JPS60169618A - Environment protection type gas turbine - Google Patents

Environment protection type gas turbine

Info

Publication number
JPS60169618A
JPS60169618A JP59024390A JP2439084A JPS60169618A JP S60169618 A JPS60169618 A JP S60169618A JP 59024390 A JP59024390 A JP 59024390A JP 2439084 A JP2439084 A JP 2439084A JP S60169618 A JPS60169618 A JP S60169618A
Authority
JP
Japan
Prior art keywords
exhaust
turbine
gas turbine
exhaust gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59024390A
Other languages
Japanese (ja)
Other versions
JPH0617651B2 (en
Inventor
Osamu Arai
修 荒井
Ryoichiro Oshima
大島 亮一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59024390A priority Critical patent/JPH0617651B2/en
Publication of JPS60169618A publication Critical patent/JPS60169618A/en
Publication of JPH0617651B2 publication Critical patent/JPH0617651B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

PURPOSE:To reduce the concentration of CO and HC in exhaust gas through simple and inexpensive means without causing pressure loss by applying oxidization catalyst onto desired area of turbine exhauster and exhaust path. CONSTITUTION:Oxidization catalyst is applied entirely or a portion of outer cylinder 20, inner cylinder 21, turning vane 23, exhaust duct 25, high frequency silencer panel 26, low frequency silencer panel 27, etc. of an exhauster 13. If the coating area of exhauster 13 is insufficient, oxidization catalyst is also applied in the exhaust path. Necessary coating area is about 2,000m<2> which can be ensured sufficiently by conventional exhauster 13.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、低NOX燃焼器を設けたガスタービンの排気
ガス中のCOおよび)ICの濃度を低減するに好適な環
境対策型ガスタービンに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an environmentally friendly gas turbine suitable for reducing the concentration of CO and IC in the exhaust gas of a gas turbine provided with a low NOx combustor.

〔発明の背景〕[Background of the invention]

近年のガスタービンの問題点としては、高温燃焼によっ
て生ずる窒素酸化物(NOX)の低減が重視されている
。NOXの低減の手段としては、脱硝装置によりNOX
を還元させるもの、uOX燃焼器などを用いて燃焼パタ
ーンを変えるものや、水噴射によって燃焼温度を下げる
ものなどが採用されている。し力為しながら、後に説明
する如く、脱硝装置によるものは設備が高価となると共
に圧力損失が大となる欠点を泪し、燃焼パターンを変え
るものは排気ガス中に有害のCOおよびl−10が多く
なシ、この処理に高価の設備を必要とし、かつ圧力損失
も大となる欠点を肩し、水噴射によるものはタービン効
率が低下する欠点が上げられる。
As a problem with gas turbines in recent years, emphasis has been placed on reducing nitrogen oxides (NOX) produced by high-temperature combustion. As a means of reducing NOX, a denitrification device is used to reduce NOX.
Some methods have been adopted, such as those that reduce combustion, those that change the combustion pattern using a uOX combustor, and those that lower the combustion temperature using water injection. However, as will be explained later, those using denitrification equipment have the drawbacks of expensive equipment and large pressure loss, while those that change the combustion pattern produce harmful CO and l-10 in the exhaust gas. In many cases, this process requires expensive equipment and has a large pressure loss, while those using water injection have the disadvantage of reducing turbine efficiency.

従って、重要課題であるNOXの低減化のためには、圧
力損失を生じさせることなく、簡便の手段によシCOお
よびHCの濃度を低減させる手段が要請さ゛れる。
Therefore, in order to reduce NOX, which is an important issue, there is a need for a means to reduce the concentration of CO and HC by a simple means without causing pressure loss.

第1図に示す如く、横軸に空燃比(F/A )をとり、
縦軸にNOX、CO(騨)をとると、NOxとCOとの
間には相反する傾向がある。すなわち、NOXを低減し
ようとすると、ガスタービンの排気ガス中のCOO量が
増加する。又、■10についても図示していないが、C
Oと同じく増加する。
As shown in Figure 1, the horizontal axis represents the air-fuel ratio (F/A),
When NOX and CO are plotted on the vertical axis, there is a tendency for NOx and CO to contradict each other. That is, when attempting to reduce NOX, the amount of COO in the exhaust gas of the gas turbine increases. Also, regarding ■10, although not shown, C
It increases like O.

