JPS60169121A - Manufacture of magnetic medium - Google Patents

Manufacture of magnetic medium

Info

Publication number
JPS60169121A
JPS60169121A JP2388384A JP2388384A JPS60169121A JP S60169121 A JPS60169121 A JP S60169121A JP 2388384 A JP2388384 A JP 2388384A JP 2388384 A JP2388384 A JP 2388384A JP S60169121 A JPS60169121 A JP S60169121A
Authority
JP
Japan
Prior art keywords
gas
magnetic
sputtering
magnetic medium
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2388384A
Other languages
Japanese (ja)
Inventor
Noboru Sato
昇 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2388384A priority Critical patent/JPS60169121A/en
Priority to US06/678,674 priority patent/US4640755A/en
Priority to EP84308552A priority patent/EP0146323A3/en
Publication of JPS60169121A publication Critical patent/JPS60169121A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To produce a magnetic medium stably without requiring precise control of the N2 concentration, by spattering an FeCo target containing 5- 50atom% Co in the atmosphere where 10-10<4>ppm N2 gas is mixed in Ar gas. CONSTITUTION:A spattering source 4 has a target 6 made of Fe95-50 Co5-50 alloy wherein a Co concentration is selected to be 5-50atom%. After evacuating a bell jar 1, argon Ar gas mixed with nytrogen N2 gas is introduced into the bell jar 1 so as to create a required gas pressure therein. Under this condition, DC spattering is carried out with the target 6 used as a cathode while the substrate 3 is rotated. The Ar gas should contain 10-10,000ppm nitrogen N2 gas.

Description

【発明の詳細な説明】 本発明は% K * Fe−コバル) Coのアモルフ
ァス(非晶質)合金より成る磁性膜を有する磁性媒体、
例えば光照射によってその記録及び再生がなされる光磁
気記録媒体例えば光磁気ディスク、或いは通常の電磁誘
導による磁気ヘッド等によってその記録及び再生がなさ
れる通常の磁気記録媒体等の各種磁性媒体の作製に適用
することのできる磁性媒体の製法に係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a magnetic medium having a magnetic film made of an amorphous (non-crystalline) alloy of %K*Fe-Cobal;
For example, for the production of various magnetic media such as magneto-optical recording media, such as magneto-optical disks, in which recording and reproduction are performed by irradiation with light, and ordinary magnetic recording media, in which recording and reproduction are performed by magnetic heads, etc., using ordinary electromagnetic induction. It relates to the manufacturing method of magnetic media that can be applied.

磁性媒体例えば光磁気記録媒体において、その記録ビッ
トの最小径dは、 d、Eと− Ms、Hc で与えられる。ここにMsは磁化の大きさ
、Heは抗磁力、Bwは磁壁エネルギーで与えられるの
で、磁化の大きさMsが大となればなるほど情報ビット
の径dを小さくすることができ、これに伴なって高密度
化を図ることができることになるので磁性媒体における
磁化の大きさMsはできるだけ大きいことが望まれる。
In a magnetic medium, such as a magneto-optical recording medium, the minimum diameter d of a recorded bit is given by d, E and -Ms, Hc. Here, Ms is the magnitude of magnetization, He is the coercive force, and Bw is given by the domain wall energy, so the larger the magnetization magnitude, Ms, the smaller the diameter d of the information bit can be. Therefore, it is desirable that the magnitude of magnetization Ms in the magnetic medium be as large as possible because it is possible to achieve high density.

一方、磁性体としての鉄Feに窒素原子Nを結合させる
場合、その飽和磁化Msは鉄単体の場合に比して増大す
ることが知られているので、このよ5に窒素原子Nを結
合させた鉄Fe磁性膜によって光磁気記録媒体を始めと
する各種の磁性媒体を構成することが考えられる。
On the other hand, when a nitrogen atom N is bonded to iron Fe as a magnetic material, its saturation magnetization Ms is known to increase compared to the case of iron alone. It is conceivable that various magnetic media including magneto-optical recording media may be constructed using iron-Fe magnetic films.

