JPS60169527A - Production of sintered ore - Google Patents

Production of sintered ore

Info

Publication number
JPS60169527A
JPS60169527A JP2499884A JP2499884A JPS60169527A JP S60169527 A JPS60169527 A JP S60169527A JP 2499884 A JP2499884 A JP 2499884A JP 2499884 A JP2499884 A JP 2499884A JP S60169527 A JPS60169527 A JP S60169527A
Authority
JP
Japan
Prior art keywords
raw material
particle size
sintering
coarse particles
obtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2499884A
Other languages
Japanese (ja)
Inventor
Kazumasa Kato
和正 加藤
Shun Sato
駿 佐藤
Keizo Miyamoto
宮本 啓造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2499884A priority Critical patent/JPS60169527A/en
Publication of JPS60169527A publication Critical patent/JPS60169527A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To improve air permeability of a sintering layer and to produce sintered ore having uniform quality at a good yield by sieving a sintering raw material, granulating the pulverous powder, grinding the coarse particles, supplying only the raw material having an adequate particle size to a sintering machine and sintering said material. CONSTITUTION:A sintering raw material formed by compounding about 60% iron 1, about 10% limestone 2, about 20% sinter returns 3 and about 10% powder coke 4 is passed through a dryer 21 to about 0.5% moisture and thereafter the raw material is sieved by a 5mm. screen 22 then 1mm. screen 23. The coarse particles of >=5mm. obtd. by the sieving are passed through a grinding machine 26 and are the successively sieved by a 1mm. screen 24 and a 5mm. screen 25. The coarse particles of >=5mm. are returned again to the machine 26. The pulverous powder of <=1mm. obtd. by the sieving is pulverized by a grinding machine 27 and is then granulated to 5-1mm. by a pelletizer 28. Only the raw material of 5-1mm. particle size obtd. by the screens 22, 23, 24, 25 and the pelletizer 28 is thus uniformly mixed in a drum mixer 29 and is then supplied to a sintering pan 30, by which the material is sintered and the sintered ore is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は焼結鉱の製造方法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a method for producing sintered ore.

更に詳細には、本発明は、焼結鉱原料の粒度を調整して
、焼結機−ヒの焼結原料の通気性を改善し、焼成むらが
なく、品質の均一な焼結鉱を製造する方法に関する。
More specifically, the present invention adjusts the particle size of the sintered ore raw material, improves the permeability of the sintered raw material in the sintering machine, and produces sintered ore with uniform quality without uneven firing. Regarding how to.

従来技術 焼結原料は通常40%程度の1mm以下の微粒および1
0%程度の5mm以上の粗粒で構成され、微粒と]11
粒の粒径比が大きい。このため、擬似粒化用凝集剤を添
加して微粉原料の造粒化処理を行った後焼結機に供給す
る方法が行われている。しかしこの様な処理を行っても
、1mm以下の微粉量はまだ一20%程度存在腰かつ5
mm以上の粗粒量は約20%に増加し、粒径均一化効果
は小さい。
Conventional technology sintering raw materials usually contain about 40% of fine particles of 1 mm or less and 1
Composed of approximately 0% coarse grains of 5 mm or more, and fine grains]11
The grain size ratio is large. For this reason, a method is used in which a coagulant for pseudo-granulation is added to granulate the fine powder raw material, and then the raw material is fed to a sintering machine. However, even with this kind of treatment, the amount of fine powder less than 1 mm still exists at around 20%, and only 5.
The amount of coarse particles larger than mm increases to about 20%, and the effect of making the particle size uniform is small.

原Flの粒径が不均一で、微粉と粗粒の粒径比が大きい
と粗粒粒子間隙に微粉が充填されるため、通気性が悪く
、またこの様な粗粒と微粉の混在する原料を焼結機上に
積み付けると充填状態が不均一となり、焼結層に通気ム
ラが発生する。通気性が悪く通気17jの少ない部分は
焼結反応が進行しにくく、焼成不足のまま焼結機より排
出されるため、焼結鉱の成品歩留りが悪くまた品質のバ
ラツキも大きい。
If the particle size of the raw Fl is uneven and the particle size ratio of fine powder and coarse particles is large, the fine powder will fill the gaps between the coarse particles, resulting in poor air permeability. When stacked on a sintering machine, the filling state becomes uneven and uneven ventilation occurs in the sintered layer. The sintering reaction is difficult to proceed in areas with poor air permeability and little ventilation 17j, and the sintered ore is discharged from the sintering machine with insufficient firing, resulting in a poor yield of sintered ore and large variations in quality.