第2図には、NOxを低減させる脱硝装置を示している
FIG. 2 shows a denitrification device that reduces NOx.

すなわち、圧縮機IKよって圧縮された空気は2燃焼室
2に入り燃焼し、その排気′ガスによってタービン3が
回転する。タービン3の排気ガスは排気ディフューザ4
f:通り、圧力を回復した後、サイレンサ5により減音
され、脱硝装置の気相還元装置6に導入される。気相還
元装置6には、NH3注入装置7およびH2O3注入装
置8からN HsおよびH20zの如き還元剤が注入さ
れる。反応装置9によシ、NOXはNHsおよびH* 
02によυ下式の如く還元されて低減される。
That is, air compressed by the compressor IK enters the two combustion chambers 2 and is combusted, and the turbine 3 is rotated by the exhaust gas. The exhaust gas of the turbine 3 is passed through the exhaust diffuser 4
f: After the pressure is restored, the sound is reduced by the silencer 5 and introduced into the gas phase reduction device 6 of the denitrification device. Reducing agents such as NHs and H2Oz are injected into the gas phase reduction device 6 from an NH3 injection device 7 and a H2O3 injection device 8. In reactor 9, NOx is NHs and H*
02 is reduced and reduced as shown in the equation below.

H2O,→20)I N)(3+0H=NHt +H2O N0十NH2=N++ +H,xO NO+NOx +2NHs →2Nz +31(zO上
記の如き反応が行われた排気ガスは感温器10内に入シ
冷却され、煙突11から大気に放出される。
H2O, →20)I N) (3+0H=NHt +H2O N0 ten NH2=N++ +H, xO NO+NOx +2NHs →2Nz +31(zO) The exhaust gas in which the above reaction has taken place enters the temperature sensor 10 and is cooled. It is released into the atmosphere from the chimney 11.

以上によシ、排気ガス中のNOXは還元されるが、図示
する如く気相還元装置6、NJIg注入装置7、)(2
0,注入装置8および反応装置9等を必要とし、構造が
極めて複雑のものとなり、かつ高価、大型のものとなる
。更に、第3図に示すコンバインドプラントに上記脱硝
装置を利用する場合にはガスタービン3と次系統のボイ
ラ51771の排気ダクト内に上記設備を必要とするた
め圧力損失が大となり、タービン効率を低下せしめる欠
点が生ずる。
As described above, NOX in the exhaust gas is reduced, but as shown in the figure, the gas phase reduction device 6, the NJIg injection device 7, ) (2
0. It requires an injection device 8, a reaction device 9, etc., making the structure extremely complicated, expensive, and large. Furthermore, when the above denitrification equipment is used in the combined plant shown in Fig. 3, the above equipment is required in the exhaust duct of the gas turbine 3 and the boiler 51771 in the next system, resulting in a large pressure loss and reducing turbine efficiency. This results in disadvantages.

又、図示していないが、低NOX燃焼器を用いて、排気
ガス中のNOXを低減せしめると、上記の如<COおよ
びHCの濃度が上昇し、これ等を酸化触媒等によシ反応
させて低減するには、従来技術では上記脱硝装置の如き
装置を必要とする不具合が生ずる。
Although not shown in the figure, when a low NOX combustor is used to reduce NOX in exhaust gas, the concentration of CO and HC increases as described above, and these are caused to react with an oxidation catalyst. In order to reduce this, the conventional technology has a problem in that it requires a device such as the above-mentioned denitrification device.

〔発明の目的〕[Purpose of the invention]

本発明は、上記欠点等を解決するもので、その目的は、
NOxによって生ずる排気ガス中のCOおよびHCの濃
度を、簡便、安価の手段によシ圧力損失を生ずることな
く低減させる環境対策型ガスタービンを提供することに
ある。
The present invention solves the above-mentioned drawbacks, and its purpose is to:
An object of the present invention is to provide an environmentally friendly gas turbine that reduces the concentration of CO and HC in exhaust gas caused by NOx by a simple and inexpensive means without causing pressure loss.

