP S62228980A
Authority
JP
Japan
Prior art keywords
reactor
stability
power distribution
monitoring device
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61070763A
Other languages
Japanese (ja)
Inventor
江畑 茂男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61070763A priority Critical patent/JPS62228980A/en
Publication of JPS62228980A publication Critical patent/JPS62228980A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、沸騰水型原子炉等の原子炉炉心の核的および
熱水力学的な不安定性を予知し、適切な運転方法を提供
する原子炉の安定性監視装置に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention is intended to predict nuclear and thermal-hydraulic instability in the core of a nuclear reactor such as a boiling water reactor, and to take appropriate measures. The present invention relates to a nuclear reactor stability monitoring device that provides an operating method.

(従来の技術) 一般に、沸騰水型原子炉では冷却材の自然循環時のよう
な低流量でかつ高出力時には、核的あるいは熱水力学的
な不安定性が誘起され易いことが知られている。
(Prior art) It is generally known that nuclear or thermo-hydraulic instability is likely to be induced in boiling water reactors at low flow rates and high outputs, such as during natural circulation of coolant. .

核的不安定性はいわゆる炉心安定性と呼ばれており、原
子炉炉心内のボイド反応度効果による核的なフィードバ
ック効果により引き起されるもので、冷却材流量が減少
する程、また原子炉出力が高くなる程発生し易く、不安
定化することが知られている。
Nuclear instability is so-called core stability, and is caused by nuclear feedback effects due to void reactivity effects within the reactor core.As the coolant flow rate decreases, the reactor power It is known that the higher the value, the more likely it is to occur and the more unstable it becomes.

一方、熱水力学安定性は一般にはチャンネル安定性とし
て知られており、原子炉炉心部に形成される冷却材流路
において、ボイド伍の増減による気液二相流の圧力損失
の変化により冷却材の流れが振動を起すような不安定性
をいう。熱水力学安定性、1なわちチャンネル安定性に
ついても炉心安定性とIIJl様、冷却材流量が減少す
る程、また炉出力が高くなる程発生し易く、不安定化す
る。
On the other hand, thermo-hydraulic stability is generally known as channel stability, and cooling is caused by changes in pressure loss in the gas-liquid two-phase flow due to increases and decreases in voids in the coolant flow path formed in the reactor core. This refers to instability in the flow of material that causes vibrations. Regarding thermo-hydraulic stability, ie channel stability, as well as core stability, the lower the coolant flow rate and the higher the reactor power, the more likely it is to occur and become unstable.

これらの炉心およびチャンネル安定性の発生メカニズム
は非常に複雑であるが、現在の沸騰水型原子炉では、炉
心の熱水力的条件および核的特性を人力として計nされ
、種々の炉心パラメータの安定性に及ぼす影響が考慮さ
れ、設計に反映されている。原子炉炉心の冷u1月流伍
あるいは原子炉出力(熱出力)に関して、冷却材流量が
低い程、また炉出力が高い程不安定化することがわかっ
ているので、安定性の悪化が予測される場合、すなわち
現行の沸騰水型原子炉では低流量・高出力時の運転には
充分に注意が払われている。
The mechanism of generating core and channel stability is very complex, but in current boiling water reactors, the thermal-hydraulic conditions and nuclear characteristics of the core are manually calculated, and various core parameters are calculated manually. The impact on stability has been considered and reflected in the design. It is known that the lower the coolant flow rate and the higher the reactor output, the more unstable the reactor core cold flow or reactor power (thermal output) becomes, so a deterioration in stability is predicted. In other words, in current boiling water reactors, sufficient attention is paid to operation at low flow rates and high outputs.

ところで、原子炉の安定性である炉心およびチャンネル
安定性は、冷却材の炉心流はや炉出力のみならず、ボイ
ド反応度係数等の核特性、燃料ヂャンネルの形状、炉心
の径方向および軸方向の出力分布、燃料棒の熱伝達特性
等多くのパラメータに依存している。現行の原子炉設計
においては、これらのパラメータについて炉心の燃焼に
伴う変動等を考慮して安定性を保守的に厳しく見込んだ
値を用いて予め解析している。この解析値から原子炉の
安定性の悪い領域を予測し、この領域に近づくような運
転に注意を払っている。
By the way, core and channel stability, which is the stability of a nuclear reactor, is determined not only by the core flow of coolant and the reactor output, but also by nuclear characteristics such as void reactivity coefficient, the shape of the fuel channel, and the radial and axial directions of the core. It depends on many parameters such as the power distribution of the fuel and the heat transfer characteristics of the fuel rods. In current nuclear reactor design, these parameters are analyzed in advance using values that conservatively and strictly estimate stability, taking into account fluctuations associated with core combustion. From this analysis value, we predict the region of reactor stability that is poor, and pay attention to operations that approach this region.