更に詳細に説明すると、焼結で使用する配合原料は第1
図に実線で示す様に粗粒と微粉が混在するため、前処理
として、水分を添加した後ドラム等で造粒する操作を行
なっている。この従来技術の焼結鉱製造における混合造
粒工程では、第2図に示す様に、主原料である鉄鉱石1
、石灰石等の副原料2に返鉱3および粉コークス4を加
えて配合原料5とし、まずこの配合原料5を1次回1t
にドラl、6に供給し、これに必要量の水を添加して混
合する。更に混合後、配合原料5は2広回転ドラl、7
に供給され適量の水を添加し−C擬似粒化を1ン1す、
造粒物として排出され焼結機8に装入される。
To explain in more detail, the raw materials used in sintering are the first
As shown by the solid line in the figure, coarse particles and fine particles coexist, so as a pretreatment, water is added and then granulated using a drum or the like. In the mixing granulation process in the production of sintered ore according to the prior art, as shown in Fig. 2, iron ore, which is the main raw material, is
, return ore 3 and coke powder 4 are added to auxiliary raw materials 2 such as limestone to form a blended raw material 5, and this blended raw material 5 is first mixed into 1 ton.
6, and add the required amount of water to it and mix. After further mixing, the blended raw materials 5 are passed through two wide rotary drums 1 and 7.
Add an appropriate amount of water to create a pseudo-granule.
The granules are discharged and charged into the sintering machine 8.

排出された造粒物の粒度分布は第1図に1点鎖線で示し
た様に、1mm以下の微粉が20%程度存在し、かつ5
mm以上の粗粒が20%程度存在する粗粉混在状態にあ
る。このため粗粒間隙に微粉が充填され−C通気経路が
閉塞され、コークスを燃焼するだめの空気の吸引が不十
分となり、焼結の進行が妨げられる。また、原料中の粗
粒と微粉の存在比は一定ではなく、焼結機の縦および横
方向で原料充填性が大幅に相異することとなる。原料充
填性能は通気性に影響し、通気111−に依存する焼結
進行速度が焼結機」−の各位置で変化するため、一部に
未焼成の部分が発生し、歩留り低下を惹起し、なおかつ
品質のバラツキも大きくなる。
The particle size distribution of the discharged granules is as shown by the dashed line in Figure 1, with approximately 20% of fine particles of 1 mm or less present, and 5.
It is in a coarse powder mixed state in which approximately 20% of coarse particles with a diameter of mm or more are present. As a result, the gaps between the coarse grains are filled with fine powder, and the -C ventilation path is blocked, resulting in insufficient suction of air into the coke combustion chamber, and the progress of sintering is hindered. In addition, the abundance ratio of coarse particles and fine particles in the raw material is not constant, and the raw material filling properties differ significantly in the vertical and horizontal directions of the sintering machine. Raw material filling performance affects air permeability, and the sintering progress rate, which depends on ventilation, changes at each position in the sintering machine, resulting in some unfired parts, causing a decrease in yield. , and the variation in quality also increases.

この対策として良く用いられるのは、特公昭53828
3弓公報に開示されている様な、特定の粘結祠を添加し
て造粒を促進する方法である。しかし1、二の公知方法
では、微粉同志が粒状化する現象と、]II−’r L
−C粗れ”Lの表面」二に微粉が付着する現象も起こる
ため、全体の平均粒径が増加する効果はあるものの、粒
径均一化効果は得られない。
A commonly used measure against this problem is the Special Publication No. 53828.
This is a method of accelerating granulation by adding a specific caking powder, as disclosed in No. 3 Yuki Publication. However, in the known methods 1 and 2, the phenomenon of granulation of fine powder and ]II-'r L
Since a phenomenon in which fine powder adheres to the surface of the -C roughness "L" also occurs, although there is an effect of increasing the overall average particle size, the effect of making the particle size uniform cannot be obtained.