〔発明の概要〕[Summary of the invention]

本発明は、上記目的を達成するために、ガスタービンと
ボイラおよび蒸気タービンの如き次系統との間に設けら
れ、排気ガスの圧力回復、整流および消音などをする排
気装置および排気通路内に、排気ガス中のCoおよびH
Cと反応する触媒を所望面積だけ塗布する箇所を設ける
と共に、上記排気装置および排気通路を、該排気装置お
よび排気通路内を上記排気ガスが通過する間に排気ガス
中の酸素により上記COおよびHCが酸化されるに必要
な容積を有するべく形成せしめる環境対策型ガスタービ
ンを特徴としたものである。
In order to achieve the above object, the present invention provides an exhaust system and an exhaust passage that are provided between a gas turbine and a next system such as a boiler and a steam turbine, and that perform pressure recovery, rectification, and muffling of exhaust gas. Co and H in exhaust gas
In addition to providing a location where a desired area is coated with a catalyst that reacts with C, the exhaust system and exhaust passage are heated so that the CO and HC are removed by the oxygen in the exhaust gas while the exhaust gas passes through the exhaust system and the exhaust passage. The environmentally friendly gas turbine is designed to have a volume necessary for oxidation of the gas.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面に基づき説明する。 Embodiments of the present invention will be described below based on the drawings.

まず、本実施例の概要を説明する。First, an outline of this embodiment will be explained.

第3図のコンバインドプラントにおけるガスタービン3
と次系統の1つであるボイラ12間には、排気装置13
および排気通路14が介設されている。
Gas turbine 3 in the combined plant shown in Figure 3
An exhaust system 13 is installed between the boiler 12 and the boiler 12, which is one of the next systems.
and an exhaust passage 14 are provided.

又、圧縮機1とガスタービン1間には低NOX燃焼器2
aが介設される。
In addition, a low NOx combustor 2 is installed between the compressor 1 and the gas turbine 1.
a is interposed.

後に詳説するが、排気装置13内には、ア゛ウタシリン
ダ20、インナシリンダ21、ターニングバーン23、
排気ダクト25および高周波、低周波サイレンサバネル
26.27が形成され、排気ガスが接触し得る十分な面
積を有する箇所が設けられている。又図示しない排気通
路14内も、排気ガスが接触し得る十分な面積が形成さ
れる。そこで排気装置13および排気通路14内にco
およびHCと反応する触媒、例えば酸化触媒を所望面積
だけ塗布する箇所を形成する。
As will be explained in detail later, the exhaust system 13 includes an outer cylinder 20, an inner cylinder 21, a turning burn 23,
An exhaust duct 25 and high-frequency and low-frequency silencer panels 26, 27 are formed, and a portion having a sufficient area with which exhaust gas can come into contact is provided. Also, in the exhaust passage 14 (not shown), a sufficient area with which exhaust gas can come into contact is formed. Therefore, the exhaust system 13 and the exhaust passage 14 are
Then, a portion is formed where a desired area of a catalyst that reacts with HC, such as an oxidation catalyst, is applied.