第6図は沸騰水型原子炉の出力流m制御曲線を示すもの
で、この出力流m制御曲線は自然循環流量曲線aと強制
循環流母曲線すとからなり、斜線で示した領wtcは、
上述した解析値から予測される安定性が悪化する運転注
意領域であり、この運転注意領域での原子炉の運転には
注意が払われる。
Figure 6 shows the power flow m control curve of a boiling water reactor. ,
This is a region where stability is predicted to deteriorate based on the analysis values described above, and care must be taken when operating the reactor in this region.

しかし、このようにして決められた運転注意領域Cは、
種々のパラメータについて保守的な予測、すなわち、原
子炉の安定性を厳しく見込むような厳しめの予測に基づ
いており、実際には原子炉の運転が運転注意領域に至っ
ても、直ちに不安定化する訳ではない。
However, the driving caution area C determined in this way is
It is based on conservative predictions for various parameters, that is, strict predictions that predict the stability of the reactor, and even if the reactor operation reaches the cautionary region in reality, it will immediately become unstable. It's not a translation.

そして、原子炉の安定性に対し、保守的な運転注意領域
を見込むことは、逆に原子炉運転の融通性を阻害するこ
とになり、従来の原子炉プラントでは運転注意領域の存
在により、原子炉運転の自由度が制約されるという問題
があった。
Considering the stability of a nuclear reactor, conservatively predicting an operational caution area will actually hinder the flexibility of reactor operation. There was a problem in that the degree of freedom in furnace operation was restricted.

(発明が解決しようとする問題点) 原子炉の安定性を保つための運転注意領域が、原子炉の
運転の融通性を疎外して過度に保守的に厳しく予測され
ており、原子炉運転の障害になっていた。
(Problem to be solved by the invention) The operational caution areas for maintaining the stability of the nuclear reactor have been predicted in an excessively conservative manner and have been predicted in a strict and conservative manner, eliminating the flexibility of the reactor operation. It was becoming an obstacle.

本発明は上述した事情を考慮してなされたちので、原子
炉の安定性とその運転性との観点から、原子炉の安定性
を保つうえで適切な運転注意領域を付与できる原子炉の
安定性監視装置を提供することを目的とする。
The present invention has been made in consideration of the above-mentioned circumstances, and therefore, from the viewpoint of nuclear reactor stability and its operability, it is possible to improve the stability of a nuclear reactor by providing an appropriate operational caution area in order to maintain the stability of the nuclear reactor. The purpose is to provide a monitoring device.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明に係る原子炉の安定性監視装置は、原子炉の安定
性を判断する安定性監視装置を、制御棒を作動制御する
制御棒駆動制御系と原子炉再循環系の再循環ポンプの駆
動を制御する再循環流量制御系とにそれぞれ接続し、前
記安定性監視装置は、冷却材の炉心流迅および原子炉出
力をパラメータとして軸方向出力分布の歪み度許容値を
設定するとともに、この軸方向出力分布歪み度許容値を
実測された原子炉炉心の軸方向出力分布歪み度と比較し
、前記制御棒駆動制御系J3よび再循環流量制御系を作
動制御したものである。
(Means for Solving the Problems) The stability monitoring device for a nuclear reactor according to the present invention combines a stability monitoring device that judges the stability of a nuclear reactor with a control rod drive control system that controls the operation of control rods, and a nuclear reactor stability monitoring device that determines the stability of a nuclear reactor. The stability monitoring device is connected to a recirculation flow rate control system that controls the drive of the recirculation pump of the reactor recirculation system, and the stability monitoring device monitors the distortion of the axial power distribution using the core flow rate of coolant and the reactor power as parameters. At the same time, this axial power distribution distortion tolerance value is compared with the actually measured axial power distribution distortion degree of the reactor core, and the control rod drive control system J3 and the recirculation flow rate control system are operated. It is controlled.

