JPS60168902A - Air-oil control device - Google Patents

Air-oil control device

Info

Publication number
JPS60168902A
JPS60168902A JP59190443A JP19044384A JPS60168902A JP S60168902 A JPS60168902 A JP S60168902A JP 59190443 A JP59190443 A JP 59190443A JP 19044384 A JP19044384 A JP 19044384A JP S60168902 A JPS60168902 A JP S60168902A
Authority
JP
Japan
Prior art keywords
oil
air
chamber
hydraulic
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59190443A
Other languages
Japanese (ja)
Other versions
JPH0148401B2 (en
Inventor
Katsuhisa Yamaguchi
勝久 山口
Kunio Yamaguchi
邦夫 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyooki Kogyo Co Ltd
Original Assignee
Toyooki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyooki Kogyo Co Ltd filed Critical Toyooki Kogyo Co Ltd
Priority to JP59190443A priority Critical patent/JPS60168902A/en
Publication of JPS60168902A publication Critical patent/JPS60168902A/en
Publication of JPH0148401B2 publication Critical patent/JPH0148401B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/06Servomotor systems without provision for follow-up action; Circuits therefor involving features specific to the use of a compressible medium, e.g. air, steam
    • F15B11/072Combined pneumatic-hydraulic systems
    • F15B11/0725Combined pneumatic-hydraulic systems with the driving energy being derived from a pneumatic system, a subsequent hydraulic system displacing or controlling the output element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/028Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force
    • F15B11/032Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force by means of fluid-pressure converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/216Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being pneumatic-to-hydraulic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3111Neutral or centre positions the pump port being closed in the centre position, e.g. so-called closed centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3138Directional control characterised by the positions of the valve element the positions being discrete
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40515Flow control characterised by the type of flow control means or valve with variable throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40576Assemblies of multiple valves
    • F15B2211/40584Assemblies of multiple valves the flow control means arranged in parallel with a check valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41509Flow control characterised by the connections of the flow control means in the circuit being connected to a pressure source and a directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41527Flow control characterised by the connections of the flow control means in the circuit being connected to an output member and a directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/42Flow control characterised by the type of actuation
    • F15B2211/421Flow control characterised by the type of actuation mechanically
    • F15B2211/423Flow control characterised by the type of actuation mechanically manually, e.g. by using a lever or pedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/47Flow control in one direction only
    • F15B2211/473Flow control in one direction only without restriction in the reverse direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To prevent unusual operations of an air-oil transducer by providing an oil storage reservoir in linkage with the oil chamber of the air-oil transducer and by providing the air-oil transducer with a function of automatically controlling the amount of oil each time a hydraulic actuator operates, when the hydraulic actuator is operated by use of the air-oil transducer. CONSTITUTION:An air-oil control device supplies the compressed air from a compressed air source 20 to an air-oil transducer 4A or 4B through an electromagnetic 3-position switch valve 17, and the high-pressure oil generated in this transducer 4A or 4B is fed to the forward chamber 3A or backward chamber 3B of a hydraulic actuator 1. At this time, each air-oil transducer 4 (hereinafter a suffix A or B abbreviated) is formed such a manner that it may contain displacement members 7 different in diameter to be freely slidable, providing an oil chamber 8 in a small-diameter side and air chambers 9, 10 in a large-diameter side. A ring-shaped groove 11 is formed in a hole through which the small- diameter section of the displacement member 7 located between the oil chamber 8 and the air chamber 10 slides, and this groove 11 is linked with an oil storage reservoir 12 via a flow path 13. And the oil storage reservoir 12 is connected to an oil chamber 15 via an air-vent open/close valve 14 and a check valve 15.

Description

【発明の詳細な説明】 変換器を用いて油圧アクチーエー夕の作動を行なう空油
制御装置Gこ関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to an air-hydraulic control device G that operates a hydraulic actuator using a converter.