ガスタービン3から排出される排気ガスの温度は550
211’程度で、ボイラ12人口の温度もほぼ同温度で
あるため、排気カス中のCOおよびHCは、上記酸化触
媒と効率よく反応し酸化されて濃度が低減される。又、
排気ガス内には酸素がある程度(15%)含まれている
ため、排気装置13および排気通路14を適宜の容積に
形成すれば、これ等を通過する際にこの酸素とCOおよ
びHCとが反応し、これ等を酸化すると共に熱量を発生
し、この発熱量が次系統に有効に使用される。なお、排
気装置13および排気通路14が上記酸化触媒を所望面
積だけ塗布し得るに十分の大きさがあれば、上記酸素と
COおよびHCが反応する容積は、普通必然的に十分に
確保される。
The temperature of the exhaust gas discharged from the gas turbine 3 is 550
211' and the temperature of the boiler 12 is also approximately the same temperature, so the CO and HC in the exhaust gas efficiently react with the oxidation catalyst and are oxidized to reduce their concentration. or,
Since exhaust gas contains a certain amount of oxygen (15%), if the exhaust device 13 and exhaust passage 14 are formed to have appropriate volumes, this oxygen will react with CO and HC when passing through them. However, as these are oxidized, heat is generated, and this heat is effectively used in the next system. Note that if the exhaust device 13 and the exhaust passage 14 are large enough to apply the oxidation catalyst to a desired area, a sufficient volume for the reaction of the oxygen with CO and HC will normally be ensured. .

次に、本実施例を更に詳細に説明する。Next, this embodiment will be explained in more detail.

まず、低NOX燃焼器2aを有するコンバインドプラン
トの構成を第3図に示す。
First, FIG. 3 shows the configuration of a combined plant having a low NOX combustor 2a.

圧縮機1とガスタービン3間には低NOX燃焼器2aが
介設される。ガスタービン3からの排気ガスは排気装置
13および排気通路14を通シ、次系統のボイラ12に
導入される。排気ガスと熱交換して生じた蒸気は蒸気タ
ービン15に導入され、発電機16を回転せしめた後、
復水器17で復水され、給水ポンプ1.8 Kより、再
びボイラー12に戻入される。
A low NOx combustor 2a is interposed between the compressor 1 and the gas turbine 3. Exhaust gas from the gas turbine 3 passes through an exhaust device 13 and an exhaust passage 14 and is introduced into a boiler 12 in the next system. The steam generated by exchanging heat with the exhaust gas is introduced into the steam turbine 15, rotates the generator 16, and then
The water is condensed in the condenser 17 and returned to the boiler 12 via the water supply pump 1.8K.

低NOX燃焼器2aにより燃焼ガスのNOXは低減され
るが、上記の如く、ガスタービン3からの排気ガスのC
OおよびHCの濃度は上昇する。
Although NOx in the combustion gas is reduced by the low NOx combustor 2a, as mentioned above, the carbon dioxide in the exhaust gas from the gas turbine 3 is reduced.
The concentration of O and HC increases.

第4図に排気装置13の詳細を示す。FIG. 4 shows details of the exhaust device 13.

ガスタービン3からの排気ガスはタービンパケット19
を通り、アウタシリンダ20とインナバケツ)21の間
を流れ、両者を連結するエアーホイルスラット22の表
面を縫って内部に向って流れ、整流のために設けられた
ターニングベーン23間を流れて排気ダクト24の表面
に接触して流れる。又、複数列のターニングベーン23
はパイプ24により結合される。
The exhaust gas from the gas turbine 3 is transferred to the turbine packet 19
The flow flows between the outer cylinder 20 and the inner bucket) 21, flows inward through the surface of the air foil slat 22 that connects the two, flows between the turning vanes 23 provided for rectification, and flows into the exhaust duct. It flows in contact with the surface of 24. Also, multiple rows of turning vanes 23
are connected by a pipe 24.

排気ダクト24内には消音のだめの高周波サイレンサバ
ネル26と低周波サイレンサバネル27が多数列設けら
れ、排気ガスはこれ等に接しながら排気ダクト25内を
流れる。次に、排気ガスは排気通路工4を通り、ボイラ
12に導入される。
Inside the exhaust duct 24, a large number of rows of high-frequency silencer panels 26 and low-frequency silencer panels 27 for muffling noise are provided, and the exhaust gas flows through the exhaust duct 25 while coming into contact with these panels. Next, the exhaust gas passes through the exhaust passageway 4 and is introduced into the boiler 12.