(作用) 本発明は、原子炉の安定性(炉心安定性やチャンネル安
定性)に悪影響を与えるパラメータとして、従来の炉心
流量や原子炉出力などの他に、炉心の軸方向出力分布を
考慮したものであり、従来のように、炉心流mや原子炉
出力のみを児て原子炉の安定性に注意しながら運転する
のではなく、安定性監視装置により炉心の軸方向出力分
布を監視し、実測された軸方向出力分布の歪み度を、炉
心流Gや原子炉出力をパラメータとして設定された軸方
向出力分布歪み度許容値と比較して、原子炉の安定性が
悪くならないような原子炉運転を行なうようにしたもの
である。
(Operation) The present invention considers the axial power distribution of the reactor core, in addition to the conventional core flow rate and reactor power, as parameters that adversely affect the stability of the reactor (core stability and channel stability). Instead of operating the reactor while paying attention to the stability of the reactor by controlling only the core flow m and the reactor power as in the past, the axial power distribution of the reactor core is monitored using a stability monitoring device. The measured degree of distortion of the axial power distribution is compared with the allowable value of the degree of distortion of the axial power distribution set using the core flow G and reactor output as parameters, and the reactor is designed so that the stability of the reactor does not deteriorate. It is designed to allow you to drive.

(実施例) 以下、本発明の一実施例について添付図面を参照して説
明する。
(Example) Hereinafter, an example of the present invention will be described with reference to the accompanying drawings.

第2図は本発明に係る原子炉の安定性監視装置を備えた
沸騰水型原子炉1を示すもので、この沸騰水型原子炉1
は原子炉圧力容器2内に4体1組の燃料集合体(図示せ
ず)を多数組装荷して構成される炉心3を収容している
。炉心3内には制御棒4が制御棒駆動制御系(制御棒駆
動礪構および制御棒駆動水圧装置)5により出し入れ自
在に設けられる。原子炉炉心3内を案内される冷却材6
は原子炉再循環系7により強制循環せしめられる。
FIG. 2 shows a boiling water reactor 1 equipped with a reactor stability monitoring device according to the present invention.
A reactor pressure vessel 2 accommodates a reactor core 3 configured by loading a large number of four-piece fuel assemblies (not shown). Control rods 4 are provided in the reactor core 3 so as to be freely removable and removable by a control rod drive control system (control rod drive enclosure and control rod drive hydraulic device) 5 . Coolant 6 guided inside the reactor core 3
is forced to circulate through the reactor recirculation system 7.

原子炉再循環系7は再循環ループ配管8を備え、この再
循環ループ配管8に再循環ポンプ9が設けられている。
The reactor recirculation system 7 includes a recirculation loop piping 8 , and a recirculation pump 9 is provided on the recirculation loop piping 8 .

再循環ポンプ9から吐出された再循環水はジエツ]〜ポ
ンプ10から噴射される際に、周囲のか水を巻き込んで
炉心下部から原子炉炉心4に案内するようになっている
。原子炉再循環系7は外部ループ方式に代えて原子炉内
再循環ポンプ(インターナルポンプ)を原子炉圧力容器
2のダウンカマ部に備えたものでもよい。
When the recirculating water discharged from the recirculating pump 9 is injected from the jet pump 10, it is guided from the lower part of the reactor core to the reactor core 4, drawing in surrounding water. The reactor recirculation system 7 may include an in-reactor recirculation pump (internal pump) in the downcomer portion of the reactor pressure vessel 2 instead of the external loop system.