従来、この種の空部制御装置は、実開昭53−7119
9号公報に示される如く、油圧アクチーエータの往動室
および復動室へ接続する流路に空部変換器をそれぞれ備
え、2個の空部変換器へ相互に圧縮空気を供給すること
で変換油圧により油圧アクチュエータを作動している。
Conventionally, this type of air space control device was developed in U.S. Pat.
As shown in Publication No. 9, air converters are provided in the flow paths connecting to the forward movement chamber and backward movement chamber of the hydraulic actuator, and the conversion is performed by mutually supplying compressed air to the two air converters. The hydraulic actuator is operated by hydraulic pressure.

そして、繰り返し作動で、油圧アクチーエータの往動室
と復動室間の作動油の漏出によって一万の空部変換器側
に許容以上の油量が集溜して作動不良をおこし易いため
、2個の空部変換器の油室間を開閉弁を介して連通せし
め油量の修整が図れるようにしている。しかし、油量状
態を目視して開閉弁の操作を行なわねばならず、保守管
理が煩雑である欠点があった。
In addition, due to repeated operation, leakage of hydraulic oil between the forward and backward movement chambers of the hydraulic actuator can cause a more than allowable amount of oil to accumulate on the side of the air converter, causing malfunction. The oil chambers of the individual space converters are communicated with each other via an on-off valve so that the amount of oil can be adjusted. However, the opening/closing valve must be operated while visually checking the oil level, which has the disadvantage of complicating maintenance.

本発明は、かかる欠点を解消するもので、油圧アクチー
エータの作動毎に空部変換器の油量を最適に修整し得る
ようにした空部制御装置を提供するものである。
The present invention eliminates these drawbacks and provides a cavity control device that can optimally adjust the amount of oil in a cavity converter each time a hydraulic actuator operates.

このため本発明は、油圧アクチーエータの往動室へ油室
を接続する往動側の電油変換器と油圧アクチーエータの
復動室へ油室を接続する復動側の電油変換器とを設け、
電油変換器は、圧縮空気の作用力により変位し油室の作
動油を吐出する変位部材と、作動油を貯蔵する貯油槽と
、貯油槽と油室間を連通ずる流路に設は貯油槽から油室
への流れを許容する逆止弁と、変位部材が反吐出側の変
位端近傍へ変位することにより貯油槽と油室を連通ずる
流路とを具備し、−万の電油変換器から油圧アクチーエ
ータへ作動油を吐出するとき、油圧アクチーエータから
の作動油が帰還する他方の電油変換器は変位部材が変位
端近傍へ変位するようQこ配設して、油圧アクチーエー
タの作動毎に電油変換器の油量を最適に自動修整できる
ようにしている。
For this reason, the present invention provides an electro-hydraulic converter on the forward-moving side that connects the oil chamber to the forward-moving chamber of the hydraulic actuator, and an electro-hydraulic converter on the backward-moving side that connects the oil chamber to the backward-moving chamber of the hydraulic actuator. ,
An electro-hydraulic converter consists of a displacement member that is displaced by the acting force of compressed air and discharges hydraulic oil from an oil chamber, an oil storage tank that stores the hydraulic oil, and an oil storage tank that is installed in a flow path that communicates between the oil storage tank and the oil chamber. It is equipped with a check valve that allows flow from the tank to the oil chamber, and a flow path that communicates the oil storage tank and the oil chamber by displacing the displacement member near the displacement end on the anti-discharge side. When the hydraulic oil is discharged from the converter to the hydraulic actuator, the other electro-hydraulic converter, to which the hydraulic oil returns from the hydraulic actuator, is arranged so that the displacement member is displaced near the displacement end, and the hydraulic actuator is operated. The oil level of the electro-hydraulic converter can be automatically adjusted to the optimum level each time.

以下、本発明の一実施例を図面に基づいて説明する。Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図において、1は油圧アクチーエータで、ピストン
2を摺動自在に収装して往動室3Aと復動室3Bを割成
している。4A、4Bは電油変換器で、内部に異径の変
位部材7A、7Bを摺動自在に収装して小径側に油室8
A、8Bを大径側に空気室9A、IOA・9B、IOB
をそれぞれ割成し、圧縮空気の作用力により変位部材7
A、7Bを変位することで油室8A、8Bの作動油を吐
出できるよう設けている。そして電油変換器4A。
In FIG. 1, reference numeral 1 denotes a hydraulic actuator which slidably houses a piston 2 to divide a forward movement chamber 3A and a backward movement chamber 3B. 4A and 4B are electro-hydraulic converters, in which displacement members 7A and 7B of different diameters are slidably housed, and an oil chamber 8 is provided on the small diameter side.
A, 8B on the large diameter side air chamber 9A, IOA/9B, IOB
are divided respectively, and the displacement member 7 is moved by the acting force of compressed air.
It is provided so that the hydraulic oil in the oil chambers 8A and 8B can be discharged by displacing A and 7B. And an electro-oil converter 4A.

