JPS60168930A - Spring structure - Google Patents

Spring structure

Info

Publication number
JPS60168930A
JPS60168930A JP2238684A JP2238684A JPS60168930A JP S60168930 A JPS60168930 A JP S60168930A JP 2238684 A JP2238684 A JP 2238684A JP 2238684 A JP2238684 A JP 2238684A JP S60168930 A JPS60168930 A JP S60168930A
Authority
JP
Japan
Prior art keywords
rubber
spring
spring structure
rubber plate
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2238684A
Other languages
Japanese (ja)
Other versions
JPH0311336B2 (en
Inventor
Hideyuki Tada
多田 英之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12081215&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPS60168930(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to JP2238684A priority Critical patent/JPS60168930A/en
Publication of JPS60168930A publication Critical patent/JPS60168930A/en
Publication of JPH0311336B2 publication Critical patent/JPH0311336B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/40Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers consisting of a stack of similar elements separated by non-elastic intermediate layers
    • F16F1/406Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers consisting of a stack of similar elements separated by non-elastic intermediate layers characterised by the shape of the elastic elements

Abstract

PURPOSE:To achieve high deformability while to suppress variation of shearing spring factor of spring structure where circular rubber boards and metal boards are laminated alternatively and integrated by setting the thickness, diameter, total thickness and hardness of rubber board respectively to specific values. CONSTITUTION:Spring structure 3 is constructed by laminating a plurality of metal boards 1 and rubber boards 2 alternatively. Here, the characteristic of spring structure 3 is determined by hardness, resiliency of rubber, ratio D/t between the thickness (t) of single layer of rubber board 2 and the diameter D (primary shape factor), ratio D/h (secondary shape factor) between the total thickness (h) of rubber board 2 and the diameter D, etc. Here, said dimensions are set such that t>=5mm., D/t>=50, D/h<=5, while the hardness of rubber board 2 is set lower than 40. Consequently, high deformability is achieved and a spring having shear spring factor only slightly variable upon variation of vertical load can be obtained.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は重量のある構造物を緩衝作用を持って支持する
バネ構体に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a spring structure for supporting a heavy structure with a cushioning effect.

口、従来技術 地震発生時に建物に加わる振動は水平動と上下動とに分
けられるが、上下動の影響は少なく、地震の破壊力で問
題になるのは水平方向の加速度である。水平方向の加速
度を受けると建物は第1図(a)(b)(c)のように
挙動する。<a>は各階の柱が伸び縮みしないせん断変
形、(b)は各階の柱が伸び縮みして起きる曲げ変形、
(C)は建物が変形せず地盤が変形して起きるロッキン
グである。実際の地震時での建物の変形は上記(a)(
b)(c)の三種の変形を複合した形で同時に起こめ、
この変形の中でロッキングは転倒のおそれがあり最も破
壊力が大きい。、上記三種の変形に対して耐震設計をす
ると、特に高層の建物の場合に耐地震力を大きくとらね
ばならず設計が困難になり建築費も多額になる。
Conventional technology The vibrations applied to buildings when an earthquake occurs can be divided into horizontal motion and vertical motion, but vertical motion has little effect, and it is horizontal acceleration that becomes a problem with the destructive force of an earthquake. When subjected to horizontal acceleration, the building behaves as shown in Figures 1 (a), (b), and (c). <a> is shear deformation where the columns on each floor do not expand or contract; (b) is bending deformation that occurs when the columns on each floor expand or contract;
(C) is rocking that occurs when the ground deforms without the building deforming. The deformation of buildings during actual earthquakes is shown in (a) above.
b) The three types of transformations in (c) occur simultaneously in a combined form,
Among these deformations, rocking poses the greatest destructive force as it may cause the vehicle to fall. If earthquake-resistant design is carried out against the above three types of deformation, especially in the case of high-rise buildings, the earthquake resistance must be increased, making the design difficult and increasing the construction cost.