原子炉再循環系7の再循環ポンプ9は再循環流出制御系
12によりポンプ速度が制御される。この再循環vlr
?i制御系12や制御棒駆動制御系5には安定性監視装
置15から制御信号が入力されるようになっている。安
定性監視装置15は、原子炉炉心3を流れる冷却材の炉
心流量信@Aや、原子炉出力信号B1原子炉の軸方向出
力分布信号Cを入力し、この入力信号に基づいて原子炉
の安定性(炉心安定性およびチャンネル安定性)を評価
し、原子炉の不安定性が予想される場合には、図示しな
い警報装置によりアラームを発するとともに、制御棒駆
動制御系5および再循環流出制御系12に制御棒引抜阻
止信号りや再循環流量減少阻止信号Eをそれぞれ出力さ
せるようになっている。
The recirculation pump 9 of the reactor recirculation system 7 has its pump speed controlled by a recirculation outflow control system 12 . This recirculation vlr
? A control signal is input to the i-control system 12 and the control rod drive control system 5 from the stability monitoring device 15. The stability monitoring device 15 inputs the core flow rate signal @A of the coolant flowing through the reactor core 3, the reactor output signal B1, and the reactor axial power distribution signal C, and controls the reactor based on these input signals. The stability (core stability and channel stability) is evaluated, and if instability of the reactor is predicted, an alarm is issued by an alarm device (not shown), and the control rod drive control system 5 and recirculation outflow control system 12 outputs a control rod withdrawal prevention signal and a recirculation flow rate reduction prevention signal E, respectively.

ところで、原子炉の安定性監視装置15は、原子炉炉心
の軸方向出力分布を監視して原子炉の安定性監視を行な
うものである。この安定性監視装置15は、原子炉の軸
方向出力分布のボトムビーク化を示す簡単な指標を用い
たものである。この指標には、炉心流量Aおよび原子炉
出力Bをバラメツ夕として予め設定された軸方向出力分
布の歪み度許容値fと実際の計算にて求められた軸方向
出力分布歪み度γとがある。
By the way, the nuclear reactor stability monitoring device 15 monitors the axial power distribution of the nuclear reactor core to monitor the stability of the nuclear reactor. This stability monitoring device 15 uses a simple index that indicates the formation of a bottom peak in the axial power distribution of the nuclear reactor. This index includes the axial power distribution distortion tolerance f, which is preset with the core flow rate A and reactor power B as parameters, and the axial power distribution distortion degree γ, which is obtained through actual calculations. .

そして、実際の軸方向出力分布の歪み度γが予め設定さ
れた軸方向出力分布の歪み度許容値fを超えない範囲に
あるとき、これを小型計算機などの判定器で判断し、第
1図に示すように原子炉の運転を継続させ、超える場合
には、警報装置により原子炉の安定性悪化のアラームを
発生させたり、あるいは制御棒駆動制御系5に制御系引
抜阻止信号りや再循環流出制御系12に再循環流量減少
阻止信号Eをそれぞれ出力させ、原子炉の安定性を図る
ようにしている。
Then, when the actual degree of distortion γ of the axial output distribution is within a range that does not exceed the preset tolerance value f of the degree of distortion of the axial output distribution, this is judged by a judgment device such as a small computer, and as shown in FIG. If the reactor continues to operate as shown in Figure 2, and if exceeded, the alarm system will issue an alarm indicating deterioration of reactor stability, or the control rod drive control system 5 will receive a signal to prevent control system withdrawal or recirculation outflow. The control system 12 outputs a recirculation flow rate reduction prevention signal E to maintain the stability of the reactor.

また、原子炉の軸方向出力分布の歪み度γは次のように
して求められる。
Further, the degree of distortion γ of the axial power distribution of the nuclear reactor is determined as follows.

例えば、第3図に示すように、原子炉の炉心を軸方向(
高さ方向)に複数のノードに区画し、プロセス計n機に
よる軸方向出力分布計算結果を利用して、軸方向出力分
布のある高さまでの出力積分量を求める方法で、これに
より、軸方向出力分布の歪み度γを求めることができる
。この歪み度γは、原子炉炉心3を軸方向に24ノード
に分けて出力分布を表わした場合、炉心の軸方向下端か
ら3〜5ノードまでの高さの積分量で表わされ、但し、
m:3〜5ノード P(i):iノードにJ3ける相対出力となる。この(
1)式によるio方向出力分布の歪み度γは比較的良く
炉心の軸方向出力分布の歪み度を表わせることが、従来
の解析、経験によりわかっている。
For example, as shown in Figure 3, the core of a nuclear reactor is axially (
This method divides the axial output distribution into multiple nodes (in the height direction) and uses the axial output distribution calculation results from the process meter to determine the output integral amount up to a certain height of the axial output distribution. The degree of distortion γ of the output distribution can be determined. When the power distribution is expressed by dividing the reactor core 3 into 24 nodes in the axial direction, this degree of distortion γ is expressed as an integral amount of the height from the lower end of the core in the axial direction to the 3rd to 5th nodes.
m: 3 to 5 nodes P(i): Relative output at J3 to i-node. this(
It has been known from conventional analysis and experience that the degree of distortion γ of the power distribution in the io direction according to equation 1) can relatively well represent the degree of distortion of the power distribution in the axial direction of the core.