本発明においては、上述した窒素原子Nを結合させた鉄
Fe磁性膜による磁性媒体に比し、より高い飽和側LM
sk得ることができ、しかもこのように優れた磁気特性
を有する磁性媒体を、安定して再現性良く得ることので
きる磁性媒体の製法を提供するものである。
In the present invention, the saturation side LM is higher than that of the magnetic medium made of the iron-Fe magnetic film bonded with nitrogen atoms N described above.
The object of the present invention is to provide a method for manufacturing a magnetic medium, which can obtain a magnetic medium having excellent magnetic properties in a stable manner and with good reproducibility.

また、本発明の他の利益、特徴は以下本発明の詳細な説
明するところより明らかとなろう。
Further, other advantages and features of the present invention will become apparent from the detailed description of the present invention below.

すなわち、本発明においては、基体上に、特にCoが5
〜50原子%のFeCo磁性体を、アルゴンガス中KI
O〜110000ppの窒素ガスを混入させた雰囲気中
でスパッタリングして磁性膜を形成する。
That is, in the present invention, especially Co is 5 on the substrate.
~50 at% FeCo magnetic material was KI in argon gas.
A magnetic film is formed by sputtering in an atmosphere mixed with nitrogen gas of 0 to 110,000 pp.

本発明製法の一例を説明する。An example of the manufacturing method of the present invention will be explained.

第1図は本発明製法を実施するスパッタリング装置の一
例の路線的構成を示すもので、この場合、ベルジャ(1
)内に軸、i!1o−oを中心として回転する基台(2
)を設けこれの例えば下面に目的とする磁性媒体例えば
光磁気記録媒体を構成するガラス板或いはアクリル板、
ポリカーボネート板等よりなる基体(3)を配置する。
FIG. 1 shows the line configuration of an example of a sputtering apparatus for carrying out the manufacturing method of the present invention.
) in the axis, i! A base that rotates around 1o-o (2
) is provided, for example, on the lower surface thereof, a glass plate or acrylic plate constituting a target magnetic medium, for example, a magneto-optical recording medium,
A base body (3) made of a polycarbonate plate or the like is placed.

そしてこの基体(3)に対向してスパッタ源(41を配
置する。(5)はスパッタ源(4)と基台(2)即ち基
体(3)との間に設けられたスパッタ位置規制用のマス
クである。このスパッタ源(4)は上述した所要の組成
によるFeCo合金板、すなわち、Coが5〜50原子
%に選ばれたFe、5〜5oCo5〜5oの合金板によ
るターゲット(6)を有してなる。(8;は夫々!グネ
ットを示す。ベルジャ(1)内は一旦これが排気されて
後、アルゴンArガス中に窒素N2ガスを混入したガス
を送り込み所要のガス圧に流した状態で基体(3)を回
転させながらターゲット(6)を負極側として直流スパ
ッタリングを行なう。この場合ベルジャ(1)中のAr
雰囲気は、ベルジャ(1)内を一旦5X10 Torr
程度の真空度に排気して後Arを5X10 Torr程
度に入れるものであり、このArガス中には10〜11
00001)I)の窒素N2ガスを含ましめる。
A sputter source (41) is disposed opposite to this base (3). (5) is a sputter source (41) provided between the sputter source (4) and the base (2), that is, the base (3). This sputtering source (4) has a target (6) made of an FeCo alloy plate having the above-mentioned required composition, that is, an alloy plate of Fe, 5-5oCo5-5o, with Co selected to be 5-50 at%. (8; each indicates a gunnet. After this is once exhausted inside the bell jar (1), a gas containing nitrogen N2 gas mixed in argon Ar gas is fed to the required gas pressure. DC sputtering is performed with the target (6) on the negative electrode side while rotating the substrate (3).In this case, the Ar in the bell jar (1)
The atmosphere inside Belljar (1) is 5X10 Torr.
After evacuating to a degree of vacuum, Ar is introduced at a pressure of about 5 x 10 Torr, and this Ar gas contains 10 to 11
00001) I) Contains nitrogen N2 gas.