そこで建物に加わる水平方向の加速度を減少させる第2
図に示すような免震構造が本出願人等によって提唱され
ている。これは第3図及び第4図に示すように複数枚の
金属板(1)と複数枚のゴム板(2)とを交互に積層し
て構成された複数個のバネ構体(3)(3)−を、建物
(4)とその基礎(5)の間に配置したものである。こ
のバネ構体(3)は金属板(+、)(1)−の間の薄い
ゴム板(2)(2L−の部分でのみ弾性変形を生じる。
Therefore, the second method is to reduce the horizontal acceleration applied to the building.
A seismic isolation structure as shown in the figure has been proposed by the present applicant. As shown in Figs. 3 and 4, this is a plurality of spring structures (3) (3) constructed by alternately laminating a plurality of metal plates (1) and a plurality of rubber plates (2). )- is placed between the building (4) and its foundation (5). This spring structure (3) causes elastic deformation only at the thin rubber plate (2) (2L-) between the metal plates (+, ) (1)-.

各層のゴム1(2)(2)−の厚みは小さいので、この
バネ構体(3)は大きな鉛直バネ剛性とゴムのせん断変
形による小さな水平バネ剛性、すなわち大きな鉛直方向
載荷能力と小さな水平方向のバネ力を有する。
Since the thickness of each layer of rubber 1 (2) (2) - is small, this spring structure (3) has a large vertical spring stiffness and a small horizontal spring stiffness due to the shear deformation of the rubber, that is, a large vertical loading capacity and a small horizontal spring stiffness. Has spring force.

なおこのバネ構体(3)の各種試作例に対する特性試験
の結果、ゴム板の材質及び寸法形状の選定により鉛直バ
ネ剛性/水平バネ剛性のバネ比を500以上に設定でき
ることが確認されている。従って大重量の建物を安定性
良く支持して、地震発生時に地盤に対して第1図(d)
に示すような低速のスウェイ運動を行なわせ、せん断・
曲げ変形及びロッキングを小さくすることにより、上部
構造の強制変形を減少して安全性を確保できる。
As a result of characteristic tests on various prototype examples of this spring structure (3), it has been confirmed that the spring ratio of vertical spring stiffness/horizontal spring stiffness can be set to 500 or more by selecting the material and size and shape of the rubber plate. Therefore, by supporting a heavy building with good stability, it is possible to secure it against the ground in the event of an earthquake as shown in Figure 1 (d).
Perform a low-speed sway motion as shown in
By reducing bending deformation and locking, forced deformation of the superstructure can be reduced and safety can be ensured.

ところで実際の設計に当たって、上記バネ構体(3)に
は実用上次の二つの条件が必要とされる。
By the way, in actual design, the following two conditions are practically required for the spring structure (3).

一つは第5図に示す水平方向の変形量δが実際の地震の
水平方向の動きを吸収できる大きさのものでなければな
らないことである。すなわち変形量δが小さいと地震動
に対してバネ構体(3)が追従せず転倒モーメントやせ
ん断力が大きくなりロッキングが起り易くなるからであ
る。つまり日本における長周期成分を多く含む地震動に
も対応できるように、水平方向の変形能δ/h(但しh
はゴム板の総厚)が大きいバネ構体が必要とされる。
One is that the amount of horizontal deformation δ shown in FIG. 5 must be large enough to absorb the horizontal movement of an actual earthquake. That is, if the amount of deformation δ is small, the spring structure (3) will not be able to follow the seismic motion and the overturning moment and shear force will become large, making it easy for rocking to occur. In other words, the horizontal deformability δ/h (however, h
A spring structure with a large total thickness of rubber plates is required.

