JPS60169119A - Manufacture of permanent magnet - Google Patents

Manufacture of permanent magnet

Info

Publication number
JPS60169119A
JPS60169119A JP2460084A JP2460084A JPS60169119A JP S60169119 A JPS60169119 A JP S60169119A JP 2460084 A JP2460084 A JP 2460084A JP 2460084 A JP2460084 A JP 2460084A JP S60169119 A JPS60169119 A JP S60169119A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic powder
powder
melted
kneaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2460084A
Other languages
Japanese (ja)
Inventor
Eiji Natori
栄治 名取
Tatsuya Shimoda
達也 下田
Ryuichi Ozaki
隆一 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP2460084A priority Critical patent/JPS60169119A/en
Publication of JPS60169119A publication Critical patent/JPS60169119A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together

Abstract

PURPOSE:To improve the orientation of magnetic anisotropy and to increase the magnetic flux density by a method in which fine powder of solid lubricant is eutectoid-plated on the surface of magnetic powder having uniaxial anisotropy, while the magnetic powder and the resin binder are melted and kneaded to be injected into and cured in a mold cavity applied with a magnetic field. CONSTITUTION:A metal composed of Sm2(Co, Cu, Fe, Zr)17 is melt and casted to obtain an alloy ingot. The ingot is subjected to solution treatment and to aging. The ingot is roughly ground and further control ground to obtain magnetic powder. The magnetic powder is added to a plating bath in which fine powder of graphite fluoride is dispersed in and mixed with N1 electroless plating liquid sufficiently. Stirring the mixture, eutectoid-plating on Ni and the graphite fluoride is performed to form a composite metal film on the surface of the magnetic powder. The magnetic powder is dispersed in and treated with a titanate coupling agent. The magnetic powder is dispersed in and kneaded with nylon 6 heated and melted by extruder kneading machine. The kneaded material is cooled to cure, and then ground to obtain pellets. These pellets are heated to be melted by a magnetic field injector. The melted material is injected into a mold cavity applied with a magnetic field and hardened.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は一軸異方性を有する磁粉、例えばROO6系、
R200,7系(Rは希土類)金属磁石粉末等を充填し
た樹脂を磁場中に於いて射出成形し異方性永久磁石を得
る製造方法に関するものである。
Detailed Description of the Invention [Technical Field] The present invention relates to magnetic powder having uniaxial anisotropy, such as ROO6 system,
This invention relates to a manufacturing method for obtaining an anisotropic permanent magnet by injection molding a resin filled with R200,7 series (R is rare earth) metal magnet powder in a magnetic field.

〔従来技術〕[Prior art]

近年射出成形による永久磁石の製造方法は、焼結法に比
べ、薄肉で複雑な形状の磁石が精度良く出来、且つ材料
コスト、成形コストが安いため急増の一途に有るが次の
様な問題があった◎1、)磁粉がV / o 50〜6
5%と高充填されているため、樹脂と磁粉の接触以外に
磁粉間の接触磁粉−金型間の接触が多く、且つ射出圧力
が高くなり、磁粉間、磁粉−金型間の摩擦抵抗により磁
場中に於ける結晶磁気異方性の磁粉回転が妨げられ配向
度が悪い◇つまり本来の磁粉充填分の磁気エネルギーを
出していない。
In recent years, the method of manufacturing permanent magnets by injection molding has been rapidly increasing because compared to the sintering method, magnets with thin walls and complex shapes can be produced with higher precision, and the material cost and molding cost are lower. However, it has the following problems. There was ◎1,) Magnetic powder was V/o 50~6
Due to the high loading of 5%, in addition to the contact between the resin and the magnetic particles, there is also a lot of contact between the magnetic particles and contact between the magnetic particles and the mold, and the injection pressure is high, resulting in frictional resistance between the magnetic particles and between the magnetic particles and the mold. The magneto-crystalline anisotropic magnetic powder rotation in the magnetic field is hindered and the degree of orientation is poor. In other words, the magnetic energy of the original magnetic powder filling is not emitted.