一方、より簡便に原子炉の軸方向出力分布の歪み度γを
求める方法として、LPRM信号を利用することが考え
られる。一般に、沸騰水型原子炉(BWR)のLPRM
(局所出力領域モニタ系)は、炉心軸方向下方からA、
B、CおよびDの各レベルに中性子検出器が配置され、
この中性子検出器により局所的な出力を求めており、こ
の中性子検出器からの出力信号から、軸方向出力分布の
歪み度γを求めることができる。すなわち、軸方向出力
分布の歪み度γは、 ・・・・・・(2) 但し、P(i):LPRMのi (A、B、C,D)レ
ベルにおける値 で表わされる。
On the other hand, as a method for more easily determining the degree of distortion γ of the axial power distribution of the nuclear reactor, it is possible to use the LPRM signal. In general, the LPRM of a boiling water reactor (BWR)
(Local power range monitoring system) A from below in the axial direction of the core,
A neutron detector is placed at each level of B, C and D,
Local output is determined by this neutron detector, and the degree of distortion γ of the axial output distribution can be determined from the output signal from this neutron detector. That is, the degree of distortion γ of the axial output distribution is as follows: (2) However, P(i): is expressed as a value at the i (A, B, C, D) level of LPRM.

また、原子炉の軸方向出力分布の歪み度許容値fは、原
子炉出力Q、炉心流mWの種々の運転点にa3いて、予
め解析により、どの程度の軸方向出力分布の歪みまでな
らば許容できるかが設定されており、これを炉出力Qと
炉心流量Wをパラメータとする関数f (Q、W)で表
わすことができる。
In addition, the allowable distortion degree f of the axial power distribution of the reactor is determined by preliminary analysis at various operating points a3 of the reactor power Q and core flow mW, and to what extent the axial power distribution can be distorted. It is set whether or not it is permissible, and this can be expressed by a function f (Q, W) using reactor power Q and core flow rate W as parameters.

すなわら、 f=f (Q、W)        ・・・・・・(3
)である。
In other words, f=f (Q, W) (3
).

その後、原子炉の軸方向出力分布の歪み度γを軸方向出
力分布の歪み度許容値でと比較することが行なわれるが
、この比較や軸方向出力分布歪み度γ、軸方向出力分布
歪み度許容値fの計算は、小型の計算機で簡単に行なう
ことができる。
After that, the skewness γ of the axial power distribution of the reactor is compared with the allowable skewness value of the axial power distribution. Calculation of the allowable value f can be easily performed using a small calculator.

次に、原子炉の軸方向出力分布と原子炉の安定性との関
係を説明する。
Next, the relationship between the axial power distribution of a nuclear reactor and the stability of the reactor will be explained.

原子炉炉心の軸方向出力分布、特に燃料集合体の軸方向
に沿った軸方向分布は、原子炉出力および炉心流量と同
様、原子炉の安定性、ずなわら、炉心安定性およびヂャ
ンネル安定性に大きな影響を及ぼす。
The axial power distribution in the reactor core, especially the axial distribution along the axis of the fuel assembly, affects reactor stability, as well as reactor power and core flow, as well as core stability and channel stability. has a major impact on

一般に、原子炉の軸方向出力分布は下方に歪lυでおり
、出力ビーキングが下方に移る(ボトムピーキング)程
、原子炉の安定性は悪化する。これは軸方向出力分布が
下方に歪めば歪むほどボイドの発生開始点が下方に移る
ため、ボイド発生量が多くなって、ボイドの変化による
核的、熱水力学的なフィードバック効果が強くなるため
である。
Generally, the axial power distribution of a nuclear reactor is distorted downward by lυ, and the further the power peaking moves downward (bottom peaking), the worse the stability of the reactor becomes. This is because the more the axial power distribution is distorted downward, the more the point where voids start to occur moves downwards, the more voids are generated, and the nuclear and thermo-hydraulic feedback effects due to changes in voids become stronger. It is.