更に」:た、特開昭57−174421号公報には5m
m以上の粗粒を分級し、5mm以」ユ粗粒を造粒し易い
0、25mm以下に微粉砕後、もとの5 mm以下の原
料に添加して、ドラム等で造粒する方法が開示されてい
る。この方法もまた、微粉同志の粒状化現象と、粗粒表
面」二への微粉の伺着現象が並行して起こるため、粒径
均一化効果を得にくい欠点を有する。
In addition, 5 m
There is a method of classifying coarse particles with a size of 5 mm or more, pulverizing them to 0 or 25 mm or less, which makes it easier to granulate coarse particles with a size of 5 mm or more, and then adding it to the original raw material of 5 mm or less and granulating it with a drum, etc. Disclosed. This method also has the disadvantage that it is difficult to obtain the effect of uniformizing the particle size because the phenomenon of granulation of the fine powders and the phenomenon of adhesion of the fine powders to the surface of the coarse particles occur in parallel.

このようなこれまでに提案された事前処理方法では、・
17.均粒径増加による通気性向」二効果と粒径均一化
による通気性均一化効果を同時に達成するのは困難であ
った。
In such pre-processing methods proposed so far,
17. It was difficult to simultaneously achieve the two effects of improving air permeability by increasing the average particle size and uniformizing the air permeability by making the particle size uniform.

発明の目的 本発明は一+1述した従来技術の問題を解決して、適切
な焼結原料の予備処理方法により焼成むらがなく、品質
が均一な焼結鉱を製造することにある。
OBJECTS OF THE INVENTION The object of the present invention is to solve the problems of the prior art described above and to produce sintered ore with uniform quality and no uneven firing by using an appropriate pretreatment method for sintering raw materials.

発明の構成 本発明に従い、焼結原)l’4を1mmおよび5mmの
篩により篩い分け、1mm以下の微粉は5〜1mmに造
粒し、5mm以上の粗粒は粉砕してさらに1mmおよび
5mmの篩により篩い分け、粒子径が5〜1mmの原料
のみを焼結機に供給して焼結を行なうことを特徴とする
焼結鉱の製造方法が提供される。
Structure of the Invention According to the present invention, sintered raw material) l'4 is sieved through 1 mm and 5 mm sieves, fine particles of 1 mm or less are granulated to 5 to 1 mm, and coarse particles of 5 mm or more are crushed and further 1 mm and 5 mm. Provided is a method for producing sintered ore, characterized in that only raw materials having a particle diameter of 5 to 1 mm are sifted through a sieve and sintered by supplying them to a sintering machine.

すなわち、本発明は、焼結鉱の生産性並びに歩留り、品
質変動を改善する方法きして開発されたもので、焼結機
に装入する原料を上限径で分級するだけではなく、下限
径でも分級しかつこの粒径範囲を適性値にコントロール
することにより粗粉混存状態を解消して通気性を改良せ
しめ、これにより、生産性並びに成品歩留り・品質変動
を改善する焼結鉱の製造方法を提供するものである。
That is, the present invention was developed as a method for improving the productivity, yield, and quality fluctuation of sintered ore, and it not only classifies the raw material charged to the sintering machine by the upper limit diameter, but also by the lower limit diameter. However, by classifying and controlling the particle size range to an appropriate value, it is possible to eliminate the mixed state of coarse particles and improve air permeability, thereby improving productivity, product yield, and quality fluctuations. The present invention provides a method.

以下、本発明を実施例により説明するが、これらの実施
例は本発明を何等制限するものでないこ七は勿論である
The present invention will be explained below with reference to Examples, but it goes without saying that these Examples do not limit the present invention in any way.

実施例 まず、通常の焼結機で使用される3種類の配合原料を乾
大桑し、その粒度分布を第3図に示す、、これら八〜C
Q) 3種類の原料のうらΔは分級処理を行わない原8
i;[、Bは平均径が1.’2mmとΔと同一であるが
;粒度を05〜5mmに整粒したもの、さらにCは■3
と1−限と下限の粒径比が同一で平均粒径を2.7mm
に増加させたものである。これらの原料を第4図に示す
装置を使用して通気性を評価した。
Example First, three types of blended raw materials used in a normal sintering machine were dried and their particle size distribution is shown in Figure 3.
Q) The bottom Δ of the three types of raw materials is raw material 8 that is not subjected to classification treatment.
i; [, B has an average diameter of 1. '2mm and Δ are the same, but the grain size has been adjusted to 05-5mm, and C is ■3
and 1- The particle size ratio of the limit and lower limit is the same and the average particle size is 2.7 mm.
This has been increased to . The air permeability of these raw materials was evaluated using the apparatus shown in FIG.