2)希土類磁粉はHv600〜700と硬度が高いため
高圧力、高速度で磁粉が移動する金型と成形機のノズル
、シリンダー、スクリューは摩耗が大きく、交換が頻繁
である。特に金型は摩耗が大きく約3000シヨツトで
使用不可能なものも発生した。
2) Rare earth magnetic powder has a high hardness of 600 to 700 Hv, so the nozzle, cylinder, and screw of the mold and molding machine, in which the magnetic powder moves under high pressure and high speed, are subject to significant wear and must be replaced frequently. In particular, the molds were so worn that some were unusable after about 3,000 shots.

3)希土類磁石は、フェライト磁石の20〜30倍と材
料コストが高いため射出成形に於いて5〜7割発生する
スプルー、ランナー、のりサイクルは必要不可欠である
が、希土類磁石は酸化し易いため、リサイクルを繰り返
すと第1図に示す様に磁気性能が低下する。
3) The material cost of rare earth magnets is 20 to 30 times higher than that of ferrite magnets, so the sprue, runner, and glue cycles that occur 50 to 70% of the time in injection molding are essential, but rare earth magnets are easily oxidized. When recycling is repeated, the magnetic performance deteriorates as shown in FIG.

4、)高性能化を進める方法の中で大きな影響を与える
ものに高充填化が上げられるが、高充填化と成形性向上
とは反するものであり、高充填すると流動性が悪くなり
、薄肉磁石の成形が困難となるO 〔目 的〕 本発明はこの様な問題点を除失せしめたものであり、そ
の目的とするところは、磁気異方性の配向が優れ磁束密
度が高い永久磁石を容易(成形性、リサイクル性が良い
。金型、成形機の摩耗が少なく、部品の交換が少ない。
4.) Among the methods for improving performance, high filling is said to have a big impact, but high filling is the opposite of improving formability, and high filling deteriorates fluidity and creates thin walls. [Purpose] The present invention eliminates these problems, and its purpose is to create a permanent magnet with excellent magnetic anisotropy orientation and high magnetic flux density. (Good moldability and recyclability. Less wear on molds and molding machines, less replacement of parts.

)に得んとするものである。).

〔概 要〕〔overview〕

本発明は一軸異方性を有する磁粉の表面に、ぶつ化黒鉛
、窒化はう素、黒鉛、ボロン、二硫化モリブデン、PT
FK等、固体潤滑剤の微粉末をニッケル、銅などをマト
リックス金属として共析メッキを行ない、その後該磁粉
と樹脂バインダーを溶融混練して磁場を印加した金型キ
ャビティーに射出固化せしめ異方性永久磁石を得る事を
特徴とする。
In the present invention, the surface of magnetic powder having uniaxial anisotropy is coated with graphite butt, boron nitride, graphite, boron, molybdenum disulfide, PT.
Fine powder of solid lubricant such as FK is eutectoid plated using nickel, copper, etc. as a matrix metal, and then the magnetic powder and resin binder are melt-kneaded and injected into a mold cavity where a magnetic field is applied to solidify the anisotropic property. It is characterized by obtaining a permanent magnet.

〔実施例〕〔Example〕

以下実施例により本発明を詳細に列する。 The present invention will be described in detail with reference to Examples below.

Sm2(Co 、Ou、Fe、Zr)、7の成分金属を
高周波炉でアルゴンガス雰囲気に於いて溶解、鋳造し合
金インゴットを作る。次にインゴットを1200℃で2
4時間溶体化処理、800℃で12時間時効処理(溶体
化、時効共にアルゴンガス雰囲気)を行ない、合金を均
質化すると共に合金母相中に析出物を形成し保磁力を与
える。次にインゴットを粗粉砕しその後ダイフロン中で
ボールミルにより10μ〜100μの粉度分布に調整粉
砕し磁粉を作る。ここで常にアルゴンガス雰囲気、グイ
フロン中で処理を行うのはSmが酸化し易く、磁気性能
を低下させるため、その防止である。
Component metals Sm2 (Co, Ou, Fe, Zr), 7 are melted and cast in an argon gas atmosphere in a high frequency furnace to produce an alloy ingot. Next, the ingot was heated to 1200℃ for 2
Solution treatment for 4 hours and aging treatment at 800° C. for 12 hours (argon gas atmosphere for both solution treatment and aging) are performed to homogenize the alloy and form precipitates in the alloy matrix to impart coercive force. Next, the ingot is coarsely pulverized and then pulverized in a Diflon with a ball mill to adjust the particle size distribution to 10μ to 100μ to produce magnetic powder. The reason why the process is always carried out in an argon gas atmosphere or in a Guiflon is to prevent Sm from being easily oxidized and deteriorating magnetic performance.