排気装置13のアウタシリンダ20.インナシリンダ2
1、ターニングベーン23、排気ダクト25、高周波サ
イレンサバネル26および低周波サイレンサバネル27
等の全部又は1部には酸化触媒が塗布される。又、排気
装置13の上記塗布面積で不足の場合には排気通路14
内にも酸化触媒が塗布される。これ等の所望の塗布面積
は後に説明する如く、20oo−程度あればよく、この
面積は普通上記の排気装置13により十分に確保される
Outer cylinder 20 of exhaust device 13. Inner cylinder 2
1, turning vane 23, exhaust duct 25, high frequency silencer panel 26, and low frequency silencer panel 27
An oxidation catalyst is applied to all or part of the oxidation catalyst. In addition, if the above coating area of the exhaust device 13 is insufficient, the exhaust passage 14
An oxidation catalyst is also applied inside. As will be explained later, the desired coating area may be about 200 mm, and this area is usually sufficiently secured by the above-mentioned exhaust device 13.

又、排気ガス内には15チ以上の酸素が含まれ、排気装
置13および排気通路14を排気ガスが通過する際に、
この酸素はcoおよびHcと反応し、これ等を酸化する
Furthermore, the exhaust gas contains 15 or more oxygen, and when the exhaust gas passes through the exhaust device 13 and the exhaust passage 14,
This oxygen reacts with co and Hc and oxidizes them.

第5図において、横軸に上記酸化触媒の反応温度1)を
とり、縦軸にcoの反応率(チ)をとると、反応温度が
350tl’以上では反応率が90チ以上の良好の値を
示すことがわかる。
In Figure 5, if the horizontal axis represents the reaction temperature 1) of the oxidation catalyst and the vertical axis represents the reaction rate of co (chi), when the reaction temperature is 350 tl' or higher, the reaction rate is a good value of 90 tl or more. It can be seen that this shows that

一般に、ガスタービンの排気+mWは350cよυ高く
、排気装置13のタービンパケット19の出口温度は5
50c程度あり、又、ボイラ12の入口温度も同程度の
温度に保持される。従って、排気装置13および排気通
路14内におりて、塗布された酸化触媒とCOガスは極
めてよい反応をすることになる。又、HCについても図
示していないが同様な反応率が上げられる。
Generally, the exhaust +mW of the gas turbine is as high as 350c, and the outlet temperature of the turbine packet 19 of the exhaust system 13 is 5
50c, and the inlet temperature of the boiler 12 is also maintained at about the same temperature. Therefore, the applied oxidation catalyst and CO gas react very well in the exhaust device 13 and the exhaust passage 14. Further, although not shown in the figure, a similar reaction rate can be achieved with HC.

次に、本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

一般に、CO酸化に1吏用される酸化触媒は、1−の接
触面積に対し、50ONm3/hの排気ガス中のCOを
80%CO2に酸化することが知られている。
Generally, it is known that an oxidation catalyst used for CO oxidation oxidizes 50 ONm3/h of CO in exhaust gas to 80% CO2 based on a contact area of 1.

今、出力10万KW級のガスタービンについて、COを
酸化するに必要な酸化触媒の塗布面積を下式により算出
する。上記ガスタービンの排気ガス重量流量Gは1.2
X10”Kg/hで、定格負荷時にはその中に10−の
COが含まれている。
Now, for a gas turbine with an output of 100,000 kW, the application area of the oxidation catalyst required to oxidize CO is calculated using the following formula. The exhaust gas weight flow rate G of the above gas turbine is 1.2
X10''Kg/h, and at the rated load, 10- of CO is included in it.

排気ガス温度Tを550r(823X)とすると排気ガ
ス流量Qは下式によりまる。
When the exhaust gas temperature T is 550r (823X), the exhaust gas flow rate Q is determined by the following formula.

ここで、Gは排気ガス重量流量で1.2X10’Kg/
hXPは排気ガス圧力で1.033+0.0635(温
度換算) = 1.0965 ata 、 Rは気体定
数で標準状態15U(288″K)における排気ガスK
y/N m ”のため下式によりまる。
Here, G is the exhaust gas weight flow rate, 1.2X10'Kg/
hXP is exhaust gas pressure, 1.033 + 0.0635 (temperature conversion) = 1.0965 ata, R is gas constant, exhaust gas K in standard state 15U (288″K)
y/Nm'', it is determined by the following formula.