4Bは油室8A、8B+こ有する油流出入口6A、6B
を流路5A、5Bを介して油圧アクチーエータ1の往動
室3Aおよび復動室3Bへ接続している。IIA、II
Bは油室8A、8Bと空気室10A、IOB間の変位部
材7A、7Bの小径部が摺動する孔に内周の一部を拡径
して形成し1こ環状溝で、変位部材7A、7Bが反吐出
側の変位端近傍へ変位し1こ際油室8A、8Bと連通ず
るようQこ設けている。12A、12Bは作動油を貯蔵
する貯油槽で、流路18A、13Bを介して環状溝11
A、11Bに連通している。14A、14.Bは空気抜
きをするための開閉弁で、油室8A、8Bと貯油槽12
A、12B間を連通ずる流路に設けている。15A、1
5Bは逆止弁で、油室8A。
4B is oil chamber 8A, 8B + oil outflow inlet 6A, 6B
is connected to the forward motion chamber 3A and backward motion chamber 3B of the hydraulic actuator 1 via flow paths 5A and 5B. IIA, II
B is an annular groove formed by enlarging a part of the inner periphery of the hole in which the small diameter portion of the displacement member 7A, 7B slides between the oil chamber 8A, 8B and the air chamber 10A, IOB. , 7B are displaced near the displacement end on the anti-discharge side and communicated with the oil chambers 8A and 8B. 12A and 12B are oil storage tanks for storing hydraulic oil, which are connected to the annular groove 11 through channels 18A and 13B.
It communicates with A and 11B. 14A, 14. B is an on-off valve for venting air, and is used for oil chambers 8A, 8B and oil storage tank 12.
It is provided in a flow path that communicates between A and 12B. 15A, 1
5B is a check valve and oil chamber 8A.

8Bと貯油槽12A、12B間を連通ずる流路に設は貯
油槽12A、12Bから油室8A、8Bへの油の流れを
許容するようにしている。16A、16Bはエアブリー
ザ兼用の注油口である。17は切換位置A、N、Bを有
する電磁弁、2個の電油変換器4A、4Bの空気室9A
、9Bへ流路18A、18Bを介して接続しており、流
路18A、18Bは分岐流路19B、19Aを有して対
設する電油変換器4B、4Aの空気室10B、IOAに
それぞれ連通している。20は圧縮空気源、21A、2
1Bは消音器、22A、22B、23A。
A flow path communicating between the oil storage tank 8B and the oil storage tanks 12A, 12B is provided to allow oil to flow from the oil storage tanks 12A, 12B to the oil chambers 8A, 8B. 16A and 16B are oil fill ports that also serve as air breathers. 17 is a solenoid valve with switching positions A, N, and B, and an air chamber 9A of two electro-hydraulic converters 4A and 4B.
, 9B via channels 18A, 18B, and the channels 18A, 18B have branch channels 19B, 19A, and are connected to the air chambers 10B, IOA of the electro-hydraulic converters 4B, 4A, respectively. It's communicating. 20 is a compressed air source, 21A, 2
1B is a silencer, 22A, 22B, 23A.

23Bは逆止弁材の流量制御弁である。23B is a flow control valve made of check valve material.

次に、かかる構成の作動を説明する。図示状態は電磁弁
17が中立の切換位置Nで、各流路18A、18Bを遮
断しており、電油変換器4Aの変位部材7Aは反吐出側
の変位端に、電油変換器4Bの変位部材7Bは吐出側の
変位端に、油圧アクチーエータ1のピストン2は往動室
3A側に位置している。
Next, the operation of this configuration will be explained. In the illustrated state, the solenoid valve 17 is in the neutral switching position N, blocking each flow path 18A, 18B, and the displacement member 7A of the electro-hydraulic converter 4A is at the displacement end on the non-discharge side, and the electro-hydraulic converter 4B is at the displacement end. The displacement member 7B is located at the displacement end on the discharge side, and the piston 2 of the hydraulic actuator 1 is located on the forward movement chamber 3A side.