次にN1無電解メッキ液中にぶつ化黒鉛(a y )−
の微粉末をV / oで18%加え高速ブレングーにか
けてN1無電解メッキ液とふっ化黒鉛の微粉末を十分に
分散混和したメッキ浴に前記粒度調整磁粉を加え攪拌し
ながらNi+ふっ化黒鉛の共析メッキを行ない、磁粉の
表面に1〜2μの複合金属膜を形成する◇ここでぶつ化
黒鉛を固体潤滑剤として選んだ理由は比重が約2.5と
少なくメッキ洛中の分散性が良いためと耐熱性が優れて
いるため(大気圧下400℃に於いても安定)である。
Next, the atomized graphite (a y )− was added to the N1 electroless plating solution.
Add the fine powder of 18% by V/O to the plating bath in which the N1 electroless plating solution and the fine powder of fluorinated graphite were sufficiently dispersed and mixed by high-speed blending. A composite metal film with a thickness of 1 to 2μ is formed on the surface of the magnetic powder by electrolytic plating. ◇The reason we chose graphite as the solid lubricant here is that it has a low specific gravity of about 2.5 and has good dispersibility during plating. This is because it has excellent heat resistance (stable even at 400°C under atmospheric pressure).

次に該磁粉をトルエンで希釈したチタネートカップリン
グ剤に入れヘンシェルミキサーで攪拌しながらトルエン
を留来し磁粉にチタネートカップリング剤を分散処理せ
しめる。その後押し出し混線機ニヨリ270℃に加熱溶
融したナイロン6にこの磁粉をV / oで60%加え
分散混練し、冷却固化後1〜2w角に粉砕しペレットを
作る。次に該ペレットを磁場射出成機で300℃に加熱
溶融し、18000Gの磁場を印加した金型キャビティ
ーに射出、その後冷却固化せしめ異方性永久磁石を得る
Next, the magnetic powder is placed in a titanate coupling agent diluted with toluene, and toluene is distilled in while stirring with a Henschel mixer to disperse the titanate coupling agent in the magnetic powder. Thereafter, 60% of this magnetic powder is added to nylon 6 heated and melted at 270°C in an extrusion mixer, dispersed and kneaded, and after cooling and solidifying, the powder is crushed into 1-2W square pieces to form pellets. Next, the pellets are heated and melted at 300° C. using a magnetic field injection molding machine, injected into a mold cavity to which a magnetic field of 18,000 G is applied, and then cooled and solidified to obtain an anisotropic permanent magnet.

本発明は上記構成の製造方法であるため、磁粉の表面に
潤滑性に優れた複合金属膜が形成されており、(1)磁
場中配向に於いて磁粉同志間、磁粉−金型間の摩擦抵抗
が少なくなり磁粉が回転し易く、配向度が向上し磁束密
度が高いものとなった。
Since the present invention is a manufacturing method having the above configuration, a composite metal film with excellent lubricity is formed on the surface of the magnetic powder, and (1) friction between the magnetic particles and between the magnetic particles and the mold is generated during orientation in a magnetic field. The resistance was reduced, the magnetic particles were easier to rotate, the degree of orientation was improved, and the magnetic flux density was high.