図中、13は直径600fflLI+高さ6(10mm
の円筒、10は風箱、11は2(1mml厚みの床敷鉱
、12はロスドル、13は圧力計、14は流量計、15
は俳風機、16は風速i−+を示し、17の部分に前記
へ〜Cの原料を層高5’80mmで充填し、通気度およ
び風速分布を測定した。なお通気度は下記の(])式に
示す計算式を用いた。
In the figure, 13 is diameter 600fflLI + height 6 (10mm
cylinder, 10 is a wind box, 11 is 2 (1 mm thick bedding ore, 12 is a rosdol, 13 is a pressure gauge, 14 is a flow meter, 15
16 represents a wind blower, 16 represents a wind speed i-+, and the portion 17 was filled with the raw materials from above to C to a layer height of 5'80 mm, and the air permeability and wind speed distribution were measured. Note that the air permeability was calculated using the following formula ( ]).

10通気度(、I P U ) 、Δ:円筒断面積(m
′)、○;風量(m’/min、 ) 、If :原料
層高(m)、P′負圧(1ηΔq ) 第1表は通気度の測定結果である。これらの結果により
、」二頭に下限の粒径比低減(ずなわぢ整粒化)により
、また、同一粒径比では平均粒径が大きいほど、通気度
が上昇することがわかる。
10 Air permeability (, I P U ), Δ: Cylindrical cross-sectional area (m
'), ○: Air flow rate (m'/min, ), If: Raw material bed height (m), P' negative pressure (1ηΔq) Table 1 shows the measurement results of air permeability. From these results, it can be seen that the air permeability increases by reducing the particle size ratio to the lower limit (Zunawai particle sizing) and, at the same particle size ratio, as the average particle size becomes larger.

また、第5図は原料表面上の風速分布の測定結果を示す
。ずなわら、第5図(a)は測定位1σを、第5図(b
)はそれらの位置における測定結果を示す。」二頭と下
限の粒径1ヒ低下により、風速のバラツキが減少し、通
気の均一化が可能となることがわかる。
Moreover, FIG. 5 shows the measurement results of the wind speed distribution on the surface of the raw material. However, Fig. 5(a) shows the measurement position 1σ, and Fig. 5(b)
) indicate the measurement results at those positions. It can be seen that by decreasing the particle size of 2 and the lower limit by 1, variations in wind speed are reduced and uniform ventilation becomes possible.

以トは冷間での測定結果であるが、これらの効果は熱間
の焼結過程でも有効と考えられるが、焼成試験を行いそ
の効果を確認した。
The following are the results of cold measurements, but these effects are also considered to be effective in the hot sintering process, and we conducted a firing test to confirm these effects.

第6図は、焼成試験時の原料処理フローを示す。FIG. 6 shows the raw material processing flow during the firing test.

図中、21は乾大桑機、22.23.24.25は篩、
26.27は破砕機、2)(はペレタイザ、29はドラ
l、ミキ勺、 。
In the figure, 21 is a dry mulch machine, 22, 23, 24, and 25 are sieves,
26. 27 is a crusher, 2) is a pelletizer, 29 is a drum, and a mixer.

:30は焼結鋼り示ず。また、第2図と同様に、■は鉄
鉱石、2は石灰石、3は返鉱、4は扮コークスを示ず。
:30 does not indicate sintered steel. Also, as in Figure 2, ■ indicates iron ore, 2 indicates limestone, 3 indicates return ore, and 4 does not indicate coke.

原1゛ζ1配合率は、鉄鉱石60%、石灰石10%、返
鉱20%、扮コークス1(1%とし、この配合率は常に
一定にして配合原料として用いた。第6図での粒径範囲
を−1,限5m、m下限1mmとする場合は、22、?
3.24.25の篩の目開きがそれぞれ5mm、 1m
m、l mm 、5 nunとなる。
The blending ratio of raw material 1゛ζ1 was 60% iron ore, 10% limestone, 20% return ore, and 1% coke, and this blending ratio was always kept constant and used as the blending raw material. If the diameter range is -1, the limit is 5 m, and the lower limit of m is 1 mm, 22, ?
3. The openings of the sieves 24 and 25 are 5 mm and 1 m, respectively.
m, l mm, 5 nun.