電磁弁17を切換位置Bに操作すると、圧縮空気源20
からの圧縮空気は流路18Aを介して電油変換器4Aの
空気室9Aへ、さらに分岐流路19Bを介して流量制御
弁28Bで絞り制御され電油変換器4Bの空気室10B
へ供給される。また電油変換器4Aの空気室10Aの圧
縮空気は流量制御弁23Aの逆止弁と分岐流路19A流
路18Bを介して外部へ、電油変換器4Bの空気室9B
の圧縮空気は流路18Bを介して外部へ排出される。そ
して電油変換器4Aの変位部材7Aが空気室9Aの圧縮
突気による作用力により環状溝11Aと油室8八間を遮
断して吐出側へ変位し、油室8Aの作動油は変位部材7
Aの受圧面積差に応じて増圧され油流出入孔6A流路5
A流量制御弁22Aの逆止弁を介して油圧アクチーエー
タ1の往動室3Aへ供給されてピストン2を図示左方向
へ ゛往動する。油圧アクチーエータ1の復動室3Bの
る作動油と空気室10Bへ供給される圧縮空気との作用
力により反吐出側へ変位し、変位端近傍で油室8Bを環
状溝11B流路13Bを介して貯油槽12Bへ連通する
When the solenoid valve 17 is operated to the switching position B, the compressed air source 20
The compressed air from the air enters the air chamber 9A of the electro-hydraulic converter 4A via the flow path 18A, and is further throttle-controlled by the flow control valve 28B via the branch flow path 19B to the air chamber 10B of the electro-hydraulic converter 4B.
supplied to In addition, the compressed air in the air chamber 10A of the electro-hydraulic converter 4A is transferred to the outside through the check valve of the flow control valve 23A and the branch flow path 19A, and the air chamber 9B of the electro-hydraulic converter 4B.
The compressed air is discharged to the outside via the flow path 18B. Then, the displacement member 7A of the electro-hydraulic converter 4A is displaced toward the discharge side by blocking the annular groove 11A and the oil chamber 88 due to the force exerted by the compressed air in the air chamber 9A, and the hydraulic oil in the oil chamber 8A is transferred to the displacement member. 7
The pressure is increased according to the difference in the pressure receiving area of A, and the oil inflow and outflow hole 6A flow path 5
It is supplied to the reciprocating chamber 3A of the hydraulic actuator 1 through the check valve of the A flow control valve 22A, causing the piston 2 to reciprocate to the left in the figure. The hydraulic actuator 1 is displaced toward the opposite discharge side due to the acting force of the hydraulic oil in the reciprocating chamber 3B and the compressed air supplied to the air chamber 10B, and near the displacement end, the oil chamber 8B is moved through the annular groove 11B and the flow path 13B. and communicates with the oil storage tank 12B.

次に電磁弁17を切換位@Aに操作すると、流路18B
が圧縮空気源20に流路18Aが外部に切換え連通され
、変位部材7A、7Bおよびピストン2は前記と逆方向
の作動を行な−で図示状態になる。
Next, when the solenoid valve 17 is operated to the switching position @A, the flow path 18B
The flow path 18A is switched to communicate with the compressed air source 20 to the outside, and the displacement members 7A, 7B and the piston 2 operate in the opposite direction to the state shown in the figure.

この作動において、変位部材7Aを反吐出側へ変位しt
ことき、復動室3Bからの漏出により往動室3Aに作動
油の増加があっても、変位部材7Aが反吐出側へ変位し
た後、さらGこ増加しTコ作動油を油室8Aから環状溝
11A、流路13Aを介して貯油槽12Aへ流出し、油
圧アクチーエータ1を漏出にかかわりなく作動できる。
In this operation, the displacement member 7A is displaced toward the anti-discharge side.
Even if there is an increase in hydraulic fluid in the forward motion chamber 3A due to leakage from the backward motion chamber 3B, after the displacement member 7A is displaced toward the opposite discharge side, G will further increase and the T hydraulic fluid will be transferred to the oil chamber 8A. The oil flows out through the annular groove 11A and the flow path 13A to the oil storage tank 12A, and the hydraulic actuator 1 can be operated regardless of leakage.