一方、沸騰水型原子炉では、原子炉炉心の燃料発熱部を
軸方向に沿って24ノードに仕切り、各ノード毎の出力
から軸方向出力分布を求めて原子炉の安定性の解析を行
なっている。例えば、第4図は原子炉の安定性とビーク
ノード位置との関係を示したものであり、この図から、
軸方向のノードが上方にい(はど、減幅比が小さくなる
ことがわかる。原子炉の安定性の指標である減幅比は、
g:55図に示すように、ステップ外乱に対する応答の
第1振幅X と第2振幅×2との比×27x1であり、
減幅比は大ぎい程減衰が悪く、原子炉の安定性が良好で
ないといえる。
On the other hand, in boiling water reactors, the fuel heating section of the reactor core is divided into 24 nodes along the axial direction, and the axial power distribution is determined from the output of each node to analyze the stability of the reactor. There is. For example, Figure 4 shows the relationship between reactor stability and peak node position, and from this figure,
As the nodes in the axial direction move upward, it can be seen that the reduction ratio becomes smaller.The reduction ratio, which is an index of reactor stability, is
g: As shown in Figure 55, the ratio of the first amplitude X and the second amplitude x 2 of the response to the step disturbance is x 27 x 1,
The larger the attenuation ratio, the worse the attenuation, and it can be said that the stability of the reactor is not good.

このため、第4図に示すように、軸方向出力分布のボト
ムピーク化と原子炉の安定性の悪化とは密接な関係があ
り、原子炉の軸方向出力分布を監?Jiすることは、原
子炉の安定性を監視することにつながる。
Therefore, as shown in Figure 4, there is a close relationship between the bottom peaking of the axial power distribution and the deterioration of reactor stability. Ji is connected to monitoring the stability of the nuclear reactor.