なお、配合原料は予め、乾燥機21で水分を0.5%と
し、さらにまた、ペレタイザ28に供給する原料は、ペ
レタイザ28からの造粒生成物の粒径が5〜11111
TIにrJJ整し易い粒度である0、 25mm以下に
粉砕した原料である。
Note that the blended raw materials have a moisture content of 0.5% in advance in the dryer 21, and the raw materials supplied to the pelletizer 28 are such that the particle size of the granulated product from the pelletizer 28 is 5 to 11111.
It is a raw material that has been ground to a particle size of 0.25 mm or less, which is easy to adjust to TI.

以上の処理フローで粒径範囲を変化させ直径600mm
の焼結鋼で、層高600mm、吸引負圧1500mmA
qの条件を一定にして焼成した。
Through the above processing flow, the particle size range was changed to 600 mm in diameter.
Made of sintered steel, bed height 600mm, suction negative pressure 1500mmA
Firing was carried out under constant q conditions.

第7〜9図に試験結果を示し、いずれも−L限粒径4パ
ラメーターに、成品歩留り、生産率、品質のそれぞれに
対する粒径範囲(」−限粒子径/ド限粒子径)の影響を
表示している。
The test results are shown in Figures 7 to 9, and they all show the influence of the particle size range (-limit particle size/de-limit particle size) on the product yield, production rate, and quality, respectively, in the -L limit particle size four parameters. it's shown.

第7図に示ず成品歩留りに対する粗粒範囲の影響から、
−1−・下限粒子径比に適性値が存在し、この適性値は
、上限粒子径で変化することが明らかである。
From the influence of the coarse grain range on the product yield, which is not shown in Figure 7,
-1- It is clear that there is an appropriate value for the lower limit particle size ratio, and this appropriate value changes depending on the upper limit particle size.

一ト・下限粒径比が大きい場合は、粗粉混存状態に起因
する通気ムラが、一方上下限粒径仕が過度に減少しだ場
合は原料全体が111粒化するだめの溶融不足が原因と
なっ−C歩留りが悪化すると考えられる。
If the particle size ratio is large, there will be uneven aeration due to the coexistence of coarse particles, while if the upper and lower particle size limits decrease too much, there will be insufficient melting as the entire raw material will become 111 particles. This is thought to be the cause of the -C yield deterioration.

更に」−下限粒径仕一定下で、」−限粒径の影響を見る
と、歩留りに対する適性、上限径の存在(5mm)が顕
著であり、この原因も過度の微細粒子構成による通気ム
ラおよび、粗粒化による溶融不足、と考えられる。
Furthermore, when we look at the influence of the particle size limit under the minimum grain size specifications, the suitability for yield and the existence of an upper limit diameter (5 mm) are remarkable, and this is also due to uneven ventilation due to an excessively fine particle structure. This is thought to be due to insufficient melting due to coarse graining.

次に生産効率について述べる。Next, let's talk about production efficiency.

生産効率は、原料の通気性並びに成品歩留りによって決
まる31通気性は第1表で示した様に上下限粒径比が小
さいほど、また同一の上下限粒径比下では、平均粒度が
大きいほど、すなわち、上限粒子径が大きいほど良好で
ある。これに更に第7図の成品歩留りの影響が同時に関
与して、第8図に示す生産効・トが決まる。通気性の観
点から昌゛えば、」ド限粒径比が小さく、かつ、」二頭
粒子径が大きいほど生)?1′効率が向上するはずであ
るが、先に述べた成品歩留りの影響も同時に強く関与す
るた杓、ll:i^1効・オ・−に対し−C1適正上下
限粒径仕および」二頭iモが存在する。
Production efficiency is determined by the air permeability of raw materials and the product yield.31 As shown in Table 1, air permeability increases as the upper and lower limit particle size ratios become smaller, and under the same upper and lower limit particle size ratios, as the average particle size increases. That is, the larger the upper limit particle size, the better. Furthermore, the influence of the product yield shown in FIG. 7 is also involved, and the production efficiency shown in FIG. 8 is determined. From the viewpoint of air permeability, the smaller the particle size ratio and the larger the particle size, the better. 1' Efficiency should improve, but the effect of the product yield mentioned above is also strongly involved. There is a brain.