また、変位部材7Bを反吐出側へ変位し1ことき、往動
室3Aへの漏出により復動室3Bに作動油の減少かあ・
でも、変位部材7Bが復動室3Bからの作動油を油室8
Bへ流入して変位した後、油室8Aと環状溝11Bが連
通していなくとも貯油槽12Bの作動油を逆止弁15B
を介して油室8Bへ流入し、反吐出側の変位端へ変位部
材7Bが強制変位し、漏出瘉こかかわりなく油圧アクチ
ーエータ1を以後作動できる。開閉弁14A、14Bは
装置の作動申開じておき油室8A、8B内に蓄積した空
気を抜く際開く。
Also, after displacing the displacement member 7B to the opposite discharge side, there is a possibility that the hydraulic oil will decrease in the backward movement chamber 3B due to leakage into the forward movement chamber 3A.
However, the displacement member 7B transfers the hydraulic oil from the reciprocating chamber 3B to the oil chamber 8.
Even if the oil chamber 8A and the annular groove 11B are not in communication with each other, the hydraulic oil in the oil storage tank 12B is transferred to the check valve 15B.
The oil flows into the oil chamber 8B through the oil chamber 8B, and the displacement member 7B is forcibly displaced to the displacement end on the anti-discharge side, so that the hydraulic actuator 1 can be operated thereafter regardless of the leakage. The on-off valves 14A and 14B are opened when the device is operated and are opened when air accumulated in the oil chambers 8A and 8B is removed.

第2図は他の実施例で、第1図との相違点を主9こ説明
する。81A、BIBは同径の変位部材で、油室32A
、82Bと空気室88A、33Bを割成しており、変位
部材81A、31Bは油室32A、32Bに収装しtこ
ばね34A、34B力をこよって空気室83A、33B
側へ強制変位すると共に空気室83A、33Bへ供給す
る圧縮空気の作用力により、油室82A、32B側へ変
位自在に収装している。85A、85Bは油室32A、
32Bと空気室33A、33B間の変位部材31A、8
1Bが摺動する孔に内周の一部を拡径して形成した環状
溝で、変位部材81A、31Bが反吐出側の変位端へ変
位した際、油室32A、32 Bと連通ずるよう設けて
いる。36は貯油槽12A、12B間を連通ずる流路8
7A、87Bは流路18A、18Bに設置した逆止弁材
の流量制御弁で、空気室88A、33Bから外部へ排出
する空気を制御する。
FIG. 2 shows another embodiment, and nine main points of difference from FIG. 1 will be explained. 81A and BIB are displacement members with the same diameter, and oil chamber 32A
, 82B and the air chambers 88A, 33B, and the displacement members 81A, 31B are housed in the oil chambers 32A, 32B, and the air chambers 83A, 33B are moved by the force of the springs 34A, 34B.
It is housed so that it can be forcibly displaced toward the oil chambers 82A, 32B by the acting force of the compressed air supplied to the air chambers 83A, 33B. 85A, 85B are oil chambers 32A,
Displacement members 31A, 8 between 32B and air chambers 33A, 33B
An annular groove formed by enlarging a part of the inner periphery of the hole in which 1B slides, so that when the displacement members 81A and 31B are displaced to the displacement end on the anti-discharge side, they communicate with the oil chambers 32A and 32B. It is set up. 36 is a flow path 8 that communicates between the oil storage tanks 12A and 12B.
Reference numerals 7A and 87B indicate flow control valves made of check valve material installed in the flow paths 18A and 18B, which control the air discharged to the outside from the air chambers 88A and 33B.