このようにして得た各組成の磁性膜において、そのスパ
ッタリングに際しての上述したArガス中に対するN2
濃度を変化させた場合項鱈ヒMsを測定した結果を第2
囚に示す。第2図中、曲線+211(2a 、 tn及
び(ハ)は、夫々Feg5CO5+Feg□C01o+
FegoCO1gFe70”o301及びFe5oCo
5oの各磁性膜について夫々そのスパッタリングに際し
てのArガス中のN2濃度と磁化Msの測定結果を示す
。これら曲線より明らかなようにAr単体の雰囲気中で
スパッタリングを行なった場合に比しN2ガスを混入し
た場合磁化Msが増加する傾向を示すことが分かる。
In the magnetic films of each composition obtained in this manner, N2 in the Ar gas mentioned above during sputtering was used.
The results of measuring the term cod hi Ms when changing the concentration are shown in the second
Show to the prisoner. In Fig. 2, curves +211 (2a, tn and (c) are respectively Feg5CO5+Feg□C01o+
FegoCO1gFe70”o301 and Fe5oCo
The measurement results of the N2 concentration in the Ar gas and the magnetization Ms during sputtering are shown for each of the 5o magnetic films. As is clear from these curves, it can be seen that the magnetization Ms tends to increase when N2 gas is mixed, compared to when sputtering is performed in an atmosphere of Ar alone.

例えばFeg5Co5においてArの単体ガス雰囲気中
で形成した場合の磁化は、1780G/ccであるが1
100ppのN2を混入させて形成した場合、1860
G/ccとなり、またFeg6CO1gにおいてはAr
単体ガス中でスパッタリングした場合1.MS+は18
60G/ccであるが11000ppのN2を混入する
とき1960G/ccとなった。尚、第2図において曲
線(2)化Msとの関係を測定したものである。この曲
線(至)と、曲線c!D−(ハ)とを比較することによ
って明らかなよ5に、Fe単体の場合に比し、FeCo
 5〜5oの場合、その磁化が大となると共に、Ar中
のN2含有量が10〜iooooppmという広い範囲
で安定して高い磁化を示している。このことはAr中の
N2の濃度の制御に厳密性が要求されないということで
あって、実際の磁性膜の作製、すなわち磁気媒体の製造
において、安定して再現性良く特性にすぐれた磁性媒体
を得ることができることであり、重要な利益となるもの
である。
For example, when Feg5Co5 is formed in an Ar gas atmosphere, the magnetization is 1780 G/cc, but 1
When formed by mixing 100pp of N2, 1860
G/cc, and in Feg6CO1g, Ar
When sputtering in a single gas 1. MS+ is 18
It was 60G/cc, but when 11000pp of N2 was mixed in, it became 1960G/cc. In addition, in FIG. 2, the relationship with curve (2) Ms is measured. This curve (to) and curve c! It is clear from the comparison with D-(c) that FeCo
In the case of 5 to 5o, the magnetization becomes large, and the N2 content in Ar exhibits stable high magnetization over a wide range of 10 to iooooppm. This means that strict control of the concentration of N2 in Ar is not required, and in the actual production of magnetic films, that is, in the manufacture of magnetic media, magnetic media with stable, reproducible, and excellent characteristics can be obtained. This is an important benefit.

上述したように、本発明においては、FeCoWIi性
膜を、Ar中にN2を含む雰囲気中でのスパッタリング
によって形成するものであり、このようにすることによ
って磁化Msの高い磁性膜を安定して得ることができる
のである。
As described above, in the present invention, the FeCoWIi film is formed by sputtering in an atmosphere containing N2 in Ar, and by doing so, a magnetic film with high magnetization Ms can be stably obtained. It is possible.

因みに、磁性膜の形成方法としては抵抗加熱法、電子ビ
ーム或いはイオンビームの衝撃による方法等があるが、
抵抗加熱法、或いは電子ビーム衝撃による蒸着法による
場合、夫々的10 Torr程度の高真空度下において
なされるものであり、またイオンビーム法においても1
0 Torr程度で行なわれる。これに比し、スパッタ
法による場合10−2〜10 Torr程度で行なわれ
るものであるために1蒸着粒子のスパッタリングに際し
て窒素との結合を効果的に行なうことができることKよ
ってMsの向上がはかられるものと思われる。
Incidentally, methods for forming magnetic films include resistance heating, electron beam or ion beam bombardment, etc.
In the case of the resistance heating method or the vapor deposition method using electron beam bombardment, each is performed under a high degree of vacuum of about 10 Torr, and in the case of the ion beam method,
This is done at approximately 0 Torr. In contrast, in the case of the sputtering method, since it is carried out at about 10-2 to 10 Torr, it is possible to effectively bond with nitrogen when sputtering one evaporated particle. It seems likely that