また他の一つは水平バネ係数(せん断バネ係数K11)
が鉛直荷重の変動に対して変化しないことが必要である
。そうでないと実際の地震発生時に建物がどのように挙
動するかを1算するのが困難になり、適切な構造設計が
できなくなる。尚、バネ構体(3)の受ける鉛直荷重の
大きさは、同一地震力、同一重量の場合でも第2図に示
す建物の幅りと高さく重心Gの高さ)Hによって大きく
変動する。変動の大きさはロッキング及び転倒モーメン
トによって決定されるからである。
The other one is the horizontal spring coefficient (shear spring coefficient K11)
It is necessary that this does not change with respect to fluctuations in vertical load. Otherwise, it will be difficult to calculate how the building will behave in the event of an actual earthquake, and appropriate structural design will not be possible. Note that the magnitude of the vertical load that the spring structure (3) receives varies greatly depending on the width and height of the building (height of the center of gravity G) shown in FIG. This is because the magnitude of the fluctuation is determined by the rocking and overturning moments.

以上の如(バネ構体(3)の設計には、水平方向の変形
能δ/hを大きくしながら変動荷重のせん断バネ係数K
11への影響を小さくすることが重要である。
As described above, the design of the spring structure (3) involves increasing the horizontal deformability δ/h while increasing the shear spring coefficient K of the fluctuating load.
It is important to minimize the influence on 11.

而して従来バネ構体の設計に使用するせん断バネ係数K
llの設計式として、次の2つの式が知られている。
Therefore, the shear spring coefficient K used in the design of conventional spring structures
The following two equations are known as design equations for ll.

■:圧縮荷重 n:ゴム板層数 h8 :ゴム総厚 Kr :回転剛性(ゴム板一層当り
)Ks :せん新町性(ゴム板一層当り)Kl(= (
h/Ac+ h3 /12E I)−’ −(21但し
、h:ゴム板層厚 E:ゴム板の総弾性率A:ゴム板断
面積 G:ゴム板せん断弾性率I:ゴム板の断面二次モ
ーメント しかしながら上記(1)式及び(2)式は変形能δ/h
に制限を設け、その範囲内におけるせん断バネ係数KB
を調べて立てた式であり、鉛直荷重の変動や制限を超え
る大きな水平方向の変動があった場合には通用できず、
日本における長周期成分を多く含む地震動(バネ構体に
大きな水平変位を必要とする)に対して有効ではない。
■: Compressive load n: Number of rubber plate layers h8: Total rubber thickness Kr: Rotational rigidity (per layer of rubber plate) Ks: Senshinmachi property (per layer of rubber plate) Kl (= (
h/Ac+ h3 /12E I)-'-(21, where h: rubber plate layer thickness E: total elastic modulus of rubber plate A: rubber plate cross-sectional area G: rubber plate shear modulus I: cross-sectional quadratic of rubber plate However, the above equations (1) and (2) express the deformability δ/h
A limit is set for the shear spring coefficient KB within that range.
This formula was developed by researching the following, and it cannot be applied when there are vertical load fluctuations or large horizontal fluctuations that exceed the limits.
It is not effective against earthquake motions in Japan that contain many long-period components (requiring a large horizontal displacement of the spring structure).

ハ0発明の目的 本発明は上記従来の問題点に鑑みこれを改良して、大き
な変形能δ/hが得られ、且つ鉛直荷重が変動してもせ
ん断バネ係数に■があまり変化しないバネ構体を提供す
ることを目的とする。
Object of the Invention The present invention has been made in view of the above conventional problems and has been improved to provide a spring structure that can obtain a large deformability δ/h and that does not change much in the shear spring coefficient even when the vertical load changes. The purpose is to provide

二0発明の構成 本発明は円形のゴム板と金属板とを交互に積層し一体化
したものにおいて、第3図及び第4図に示すようにゴム
板一枚当りの厚みをt、ゴム板の直径をD1ゴム板の総
厚(ゴム板の層数n X−t )をhとしたとき、t≧
5fi、D/l≧50、D/h≦5であり、且つゴム板
の硬度は40以下であることを特徴とするバネ構体であ
る。
20 Structure of the Invention The present invention is a product in which circular rubber plates and metal plates are alternately laminated and integrated, and as shown in FIGS. 3 and 4, the thickness of each rubber plate is t, and the rubber plate is When the diameter of D1 is the total thickness of the rubber plate (number of layers nX-t of the rubber plate) is h, t≧
5fi, D/l≧50, D/h≦5, and the hardness of the rubber plate is 40 or less.