(2)複合金属膜が酸化し易い希土類磁粉の酸化防止膜
となるため第2図に示す如くリサイクルによる磁気性能
の低下が少くなった。(3) (2)と同じく酸化防止
膜の形成により、流動性改質に大きな効果を示すが、酸
度がp H2,4〜41と強く使用出来なかったチタネ
ート系カップリング剤が使用可能となり、成形性が安定
した。又流動性向上により射出圧力を低くする事が可能
となり(1)と同じ様に摩擦抵抗が少なくなり、配向度
も向上した。表1に本発明と従来の表面磁束の比較を示
す。磁石は厚さ1μである。
(2) Since the composite metal film serves as an oxidation prevention film for the rare earth magnetic powder that is easily oxidized, the decrease in magnetic performance due to recycling is reduced as shown in FIG. (3) As in (2), the formation of an antioxidant film has a great effect on improving fluidity, but the titanate coupling agent, which had a strong acidity of pH 2.4 to 41 and could not be used, can now be used. Stable moldability. Also, due to the improved fluidity, it was possible to lower the injection pressure, and as in (1), the frictional resistance was reduced and the degree of orientation was improved. Table 1 shows a comparison of the surface magnetic flux of the present invention and the conventional method. The magnet is 1μ thick.

表1 ※1100%バージン ※250%リサイクル品を加え る0 表1に示す様に複合金属膜の潤滑向上による配向度向上
で約10%、チタネートカップリング剤使用による配向
度向上とで約14%の向上が計られた。又リサイクルの
酸化防止の面を含めると実に約19%の向上を示した。
Table 1 *1100% virgin *2 Add 50% recycled product 0 As shown in Table 1, the degree of orientation can be improved by approximately 10% by improving the lubrication of the composite metal film, and approximately 14% by improving the degree of orientation by using a titanate coupling agent. Improvement was measured. Furthermore, if the oxidation prevention aspect of recycling is included, the improvement was actually about 19%.

(4)磁粉の表面の潤滑性向上により金型、成形機のノ
ズル、シリンダー、スクリューの摩耗が少なくなり、部
品交換も約!1000〜7000ショットで行なってい
たものが2万シジツト成形しても必要性が見られなかっ
た□面木実施例以外に下記内容のものであってもなんら
さしつかえない・ 1、)固体潤滑剤の微粉末を2種類以上加える。
(4) Improved lubricity on the surface of magnetic particles reduces wear on molds, molding machine nozzles, cylinders, and screws, reducing parts replacement! What used to be done with 1,000 to 7,000 shots did not seem to be necessary even after 20,000 shots.□In addition to the face wood example, there is no problem with the following contents. 1.) Solid lubricant Add two or more types of fine powder.

2、)固体潤滑剤と共に炭化物、窒化物、強磁性体の微
粉末を加える。
2.) Add fine powder of carbide, nitride, or ferromagnetic material along with solid lubricant.

5)電解メッキ法を用いる。5) Use electrolytic plating method.

4)異なった金属膜を積層する。(但し最外周は固体潤
滑剤を含んだ複合金属膜) 〔効 果〕 以上述べた様に本発明によれば磁気異方性の配向が優れ
、磁束密度が高い永久磁石を容易(◎成形性が良い、◎
リサイクル性が良い・◎金型、成形機の摩耗が少なく、
部品交換が少ない。)に製造する事が可能となる。
4) Layering different metal films. (However, the outermost periphery is a composite metal film containing a solid lubricant.) [Effects] As described above, according to the present invention, permanent magnets with excellent magnetic anisotropy orientation and high magnetic flux density can be easily produced (◎ Formability Good, ◎
Good recyclability・◎ Less wear on molds and molding machines,
Few parts need to be replaced. ).