この構成において、2個の空部変換器4A、4Bの変位
部材31A、31Bは電磁弁17によって空気室38A
、83Bへ圧縮空気が供給されたり、空気室38A、8
8Bの圧縮空気が外部に排出されfこりすることで、圧
縮空気の作用力とばね34A、34B力との対向作用に
より変位され、油圧アクチーエータ1へ吐出する油圧は
空気室33A、33Bへ供給される圧縮空気の圧力と同
圧である。そして流路36によって貯油槽12A。
In this configuration, the displacement members 31A and 31B of the two air space converters 4A and 4B are connected to the air chamber 38A by the solenoid valve 17.
, 83B, compressed air is supplied to the air chambers 38A, 83B,
When the compressed air of 8B is discharged to the outside and becomes stiff, it is displaced by the opposing action of the acting force of the compressed air and the forces of the springs 34A and 34B, and the hydraulic pressure discharged to the hydraulic actuator 1 is supplied to the air chambers 33A and 33B. The pressure is the same as that of compressed air. And the oil storage tank 12A is connected to the flow path 36.

12B間が連通しているため、貯油槽12Aと1室へ油
室を接続する往動側の空部変換器と油圧アクチーエータ
の復動室へ油室を接続する復動側の空部変換器とを設け
、空部変換器は、圧縮空気の作用力により変位し油室の
作動油を吐出する変位部材と、作動油を貯蔵する貯油槽
と、貯油槽と油室間を連通ずる流路に設は貯油槽から油
室への流れを許容する逆止弁と、変位部材が反吐出側の
変位端近傍へ変位することをこより貯油槽と油室を連通
ずる流路とを具備し、一方の空部変換器から油圧アクチ
ーエータへ作動油を吐出するとき、油圧アクチーエータ
からの作動油が帰還する他方の空部変換器は変位部材が
変位端近傍へ変位するように配設し1こことGこより、
油圧アクチーエータの作動毎に空部変換器の油量を最適
Oこ修整することができ、油圧アクチーエータの良好は
作動制御を長期間にわたって得ることができ、保守管理
の簡素化が図れる。また、油圧アクチーエータの往復動
長さを短かく変更する場合も空部変換器を変更すること
なく油量を最適に修整できる等の特長を有する。
12B are in communication, so there is a space converter on the forward side that connects the oil chamber to the oil storage tank 12A and chamber 1, and a space converter on the backward side that connects the oil chamber to the backward movement chamber of the hydraulic actuator. The air converter includes a displacement member that is displaced by the acting force of compressed air and discharges hydraulic oil from the oil chamber, an oil storage tank that stores the hydraulic oil, and a flow path that communicates between the oil storage tank and the oil chamber. The oil storage tank is provided with a check valve that allows flow from the oil storage tank to the oil chamber, and a flow path that communicates the oil storage tank and the oil chamber by displacing the displacement member to the vicinity of the displacement end on the opposite discharge side, When discharging hydraulic oil from one air transducer to the hydraulic actuator, the other air transducer to which the hydraulic oil from the hydraulic actuator returns is arranged so that the displacement member is displaced near the displacement end. From G Koyori,
The amount of oil in the pneumatic converter can be adjusted to the optimum amount each time the hydraulic actuator operates, and if the hydraulic actuator is in good condition, the operation can be controlled for a long period of time, and maintenance management can be simplified. Further, even when changing the reciprocating length of the hydraulic actuator to a shorter length, the oil amount can be adjusted to the optimum level without changing the air converter.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を一部断面で示した回路図で、第
1図は一実施例、第2図は他の実施例である。 1−m−油圧アクチーエータ、3A−−一往動室、3B
−−一復動室、4A、4B−−一空油変換器、7A、7
B、31A、81 B−m−変位部材、8A、8B、8
2A、32B−m−油室、12A、12T3−−一貯油
槽。 特許出願人 豊興工業株式会社 第1図 1
The drawings are circuit diagrams partially showing an embodiment of the present invention in cross section, with FIG. 1 showing one embodiment and FIG. 2 showing another embodiment. 1-m-hydraulic actuator, 3A--one forward movement chamber, 3B
--One reciprocating chamber, 4A, 4B--One air-oil converter, 7A, 7
B, 31A, 81 B-m-displacement member, 8A, 8B, 8
2A, 32B-m-oil chamber, 12A, 12T3--1 oil storage tank. Patent applicant Toyoko Kogyo Co., Ltd. Figure 1 1