ホ、実施例 上記構成におけるゴム硬度並びに形状規制は、バネ構体
の性質が、ゴムの硬度、弾性率、ゴム板一層の厚今t、
ゴム板の厚さtと直径りとの比D/l(−人形状率)、
ゴム板の総厚りとyL)IIDとの比D/h (二次形
状率)等によって決定されることに着目し、各種試作例
に対する実験によって、上記目的が達成される範囲を調
べた結果見出したものである。上記規制の内でゴムの硬
度と二次形状率D/hの組合せが、上記目的特に変形能
δ/hを増大するのに重要な要素であり、この規制を有
するバネ構体は今まで一般化されていなかった領域に属
する。なおバネ構体に今まで一般的に使用されていたゴ
ムの硬度は50〜70程度である。
E. Example The rubber hardness and shape regulations in the above configuration are based on the properties of the spring structure, the hardness of the rubber, the elastic modulus, the thickness of one layer of the rubber plate,
The ratio of the thickness t of the rubber plate to the diameter D/l (-human shape ratio),
Focusing on the fact that it is determined by the ratio D/h (secondary shape ratio) between the total thickness of the rubber plate and yL)IID, we investigated the range in which the above objective can be achieved through experiments on various prototype examples. This is what I found. Within the above regulations, the combination of rubber hardness and secondary shape ratio D/h is an important element for the above purpose, especially increasing the deformability δ/h, and spring structures with this regulation have not been popular until now. It belongs to the area where it was not. Note that the hardness of rubber commonly used for spring structures is about 50 to 70.

上記構成の規制を満たすバネ構体の具体例を次に示す。A specific example of a spring structure that satisfies the above-mentioned configuration regulations is shown below.

すなわちゴム板の厚みtは6fi、ゴム板の直径りは3
0〜40fi、ゴム板の総厚りは直径りが30値のとき
5〜6cIm直径りが40cmのとき7〜8G、ゴムの
硬度は37、ゴム板に挾まれる金属板の厚みは2〜3f
lである。
In other words, the thickness t of the rubber plate is 6fi, and the diameter of the rubber plate is 3.
0 to 40 fi, the total thickness of the rubber plate is 5 to 6 cIm when the diameter is 30, 7 to 8 G when the diameter is 40 cm, the hardness of the rubber is 37, and the thickness of the metal plate sandwiched by the rubber plate is 2 to 6 cIm. 3f
It is l.

この場合の変形能δ/hX100はバネ構体の非破壊領
域で約300%、破壊領域で約400%が期待できる。
In this case, the deformability δ/hX100 can be expected to be approximately 300% in the non-destructive region of the spring structure and approximately 400% in the destructible region.

なお破壊領域とはバネ構体が有効な免震効果を発揮する
が、その後にバネの特性が変化する領域をいう。
Note that the failure region is a region in which the spring structure exhibits an effective seismic isolation effect, but the characteristics of the spring change thereafter.

へ1発明の効果 本発明の上記構成を有するバネ構体は、水平。すなわち
ゴム板の直径りが45cIlならば変形量δは30cm
、直径りが6oesならば変形量δは40(2)である
。日本における地震動に対しては実用的には30(2)
の変形量δが確保されれば充分な免震効果が期待でき、
余裕をもって大きく見積っても変形量δが40cmあれ
ば良いと考えられるから、上記規制のバネ構体で、日本
における大地震に対して充分な免震効果を挙げることが
できる。
(1) Effects of the Invention The spring structure of the present invention having the above configuration is horizontal. In other words, if the diameter of the rubber plate is 45 cIl, the amount of deformation δ is 30 cm.
, if the diameter is 6 oes, the amount of deformation δ is 40(2). For earthquake motion in Japan, practically 30 (2)
If the amount of deformation δ is secured, a sufficient seismic isolation effect can be expected.
Even if we make a large estimate with some margin, it is considered that the amount of deformation δ should be 40 cm, so a spring structure meeting the above regulations can provide a sufficient seismic isolation effect against a major earthquake in Japan.