【図面の簡単な説明】[Brief explanation of drawings]

第1図に従来のリサイクルによる磁気性能の変化を第2
図に本発明のリサイクルによる磁気性能の変化を示す。 以 上 出願人 株式会社諏訪精工舎 代皿人 す現出 最上 務 0 1 ) 3 ル y リサイクル1目敗 第1図 Oノ;ζ石?〜c5− 9寸イフル回叡 第2図
Figure 1 shows the changes in magnetic performance due to conventional recycling.
The figure shows changes in magnetic performance due to recycling according to the present invention. Applicant Suwa Seikosha Co., Ltd. Tsutomu Mogami 0 1) 3 y Recycling 1st loss Figure 1 O; Zeta stone? ~c5- 9-sun Iful Kai Figure 2

Claims (1)

【特許請求の範囲】[Claims] 射出成形法による永久磁石の製造方法に於いて、表面に
固体潤滑剤の微粉末を共析メッキさせ複合金属膜を形成
した磁粉とカップリング剤、樹脂バインダー等を溶融混
練後磁場を印加した金型キャビティーに射出固化せしめ
異方性永久磁石を得る事を特徴とする永久磁石の製造方
法。
In the method of manufacturing permanent magnets using the injection molding method, magnetic powder, whose surface is eutectoid plated with fine solid lubricant powder to form a composite metal film, is melted and kneaded with a coupling agent, a resin binder, etc., and then a magnetic field is applied. A method for manufacturing a permanent magnet, characterized by obtaining an anisotropic permanent magnet by injection solidification into a mold cavity.
JP2460084A 1984-02-13 1984-02-13 Manufacture of permanent magnet Pending JPS60169119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2460084A JPS60169119A (en) 1984-02-13 1984-02-13 Manufacture of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2460084A JPS60169119A (en) 1984-02-13 1984-02-13 Manufacture of permanent magnet

Publications (1)

Publication Number Publication Date
JPS60169119A true JPS60169119A (en) 1985-09-02

Family

ID=12142639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2460084A Pending JPS60169119A (en) 1984-02-13 1984-02-13 Manufacture of permanent magnet

Country Status (1)

Country Link
JP (1) JPS60169119A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5852945A (en) * 1996-07-25 1998-12-29 Burger; Georg Apparatus for forming rod-like components

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5852945A (en) * 1996-07-25 1998-12-29 Burger; Georg Apparatus for forming rod-like components

Similar Documents

Publication Publication Date Title
JP4023138B2 (en) Compound containing iron-based rare earth alloy powder and iron-based rare earth alloy powder, and permanent magnet using the same
US5464670A (en) Resin bound magnet and its production process
JPH0553853B2 (en)
JP2005520351A (en) Bond magnet manufactured using atomized permanent magnet powder
Yang et al. Effect of molding pressure on structure and properties of ring-shaped bonded NdFeB magnet
JP2003224010A (en) Compound for rare earth based bonded magnet and bonded magnet using the same
JP4000768B2 (en) Manufacturing method of kneaded material, kneaded material and bonded magnet
JPS60169119A (en) Manufacture of permanent magnet
TW201343945A (en) Fe-Co-Ta-Zr-based alloy sputtering target and method for producing the same
JPH03241705A (en) Magnetically anisotropic magnet and manufacture thereof
JP3972980B2 (en) Rare earth bonded magnet and method for manufacturing the same
CN1047683C (en) Producing method for microcrystal rare-earth permanent-magnet with high performance
JP2003201501A (en) Rare earth alloy powder for bond magnet, compound for bond magnet and bond magnet obtained by using the same
JPH0231401A (en) Rare-earth magnet alloy powder, manufacture thereof and macromolecular composite type rate-earth magnet using this alloy powder
JP3840893B2 (en) Bond magnet manufacturing method and bond magnet
JPH0616447B2 (en) Method for manufacturing composite permanent magnet
JPH02110904A (en) Resin-bonded nd-fe-b magnet
Ohmori Bonded Rare Earth Permanent Magnets
JP2000173810A (en) Magnetic anisotropic bond magnet and its manufacture
JP2008042098A (en) Bond magnet and its manufacturing method
JP2003092208A (en) Rare-earth based bonded magnet
JPS62274705A (en) Manufacture of resin bond type magnet
JP2001267162A (en) Rare-earth bond magnet and method for manufacturing the same
JPS60255256A (en) Casting method
JPS63146414A (en) Manufacture of bonded magnet