従って、必要の塗布面積Sは下式の如くなる。Therefore, the required coating area S is as shown in the following equation.

上式により、所望の塗布面積は上記の如く約2000?
ll’あれば十分となり、排気ガス中のCOは排気装置
13等の上記酸化触媒によりC011に酸化され、無害
となって、ボイラ12側に送られる。
According to the above formula, the desired coating area is approximately 2000?
ll' is sufficient, and the CO in the exhaust gas is oxidized to CO11 by the oxidation catalyst in the exhaust device 13 or the like, becomes harmless, and is sent to the boiler 12 side.

コンバインドプラント等において、排気装置13および
排気通路14は常設されるもので、本実施例は、単にこ
れ等に酸化触媒を塗布するICけの簡単のもので、従来
技術の如く、特別の装置を必要としない。従って、簡便
、安価に実施することができ、圧力損失も生じない。
In a combined plant or the like, the exhaust system 13 and the exhaust passage 14 are permanently installed, and this embodiment is simply a simple IC that coats these with an oxidation catalyst, and requires special equipment as in the prior art. do not need. Therefore, it can be carried out simply and inexpensively, and no pressure loss occurs.

次に、排気ガス中の酸素により、COが酸化される状態
を上記例の場合について説明する。部分負葡時とし、排
気ガス重量流量G1.2XIO’1QZh内に含まれる
CO排出a度を15j%mとする。
Next, the state in which CO is oxidized by oxygen in the exhaust gas will be described with reference to the above example. It is assumed that the exhaust gas weight flow rate G1.2XIO'1QZh is partially negative, and the CO exhaust a degree contained in the exhaust gas weight flow rate G1.2XIO'1QZh is 15j%m.

COの流量Qcoは下式の如くなる。The flow rate Qco of CO is as shown in the equation below.

Qco =QX150 X 10”’ = 2.64X
10’刈50刈00−6=a9a”/h 従って、COの重量流量Gcoは次の如くなる。
Qco = QX150 x 10”' = 2.64X
10' mowing 50 mowing 00-6=a9a''/h Therefore, the weight flow rate Gco of CO is as follows.

Gco =Qco X r =396 Xo、455 
= 18019/ hCOの酸素は下式の如く反応し2
410Kcal/Kgの熱量を発する。すなわち 従って、Gcoの重量流量のCOの場合の発熱量Hは次
の如くなる。
Gco = Qco X r = 396 Xo, 455
= 18019/ hCO oxygen reacts as shown in the formula below 2
It emits 410Kcal/Kg of heat. That is, the calorific value H in the case of CO at the weight flow rate of Gco is as follows.

H= 2410X Gco X 80 % = 347
040 Kcal/h403KW この発熱量Hがボイラ12に使用され、この分だけター
ビン効率を向上することができる。
H = 2410X Gco X 80% = 347
040 Kcal/h403KW This calorific value H is used in the boiler 12, and the turbine efficiency can be improved by this amount.

以上の如く、ガスタービン3とボイラ12間忙酸化触媒
を塗布することにより、特別の装置を設けることなく、
COの酸化が行われ、かつ、発熱量Hによシ0.4チ程
度タービン効率を向上することができる。
As described above, by applying a busy oxidation catalyst between the gas turbine 3 and the boiler 12, the
CO is oxidized, and the turbine efficiency can be improved by about 0.4 inches depending on the calorific value H.

又、■(Cについても同様に、酸化触媒によりC02に
酸化することができ濃度低減される。すなわち、 CHa + Oz→COs +4hO の如くなる。
Similarly, (C) can be oxidized to CO2 by an oxidation catalyst and its concentration is reduced. That is, CHa + Oz→COs + 4hO.