また、実際上、スパッタリングに当ってAr単体ガスを
用いる場合、スパッタリングのパワーは大きくなるが、
N2ガスを混入する場合、これがArよりは活性である
ことからパワーの低減化をはかることができるので、N
2を混入すること自体、工業的に有利であって、しかも
FeCo 、におい5〜50 ては、このN2濃度に対する磁気的特性が安定であって
前述したようKH2の濃度をlO〜10000pprr
Lの広範囲に選び得ることは、工業的に極めて有利とな
る。
In addition, in practice, when using Ar single gas for sputtering, the power of sputtering becomes large;
When N2 gas is mixed in, the power can be reduced because it is more active than Ar.
Mixing FeCo2 is itself industrially advantageous, and furthermore, FeCo has an odor of 5 to 50 pprr, and its magnetic properties are stable with respect to the N2 concentration, and as mentioned above, the KH2 concentration can be adjusted to 10 to 10,000 pprr.
Being able to choose L from a wide range is extremely advantageous industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明製法を実施するスパッタリング装置の路
線的構成図、第2図はスパッタリング雰囲気中のN2濃
度に対する磁化Msの測定結果を示す。 (1)はベルジャ、(3)は基体、(41はスパッタ源
である。
FIG. 1 is a schematic diagram of a sputtering apparatus for carrying out the manufacturing method of the present invention, and FIG. 2 shows measurement results of magnetization Ms with respect to N2 concentration in the sputtering atmosphere. (1) is a bell jar, (3) is a substrate, and (41 is a sputtering source).

Claims (1)

【特許請求の範囲】[Claims] 基体上忙、Coが5〜50i子%のFeCo磁性体を、
アルゴンガス中にlO〜110000ppの窒素ガスを
混入させた雰囲気中でスパッタリングして磁性膜を形成
することを特徴とする磁性媒体の製法。
On the substrate, a FeCo magnetic material containing 5 to 50% of Co is placed on the substrate.
1. A method for manufacturing a magnetic medium, comprising forming a magnetic film by sputtering in an atmosphere in which 10 to 110,000 pp of nitrogen gas is mixed in argon gas.
JP2388384A 1983-12-12 1984-02-10 Manufacture of magnetic medium Pending JPS60169121A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2388384A JPS60169121A (en) 1984-02-10 1984-02-10 Manufacture of magnetic medium
US06/678,674 US4640755A (en) 1983-12-12 1984-12-06 Method for producing magnetic medium
EP84308552A EP0146323A3 (en) 1983-12-12 1984-12-07 Methods of making magnetic recording media(111111])

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2388384A JPS60169121A (en) 1984-02-10 1984-02-10 Manufacture of magnetic medium

Publications (1)

Publication Number Publication Date
JPS60169121A true JPS60169121A (en) 1985-09-02

Family

ID=12122842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2388384A Pending JPS60169121A (en) 1983-12-12 1984-02-10 Manufacture of magnetic medium

Country Status (1)

Country Link
JP (1) JPS60169121A (en)

Similar Documents

Publication Publication Date Title
JPH0670858B2 (en) Magneto-optical recording medium and its manufacturing method
JPS59203238A (en) Magnetic recording medium and its production
US4002546A (en) Method for producing a magnetic recording medium
JPH0542052B2 (en)
US4640755A (en) Method for producing magnetic medium
JP2673807B2 (en) Method for manufacturing magneto-optical recording medium
US4745031A (en) Magnetic recording medium
JPH033369B2 (en)
JPS60169121A (en) Manufacture of magnetic medium
US4588636A (en) Magnetic recording medium
JPS60125933A (en) Production of magnetic medium
JPH0334618B2 (en)
JP2702483B2 (en) Method for manufacturing magneto-optical recording medium
JPS61271624A (en) Production of magnetic recording medium
JPH0256724B2 (en)
JP2883334B2 (en) Manufacturing method of magnetic recording medium
JPH02148417A (en) Production of perpendicular magnetic recording medium
JPS62283434A (en) Production of magneto-optical recording medium
JPS62114118A (en) Magnetic recording material and its production
JPS61153856A (en) Information recording medium
JPS59201228A (en) Manufacture of magnetic recording medium
JPS61133030A (en) Production of magnetic recording medium
JPS60101743A (en) Photomagnetic recording medium
JPH03225621A (en) Production of magnetic recording medium
JPS60167122A (en) Production of thin metallic film type magnetic recording medium