また上記形状規制を有するバネ構体のせん断バネ係数K
Hは、鉛直荷重が二倍程度にまで変動しても殆んど変化
しない。従ってバネ構体を免震装置として建物の下に組
み込れた場合の建物の挙動の1算が容易になり、建物の
構造設針上甚だ有利である。
Also, the shear spring coefficient K of the spring structure having the above shape restriction
H hardly changes even if the vertical load changes by about twice as much. Therefore, it becomes easy to calculate the behavior of the building when the spring structure is installed under the building as a seismic isolation device, which is extremely advantageous in terms of the structural design of the building.

なお−■二記説明はバネ構体を建物の免震装置として使
用したものについて行ったが、本発明のバネ構体は大型
プラント等の重量のある構造物の免震装置として使用で
きるものである。
Note that although the explanation in section 1-2 was made regarding the use of the spring structure as a seismic isolation device for a building, the spring structure of the present invention can be used as a seismic isolation device for heavy structures such as large-scale plants.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は地震動によって建物が地盤に対して挙動する各
状態を説明する図、第2図はノくネ構体を用いた免震構
造を示す概略図、第3図はノマネ構体の正面図、第4図
はバネ構体の平面図、第5図は水平方向に変位したバネ
構体の正面図である。 (1)・・金属板、(2)・・ゴム板、(3)・・バネ
構体、(1) ・・ゴム板の厚み、(D)・・ゴム板の
直径。 特許出願人 多 1) 英 之 代理人 江 原 省 吾 江 原 秀 *1図 C(A) (8) (C) 鋼) 第2図 第3図 第4B 手続補正書 昭和59年2月2・7日 特許庁長官 若 杉 和 夫 殿 ■。事件の表示 昭和59年2月8日付提出の特許願 2、発明の名称 バネ構体 3、補正をする者 事件との関係 特許出願人 氏名多 1) 英 之 4、代理人 855゜ 住 所 大阪府大阪市西区江戸堀1丁目15番26月大
阪商エビルア階 氏名(645B)弁理士江原 置台 (ほか1名) 5、?!正の対象 明 細 書 明細書中 1 第3頁第5行 「載荷能力」を 「N荷能力」と補正する。 2 第4頁第4行 「ロッキング」を 「上l」口しS九i」と補正する。 3 第4頁第17行〜第18行 「大きさはロッキング及び」を 「大きさは」と補正する。 4 第5真下から第6行 「総弾性率」を 「星弾性率」と補正する。
Figure 1 is a diagram explaining each state in which a building behaves with respect to the ground due to earthquake motion, Figure 2 is a schematic diagram showing a base isolation structure using a nokune structure, and Figure 3 is a front view of a nomane structure. FIG. 4 is a plan view of the spring structure, and FIG. 5 is a front view of the spring structure displaced in the horizontal direction. (1)...Metal plate, (2)...Rubber plate, (3)...Spring structure, (1)...Thickness of rubber plate, (D)...Diameter of rubber plate. Patent Applicant: 1) Hideyoshi, Agent Jianghara Province Hide Agohara *1 Figure C (A) (8) (C) Figure 2 Figure 3 Figure 4B Procedural Amendment February 2, 1980 On the 7th, Mr. Kazuo Wakasugi, Commissioner of the Patent Office. Indication of the case Patent application 2 filed on February 8, 1980, name of the invention Spring structure 3, person making the amendment Relationship to the case Name of patent applicant 1) Eiji 4, Agent 855゜Address Osaka Prefecture 1-15, Edobori, Nishi-ku, Osaka City, Osaka City, Osaka Commercial Evil Area Floor Name (645B) Patent Attorney Ehara Okidai (1 other person) 5.? ! Positive Object Specification 1 Page 3, line 5, "Loading Capacity" is amended to "N Loading Capacity". 2. On page 4, line 4, ``rocking'' is corrected to ``upper l'' and ``S9i''. 3. On page 4, lines 17 to 18, "The size is rocking and" is corrected to "The size is". 4 Correct the ``total elastic modulus'' in the 6th line from directly below the 5th line to the ``star elastic modulus.''