以−1の結果から、適正上下限粒径比は5.0でかつ千
成粒径は5mmであることが明らかであり、従って適正
i?f了径は5〜1mmであることが確言忍された。
From the results in 1 below, it is clear that the appropriate upper and lower limit particle size ratio is 5.0 and the 100% grain size is 5 mm. Therefore, the appropriate i? It was confirmed that the diameter of the diameter was 5 to 1 mm.

第9図は品質のバラツキ低減に対する上下限粒子径の影
響を示したもので、」二下限粒子径仕を5.0にするこ
とにより品質のバラツキが大[1]に低下する効果が明
らかである。
Figure 9 shows the influence of upper and lower particle size limits on reducing quality variation, and it is clear that setting the lower limit particle size to 5.0 greatly reduces quality variation [1]. be.

以上述べた試験結果は、鉱石、石灰石、返鉱、粉コーク
スの全原料を第6図に示した事前の整粒化処理を行った
例であるが、もし最初から5〜1mmの粒度である原料
銘柄があれば、この原(′旧こつい−(は、途中の篩分
け、粉砕・造粒工程を省略し、最後程である混合用のド
ラトミキシーに供給する事が可能である。
The test results described above are an example in which all the raw materials of ore, limestone, return ore, and coke breeze were subjected to the preliminary granulation treatment shown in Figure 6, but if the particle size was 5 to 1 mm from the beginning. If the raw material brand is available, it is possible to omit the intermediate sieving, pulverizing and granulating steps and feed this raw material to the Doratomixie for mixing at the end.

発明の効果 木発明に従い、焼結機に供する原料の粒度を5〜1.m
mに調整すると、焼結機上の焼結層の通気性のムラを解
消し、品質が均一な成品を歩留りよく生産することがで
きる。
Effects of the Invention According to the invention, the particle size of the raw material to be fed to the sintering machine is 5 to 1. m
When adjusted to m, unevenness in air permeability of the sintered layer on the sintering machine can be eliminated, and products with uniform quality can be produced with a high yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、焼結原料の粒度分布を、従来技術による粒粒
処理前と処理後で示すグラフである。 第2図は、従来技術の焼結原料の混合造粒工程のフロー
チャートである。 第3図は、木発明の実施例で用いた焼結原料Δ、B、C
の粒度分布を示すグラフである。 第4図は、焼結原料の通気性を試験する装置の4既略図
である。 第5図(a)、(1))は、・焼結原料の通気性試験に
於ける風速分布の測定位置と測定結果を示す、。 第6図は、本発明に従う焼結原料の事前処理のフローチ
ャートである。 第7図、第8図および第9図はそれぞれ、−1−限、下
限粒度比の成品歩留り、生産効率、落下強度に及ばず影
響を示すグラフである。 (主な参照番号) l・・・鉱石、? ・・・石灰石、3 ・・・返鉱、4
・・・粉二j−クス、6.7 ・・・回転ドラl、8・
・・づ、克+f=’! )幾、 10・・・風箱、16
・・・風速31、17・・・原料層、21・・乾燥機、
 22.23.24.25・・篩、26.27・・破砕
機 28・・ペレタイザ、29・・ドラl、ミキサ 3
0・・焼結鋼ゼj許出願人 住友金属工業株式会社 代理人 ヅIX理士 新居 正彦 拉怪(、fia) 第2図 舷峰む1) 第3図 第5α図 斤料灸面との信置 第5b図 第7図
FIG. 1 is a graph showing the particle size distribution of a sintered raw material before and after granulation treatment according to the prior art. FIG. 2 is a flowchart of a conventional sintering raw material mixing and granulation process. Figure 3 shows the sintering raw materials Δ, B, and C used in the embodiment of the wood invention.
It is a graph showing particle size distribution of. FIG. 4 is a schematic diagram of an apparatus for testing the air permeability of sintered raw materials. Figures 5(a) and (1)) show the measurement positions and measurement results of the wind speed distribution in the air permeability test of sintered raw materials. FIG. 6 is a flowchart of pre-treatment of sintering raw materials according to the present invention. FIG. 7, FIG. 8, and FIG. 9 are graphs showing the influence of -1- limit and lower limit particle size ratio on product yield, production efficiency, and drop strength, respectively. (Main reference number) l...Ore, ? ...Limestone, 3 ...Return ore, 4
・・・Powder Ni-J-kusu, 6.7 ・・・Rotating drum l, 8・
...zu, katsu+f='! ) number, 10...wind box, 16
... Wind speed 31, 17 ... Raw material layer, 21 ... Dryer,
22.23.24.25...Sieve, 26.27...Crusher 28...Pelletizer, 29...Driller, mixer 3
0... Sintered Steel Zej Patent Applicant Sumitomo Metal Industries Co., Ltd. Agent ㅅIX Masahiko Masahiko Arai (, fia) Figure 2 Gunmine 1) Figure 3 Figure 5α Credibility with Moxibustion Mask Figure 5b Figure 7