〔発明の効果〕〔Effect of the invention〕

以上の説明によって明らかの如く、本発明によれば、簡
便、安価の手段により、排気ガス中のCOおよびHCの
濃度を低減すると共に、タービン効率を高めることがで
き、タービンの低NOX化を図ることができる。
As is clear from the above description, according to the present invention, the concentration of CO and HC in exhaust gas can be reduced by simple and inexpensive means, and the turbine efficiency can be increased, thereby reducing NOx in the turbine. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は空燃比とCOおよびNOXとの関係を示す線図
、第2図はNOXを低減するための従来技術における脱
硝装置の構成図、第3図は本発明実施例の適用されるコ
ンバインドプラントの構成図、第4図は排気装置の断面
図、第5図は触媒の反応温度とCO反応率との関係を示
す線図である。 1・・・圧縮機、2・・・燃焼器、2a・・・低NOX
燃焼器、3・・・ガスタービン、4・・・排気ディフュ
ーザ、5・・・サイレンサ、6・・・気相還元装置、7
・・・NH3注入装置、8・・・H2O2注入装置、9
・・・反応装置、10・・・感温器、11・・・煙突、
12・°・ボイラ、13・・・排気装d、14・・・排
気通路、15・・・蒸気タービン、工6・・・発電機、
17・・・復水器、18・・・給水ポンプ、19・・・
タービンパケット、20・・・アウタシリンダ、21・
・・インナシリンダ、22・・・エアーホイルストラッ
ト、23・・・ターニングベーン、24・・・パイプ、
25・・・排気ダクト、26・・・高周波サイレンサ、
27・・・低周波サイレンサ。 千庁図
Fig. 1 is a diagram showing the relationship between air-fuel ratio and CO and NOX, Fig. 2 is a block diagram of a conventional denitrification device for reducing NOx, and Fig. 3 is a diagram showing a combination to which an embodiment of the present invention is applied. FIG. 4 is a sectional view of the exhaust system, and FIG. 5 is a diagram showing the relationship between catalyst reaction temperature and CO reaction rate. 1...Compressor, 2...Combustor, 2a...Low NOX
Combustor, 3... Gas turbine, 4... Exhaust diffuser, 5... Silencer, 6... Gas phase reduction device, 7
...NH3 injection device, 8...H2O2 injection device, 9
... Reactor, 10... Temperature sensor, 11... Chimney,
12.° Boiler, 13... Exhaust system d, 14... Exhaust passage, 15... Steam turbine, Engineering 6... Generator,
17...Condenser, 18...Water pump, 19...
Turbine packet, 20... Outer cylinder, 21...
... Inner cylinder, 22 ... Air foil strut, 23 ... Turning vane, 24 ... Pipe,
25...Exhaust duct, 26...High frequency silencer,
27...Low frequency silencer. Thousand offices map

Claims (1)

【特許請求の範囲】 1、低NOX燃焼器を設けると共に、タービンの排出側
から次系続開に排気ダクト、サイレンサ。 ディフューザの如き排気装置および排気通路を有する環
境対策型ガスタービンにおいて、上記排気装置および排
気通路にCOおよびHeと反応する触媒を所望面積だけ
塗布する箇所を設けると共に、上記排気装置および排気
通路が、上記COおよびHCと排気ガス中の酸素が反応
し得る容積を有するように形成されることを特徴とする
環境対米型ガスタービン。 2、上記ガスタービンが、上記次系統にボイラおよび蒸
気タービンを有するコンバインドプラントに用いられる
ものであることを特徴とする特許請求の範囲第1項に記
載の環境対策型ガスターヒフ6
[Claims] 1. A low NOx combustor is provided, and an exhaust duct and silencer are connected to the next system from the exhaust side of the turbine. In an environment-friendly gas turbine having an exhaust device such as a diffuser and an exhaust passage, the exhaust device and the exhaust passage are provided with a portion where a desired area is coated with a catalyst that reacts with CO and He, and the exhaust device and the exhaust passage are An environmentally friendly gas turbine, characterized in that it is formed to have a volume that allows the CO and HC to react with oxygen in the exhaust gas. 2. The environmentally friendly gas turbine according to claim 1, wherein the gas turbine is used in a combined plant having a boiler and a steam turbine in the secondary system.
JP59024390A 1984-02-14 1984-02-14 Environmentally friendly gas turbine Expired - Lifetime JPH0617651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59024390A JPH0617651B2 (en) 1984-02-14 1984-02-14 Environmentally friendly gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59024390A JPH0617651B2 (en) 1984-02-14 1984-02-14 Environmentally friendly gas turbine