Claims (1)

【特許請求の範囲】[Claims] txt 円形のゴム板と金属板とを交互に積層し一体化
したものにおいて、ゴム板の厚みをt1ゴム板の直径を
D、ゴム板の総厚をhとしたとき、t≧5111、D/
l≧50、D/h≦5であり、且つゴム板の硬度は40
以下であることを特徴とするバネ構体。
txt In a product in which circular rubber plates and metal plates are laminated alternately and integrated, when the thickness of the rubber plate is t1, the diameter of the rubber plate is D, and the total thickness of the rubber plate is h, t≧5111, D/
l≧50, D/h≦5, and the hardness of the rubber plate is 40
A spring structure characterized by:
JP2238684A 1984-02-08 1984-02-08 Spring structure Granted JPS60168930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2238684A JPS60168930A (en) 1984-02-08 1984-02-08 Spring structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2238684A JPS60168930A (en) 1984-02-08 1984-02-08 Spring structure

Publications (2)

Publication Number Publication Date
JPS60168930A true JPS60168930A (en) 1985-09-02
JPH0311336B2 JPH0311336B2 (en) 1991-02-15

Family

ID=12081215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2238684A Granted JPS60168930A (en) 1984-02-08 1984-02-08 Spring structure

Country Status (1)

Country Link
JP (1) JPS60168930A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4733855A (en) * 1986-12-22 1988-03-29 Lord Corporation Tapered rubber spring units
JPS6441738U (en) * 1987-09-07 1989-03-13
WO1993004301A1 (en) * 1991-08-23 1993-03-04 Sumitomo Rubber Industries Ltd. Laminated rubber support and method of designing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4733855A (en) * 1986-12-22 1988-03-29 Lord Corporation Tapered rubber spring units
JPS6441738U (en) * 1987-09-07 1989-03-13
WO1993004301A1 (en) * 1991-08-23 1993-03-04 Sumitomo Rubber Industries Ltd. Laminated rubber support and method of designing the same
US5465945A (en) * 1991-08-23 1995-11-14 Sumitomo Rubber Industries, Inc. Laminated rubber support and method of designing the same

Also Published As

Publication number Publication date
JPH0311336B2 (en) 1991-02-15

Similar Documents

Publication Publication Date Title
Aiken Passive energy dissipation hardware and applications
US5386671A (en) Stiffness decoupler for base isolation of structures
JP3194542B2 (en) Vibration damping device
JP3205393U (en) Seismic isolation device
JP5638762B2 (en) Building
Sapountzakis et al. KDamper concept in seismic isolation of bridges
Fujita Seismic isolation of civil buildings in Japan
Robinson Lead-rubber hysteretic bearings suitable for protecting structures during earthquakes
JPS60168930A (en) Spring structure
Tyler Rubber bearings in base-isolated structures: A summary paper
JP2001182776A (en) Base isolation bearing unit
JP2006207680A (en) Laminated rubber supporter
JP2002070943A (en) Slip support device for base isolation
JP4684384B2 (en) Compound seismic isolation system
JP2007177515A (en) Vibration isolation supporting device
CN113107124A (en) Shock insulation floor with tuned mass damper function
Wada et al. Building frames subjected to 2D earthquake motion
JPH10184077A (en) Vibration-isolation support structure of structure
JPS6114338A (en) Vibration attenuator of structure
Wankhade Performance analysis of RC moment resisting frames using different rubber bearing base isolation techniques
JPH08326812A (en) Layered rubber body using high damping rubber
JPH0262668B2 (en)
Yamaguchi et al. A new structural system: friction-resistant dry-masonry
Caspe Base isolation from earthquake hazards: and idea whose time has come
CN211172052U (en) A antidetonation support for building

Legal Events

Date Code Title Description
RVTR Cancellation due to determination of trial for invalidation