Claims (1)

【特許請求の範囲】[Claims] (1) 焼結原料を1mmおよび5mmの篩により篩い
分け、1mm以下の微粉は5〜1mmに造粒し、5mm
以上の粗粒は粉砕してさらに1mmおよび5mmの篩に
より篩い分け、粒子径が5〜1mmの原料のみを焼結機
に供給して焼結を行なうことを特徴とする焼結鉱の製造
方法。
(1) Sieve the sintering raw material with 1 mm and 5 mm sieves, and granulate fine powder of 1 mm or less to 5 to 1 mm.
A method for producing sintered ore, characterized in that the above coarse particles are crushed and further sieved through 1 mm and 5 mm sieves, and only raw materials with a particle size of 5 to 1 mm are fed to a sintering machine for sintering. .
JP2499884A 1984-02-15 1984-02-15 Production of sintered ore Pending JPS60169527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2499884A JPS60169527A (en) 1984-02-15 1984-02-15 Production of sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2499884A JPS60169527A (en) 1984-02-15 1984-02-15 Production of sintered ore

Publications (1)

Publication Number Publication Date
JPS60169527A true JPS60169527A (en) 1985-09-03

Family

ID=12153642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2499884A Pending JPS60169527A (en) 1984-02-15 1984-02-15 Production of sintered ore

Country Status (1)

Country Link
JP (1) JPS60169527A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103627895A (en) * 2013-12-04 2014-03-12 四川金广实业(集团)股份有限公司 Production method for sintering chromium powder ore by continuous strand sinter machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103627895A (en) * 2013-12-04 2014-03-12 四川金广实业(集团)股份有限公司 Production method for sintering chromium powder ore by continuous strand sinter machine

Similar Documents

Publication Publication Date Title
US2052329A (en) Process of and apparatus for granulating fine material by adhesion to moistened nuclear fragments
EP1887091B1 (en) Method for pretreatment of raw materials for sintering
US1865554A (en) Balling fine grained material for sintering
JP3820132B2 (en) Pretreatment method of sintering raw material
US4134944A (en) Pellet-rolling method
JPS60169527A (en) Production of sintered ore
US3161707A (en) Process and apparatus of making large balls in a drum pelletizer
JPH03115144A (en) Production of highly pulverized blast-furnace cement
CN115124368A (en) Foamed ceramic powder and preparation method and application thereof
JP2000290732A (en) Method for granulating raw material for sintering, excellent in combustibility
JPH01104723A (en) Production of sintering raw material from iron making dust
JP2004204332A (en) Method for producing sintering material
JPH10226825A (en) Method for granulating sintering raw material
JP2663803B2 (en) Powder coke sizing method and apparatus for sintering
JPH06212291A (en) Pretreatment method of sintered raw material in manufacturing sintered ore
JP4317316B2 (en) Pretreatment method of sintering raw materials
JP2746030B2 (en) Pre-processing method for sintering raw materials
US2165084A (en) Process for the production of a sintered product
JPH0711348A (en) Operation of sintering
JPH07138660A (en) Production of raw material to be sintered from steel making dust
SU1027245A1 (en) Method for preparing agglomeration batch for sintering
JPH072977B2 (en) Method for producing fuel for producing sinter
CN118771401A (en) Method for preparing sodium bentonite through granularity control
JPH11236628A (en) Pre-treatment of sintering raw material
JPH0832932B2 (en) Raw pellet production method in agglomerated ore production