ところで、原子炉の軸方向出力分布は炉心内の核燃料設
計や制御捧挿入岱、燃焼度等により変化する。従来の原
子炉プラントでは、核燃n設計や制御棒挿入量、燃焼度
等を考慮して最も厳しい出力分布を想定して原子炉の安
定性解析を行ない、安定性が悪くなる領域を予測してい
た。しかし、本発明に係る安定性監視装置おいては、原
子炉4の軸方向出力分布について実測された現実的な値
を用いたものであり、これにより、原子炉の安定性予測
は現実的なものとなり、過度の厳しい保守性を見込んで
運転注意流域を設定する必要がなく、原子炉の安定性に
注意を払う速乾注意領域は大幅に縮小され、原子炉の運
転性向上を図ることができる。
Incidentally, the axial power distribution of a nuclear reactor changes depending on the design of the nuclear fuel in the reactor core, the insertion angle of the control shaft, the burnup, etc. In conventional nuclear reactor plants, reactor stability analysis is performed assuming the most severe power distribution, taking into account nuclear fuel design, control rod insertion amount, burnup, etc., and predicting areas where stability will deteriorate. Ta. However, the stability monitoring device according to the present invention uses realistic values that have been actually measured for the axial power distribution of the reactor 4, so that the stability prediction of the reactor can be made realistically. As a result, there is no need to set operational caution areas in anticipation of excessively strict maintainability, and the quick drying caution area, which requires attention to reactor stability, is significantly reduced, making it possible to improve reactor operability. can.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように本発明においては、原子炉の運転時
には炉心の軸方向出力分布を常に監視して、原子炉の安
定性が態化しないように原子炉の運転を行なうことがで
きるので、従来のように原子炉の安定性に対する運転注
意領域を予め厳しめに設定する必要がなくなり、安定性
注意領域を大幅に縮小したり、撤廃することが可能とな
るので、原子炉の運転範囲は広くなり、運転余裕度(自
由度)が増大し、運転性能の向上を図ることができる。
As described above, in the present invention, the axial power distribution of the reactor core is constantly monitored during the operation of the nuclear reactor, and the reactor can be operated in such a way that the stability of the reactor is not compromised. It is no longer necessary to set a strict operational caution area for reactor stability in advance as in the past, and it is possible to significantly reduce or eliminate the stability caution area, so the operating range of a nuclear reactor can be It becomes wider, the degree of driving margin (degree of freedom) increases, and driving performance can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る原子炉の安定性監視装置の一実施
例を示すプローチ1!−ト、第2図は上記安定性監視装
置を備えた沸騰水型原子炉プラントを示す図、第3図は
LPRMの軸方向位置と軸方向出力分布の関係を示す図
、第4図は原子炉炉心の軸方向ノード位置と減幅比の一
般的な関係を示すグラフ、第5図は原子炉の安定性に対
する減幅比の説明図、第6図は沸騰水型原子炉の出力流
♂制御曲線と運転注意領域を表す図である。 1・・・沸騰水型原子炉、2・・・原子炉圧力容器、3
・・・炉心、4・・・制御棒、5・・・制御棒駆動制御
系、7・・・原子炉再循環系、9・・・再循環ポンプ、
12・・・再循環流量制御系、15・・・安定性監視装
置、A・・・炉心流出信号、B・・・原子炉出力信号、
C・・・軸方向出力分布信号、D・・・制御棒引抜阻止
信号、E・・・再循環流■減少阻止信号。 代理人弁理士  則 近 憲 佑 同        三  俣  弘  文第 I 図 千 2 図 LPRM 羊 3 因 羊4− 叶  閘 薔 5 図 ン;Fジノ(2,・ 流量 (’/a)       
         100第 6 図
FIG. 1 shows approach 1! which shows an embodiment of the nuclear reactor stability monitoring device according to the present invention! - Fig. 2 is a diagram showing a boiling water reactor plant equipped with the above-mentioned stability monitoring device, Fig. 3 is a diagram showing the relationship between the axial position of the LPRM and the axial power distribution, and Fig. 4 is a diagram showing the axial power distribution of the LPRM. A graph showing the general relationship between the axial node position of the reactor core and the width reduction ratio. Figure 5 is an explanatory diagram of the width reduction ratio with respect to reactor stability. Figure 6 is the power flow of a boiling water reactor. It is a figure showing a control curve and a driving caution area. 1... Boiling water reactor, 2... Reactor pressure vessel, 3
... Reactor core, 4... Control rod, 5... Control rod drive control system, 7... Reactor recirculation system, 9... Recirculation pump,
12... Recirculation flow rate control system, 15... Stability monitoring device, A... Core outflow signal, B... Reactor output signal,
C: Axial power distribution signal, D: Control rod withdrawal prevention signal, E: Recirculation flow ■reduction prevention signal. Representative patent attorney Nori Chika Ken Yudo Mitsumata Hirofumi No. I Fig. 1000 2 Fig. LPRM Hitsuji 3 Inyou 4- Kano Yubara 5 Fig. F Jino (2, Flow rate ('/a)
100 Figure 6

Claims (1)