Claims (1)

【特許請求の範囲】[Claims] 油圧アクチーエータの往動室へ油室を接続する往動側の
空部変換器と油圧アクチーエータの復動室へ油室を接続
する復動側の空部変換器とを設け、空部変換器は、圧縮
空気の作用力により変位し油室の作動油を吐出する変位
部材と、作動油を貯蔵する貯蔵槽と、貯油槽と油室間を
連通ずる流路に設は貯油槽から油室への流れを許容する
逆止弁と、−万の空部変換器から油圧アクチーエータへ
作動油を吐出するとき、油圧アクチーエータからの作動
油が帰還する他方の空部変換器は変位部材が変位近傍へ
変位するようζこ配設して成る空部制御装置。
A space converter on the forward side that connects the oil chamber to the forward motion chamber of the hydraulic actuator and a space converter on the backward motion side that connects the oil chamber to the backward motion chamber of the hydraulic actuator are provided. , a displacement member that is displaced by the acting force of compressed air and discharges hydraulic oil from the oil chamber, a storage tank that stores the hydraulic oil, and a flow path that communicates between the oil storage tank and the oil chamber from the oil storage tank to the oil chamber. When discharging hydraulic fluid from one pneumatic transducer to the hydraulic actuator, the other pneumatic transducer, to which the hydraulic fluid from the hydraulic actuator returns, has a check valve that allows the displacement member to move close to the displacement. A space control device that is arranged so that it can be displaced.
JP59190443A 1984-09-10 1984-09-10 Air-oil control device Granted JPS60168902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59190443A JPS60168902A (en) 1984-09-10 1984-09-10 Air-oil control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59190443A JPS60168902A (en) 1984-09-10 1984-09-10 Air-oil control device

Publications (2)

Publication Number Publication Date
JPS60168902A true JPS60168902A (en) 1985-09-02
JPH0148401B2 JPH0148401B2 (en) 1989-10-19

Family

ID=16258216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59190443A Granted JPS60168902A (en) 1984-09-10 1984-09-10 Air-oil control device

Country Status (1)

Country Link
JP (1) JPS60168902A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115603U (en) * 1987-01-22 1988-07-26

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5082482A (en) * 1973-11-26 1975-07-03
JPS5089906A (en) * 1973-11-16 1975-07-18

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5089906A (en) * 1973-11-16 1975-07-18
JPS5082482A (en) * 1973-11-26 1975-07-03

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115603U (en) * 1987-01-22 1988-07-26
JPH0527684Y2 (en) * 1987-01-22 1993-07-15

Also Published As

Publication number Publication date
JPH0148401B2 (en) 1989-10-19

Similar Documents

Publication Publication Date Title
EP1048854B1 (en) Servo-driving pilot-type solenoid valve
US6715403B2 (en) Independent and regenerative mode fluid control system
KR100379862B1 (en) Directional control valve device
JP3776744B2 (en) Air bleeding structure of pilot operated control valve
JPH10220409A (en) Directional control valve device
JPS60168902A (en) Air-oil control device
US5081902A (en) Apparatus for providing relief to a working chamber
JP2001027203A (en) Directional control valve device with hydraulic regenerative circuit
JP4377990B2 (en) High pressure coolant valve
KR20200099466A (en) Solenoid valve and working machine
US6701822B2 (en) Independent and regenerative mode fluid control system
CN112943712A (en) Liquid filling valve, traveling hydraulic braking system and traveling hydraulic steering system
JP2630775B2 (en) Priority operation control device for high load actuator
JP3828961B2 (en) Air venting method for upper pilot oil chamber in hydraulic pilot type switching valve
JP7027469B2 (en) Electro-hydraulic circuits and aircraft
JP7499637B2 (en) Hydraulic motor control device
JPH02566B2 (en)
JPH02296003A (en) Cylinder control device
KR100499285B1 (en) Pilot Switching Valve of Hydraulic System for Civil Construction Machinery
JPH0341685B2 (en)
JP2651885B2 (en) Flow control directional control valve
JPH0527684Y2 (en)
KR20200094091A (en) Control valve and direction switching valve
SU678917A1 (en) Hydraulic control valve
JPH032723Y2 (en)