Publications (2)

Publication Number Publication Date
JPS60169618A true JPS60169618A (en) 1985-09-03
JPH0617651B2 JPH0617651B2 (en) 1994-03-09

Family

ID=12136835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59024390A Expired - Lifetime JPH0617651B2 (en) 1984-02-14 1984-02-14 Environmentally friendly gas turbine

Country Status (1)

Country Link
JP (1) JPH0617651B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH679236A5 (en) * 1989-10-31 1992-01-15 Asea Brown Boveri Open-cycle gas-turbine - has ambient air injector in exhaust pipe upstream of catalytic unit
EP1507073A1 (en) * 2003-08-12 2005-02-16 J. Eberspächer GmbH Co. KG Engine exhaust system
AT515277B1 (en) * 2013-12-19 2018-12-15 Ift Gmbh catalytic converter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5426432U (en) * 1977-07-22 1979-02-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5426432U (en) * 1977-07-22 1979-02-21

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH679236A5 (en) * 1989-10-31 1992-01-15 Asea Brown Boveri Open-cycle gas-turbine - has ambient air injector in exhaust pipe upstream of catalytic unit
EP1507073A1 (en) * 2003-08-12 2005-02-16 J. Eberspächer GmbH Co. KG Engine exhaust system
DE10337336B4 (en) * 2003-08-12 2011-06-22 J. Eberspächer GmbH & Co. KG, 73730 Exhaust system for an internal combustion engine
AT515277B1 (en) * 2013-12-19 2018-12-15 Ift Gmbh catalytic converter

Also Published As

Publication number Publication date
JPH0617651B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
JPS6157927B2 (en)
US20140010748A1 (en) SYSTEM USING SELECTIVE CATALYTIC REDUCTION FOR IMPROVING LOW-TEMPERATURE De-NOx EFFICIENCY AND REDUCING YELLOW PLUME
US4353206A (en) Apparatus for removing NOx and for providing better plant efficiency in combined cycle plants
JP2010196708A (en) Method and apparatus for operation of co/voc oxidation catalyst to reduce no2 formation for gas turbine
JPH1089086A (en) Method for generating rotatioaxis output power and power plant
JP2019015179A (en) Combustion device and gas turbine
CA2134738A1 (en) Gas turbine combined cycle system
JP2565437B2 (en) Gas turbine device equipped with tube nest combustion type combustor
JPS60169618A (en) Environment protection type gas turbine
CN102537915A (en) Apparatus for reducing emissions and method of assembly
CN102658025A (en) Low-temperature SCR (selective catalytic reduction) fixed bed fume denitration device for horizontal waste heat boiler
JPH0611132A (en) Exhaust gas temperature increasing device for exhaust soot denitriding device
JP2001074208A (en) Method of equalizing control of heat collecting and combusting characteristics of boiler in the direction of furnace width and device thereof
JPH01155007A (en) Operating method for exhaust heat recovery boiler
JPH066901U (en) Gas uneven flow prevention device for exhaust heat recovery boiler
JP5777420B2 (en) Gas turbine exhaust equipment
CN213913084U (en) Waste gas denitration system for acrylonitrile device
CN209865776U (en) Medium-temperature type denitration system for smoke of multiple gas internal combustion engines
CN109550398B (en) Medium-temperature denitration system for flue gas of multiple gas internal combustion engines
JPS5943213B2 (en) Exhaust gas denitrification equipment
JP2752114B2 (en) Urban-type cordier equipment
JPH01127028A (en) Apparatus for denitridation of combustion exhaust gas
JPS58143826A (en) Denitration apparatus assembled with waste heat boiler
JPH04161229A (en) Denitration apparatus
JP2521263B2 (en) Exhaust heat recovery boiler

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term