【特許請求の範囲】 1、原子炉の安定性を判断する安定性監視装置を、制御
棒を作動制御する制御棒駆動制御系と原子炉再循環系の
再循環ポンプの駆動を制御する再循環流量制御系とにそ
れぞれ接続し、前記安定性監視装置は、冷却材の炉心流
量および原子炉出力をパラメータとして軸方向出力分布
の歪み度許容値を設定するとともに、この軸方向出力分
布歪み度許容値を実測された原子炉炉心の軸方向出力分
布歪み度と比較し、前記制御棒駆動制御系および再循環
流量制御系を作動制御したことを特徴とする原子炉の安
定性監視装置。 2、安定性監視装置は、軸方向出力分布歪み度が軸方向
出力分布歪み度許容値を上廻るとき、制御棒駆動制御系
および作動流量制御系に、制御棒引抜阻止信号および再
循環流量減少阻止信号をそれぞれ出力するように設定さ
れた特許請求の範囲第1項に記載の原子炉の安定性監視
装置。 3、安定性監視装置は警報装置に接続され、軸方向出力
分布歪み度が軸方向出力分布歪み度許容値を上廻るとき
、警報装置にアラーム信号を出力するように設定させた
特許請求の範囲第1項に記載の原子炉の安定性監視装置
[Claims] 1. A stability monitoring device that determines the stability of the reactor, a control rod drive control system that controls the operation of control rods, and a recirculation system that controls the drive of a recirculation pump in the reactor recirculation system. The stability monitoring device is connected to the flow rate control system, and sets the allowable skewness of the axial power distribution using the coolant core flow rate and the reactor output as parameters, and also sets the allowable axial power distribution distortion. A stability monitoring device for a nuclear reactor, characterized in that the control rod drive control system and the recirculation flow rate control system are controlled by comparing the value with the actually measured axial power distribution distortion degree of the reactor core. 2. When the axial power distribution distortion exceeds the axial power distribution distortion tolerance, the stability monitoring device sends a control rod withdrawal prevention signal and a recirculation flow rate reduction signal to the control rod drive control system and operating flow control system. The nuclear reactor stability monitoring device according to claim 1, wherein the device is configured to output each blocking signal. 3. The stability monitoring device is connected to an alarm device, and the alarm device is set to output an alarm signal when the axial output distribution distortion degree exceeds the axial output distribution distortion degree tolerance value. A stability monitoring device for a nuclear reactor according to paragraph 1.
JP61070763A 1986-03-31 1986-03-31 Safety monitor device for nuclear reactor Pending JPS62228980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61070763A JPS62228980A (en) 1986-03-31 1986-03-31 Safety monitor device for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61070763A JPS62228980A (en) 1986-03-31 1986-03-31 Safety monitor device for nuclear reactor

Publications (1)

Publication Number Publication Date
JPS62228980A true JPS62228980A (en) 1987-10-07

Family

ID=13440873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61070763A Pending JPS62228980A (en) 1986-03-31 1986-03-31 Safety monitor device for nuclear reactor

Country Status (1)

Country Link
JP (1) JPS62228980A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131106A1 (en) * 2017-01-12 2018-07-19 日立Geニュークリア・エナジー株式会社 Control rod operation monitoring system and control rod operation monitoring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131106A1 (en) * 2017-01-12 2018-07-19 日立Geニュークリア・エナジー株式会社 Control rod operation monitoring system and control rod operation monitoring method
US11393600B2 (en) 2017-01-12 2022-07-19 Hitachi-Ge Nuclear Energy, Ltd. Control rod motion monitoring system and control rod motion monitoring method

Similar Documents

Publication Publication Date Title
US5091139A (en) Automated thermal limit monitor
JP2642761B2 (en) Fuel bundles for boiling water reactors
KR101119548B1 (en) Axial direction output distribution control method, axial direction output distribution control system and axial direction output distribution control program
JP3875021B2 (en) Maximum extended load line limit analysis for boiling water reactors
JPS62228980A (en) Safety monitor device for nuclear reactor
JP5291888B2 (en) Control rod withdrawal monitoring method and control rod withdrawal monitoring system
JP4707826B2 (en) Boiling water reactor monitoring and control system
JP4363377B2 (en) Control rod pull-out monitoring device
JP2670400B2 (en) Monitoring equipment for nuclear power plants
US4793966A (en) Nuclear reactor
JP3871733B2 (en) Reactor core monitoring device
Iwamura et al. Critical heat flux experiments under steady-state and transient conditions and visualization of CHF phenomenon with neutron radiography
JPH11337678A (en) Thermal limit monitor
JP2522500B2 (en) Reactor operation control method
JP7465238B2 (en) Nuclear reactor monitoring method and nuclear reactor monitoring device
JPS63196896A (en) Nuclear reactor output controller
JPS6140591A (en) Controller for recirculation flow rate of nuclear reactor
JPS5896283A (en) Reactor stability control device
JP2001099976A (en) Device and method for thermal operation margin monitoring for nuclear reactor
JP2723310B2 (en) Reactor power control device
JPS61117486A (en) Nuclear-reactor nuclear thermal hydrualic power stability controller
JP2585357B2 (en) Prediction method of axial power distribution of reactor
JPS63241494A (en) Coolant feeder for nuclear reactor
JPS61117485A (en) Nuclear-reactor nuclear thermal hydrualic power stability controller
JPS5897695A (en) Device for forecasting and monitoring soundness of reactor fuel