JPS6016863A - Manganese-zinc ferrite magnetic recording magnetic material and manufacture - Google Patents

Manganese-zinc ferrite magnetic recording magnetic material and manufacture

Info

Publication number
JPS6016863A
JPS6016863A JP58123954A JP12395483A JPS6016863A JP S6016863 A JPS6016863 A JP S6016863A JP 58123954 A JP58123954 A JP 58123954A JP 12395483 A JP12395483 A JP 12395483A JP S6016863 A JPS6016863 A JP S6016863A
Authority
JP
Japan
Prior art keywords
weight
oxide
mol
manganese
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58123954A
Other languages
Japanese (ja)
Other versions
JPH0455990B2 (en
Inventor
秀雄 渡辺
柿崎 征夫
大矢 一雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP58123954A priority Critical patent/JPS6016863A/en
Publication of JPS6016863A publication Critical patent/JPS6016863A/en
Publication of JPH0455990B2 publication Critical patent/JPH0455990B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Magnetic Heads (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、磁気記録用磁性材料特に磁気へソドコアー材
料とし、て好適な新規マンガン−亜鉛系フェライトに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel manganese-zinc ferrite suitable as a magnetic material for magnetic recording, particularly as a magnetic hesodo core material.

近年、磁気記録に関する技術分野においては、情報の多
量化とともに、従来の記録密度では不十分になり、より
高い密度記録が要求されるようになったが、それには記
録媒体については高保磁力のものを、甘だ磁気ヘッドコ
ア−材料については実効透磁率の高周波化されたものを
開発することが必要となってきた。
In recent years, in the field of magnetic recording technology, as the amount of information has increased, conventional recording densities have become insufficient, and higher density recording has become necessary. However, it has become necessary to develop magnetic head core materials with higher effective magnetic permeability at higher frequencies.

これ壕で、磁気ヘッド用コアー拐料としてマンガン−亜
鉛系フェライトを用いることは知られておシ、このもの
は低周波領域例えば0.1・〜100に、H2のオーデ
ィオ領域で大きい実効透磁率を示すという長所を有して
いる。しかし、このものはフロッピーヘッドの使用周波
数帯域においては、実効透磁率が小さく、十分な再生感
度及びs/+q比が得られず、誤動作を生じる原因とな
るため、電子計算機用の磁気ヘッドコア−材料として使
用することはできなかった。また、このフロッピー用マ
ンガン−亜鉛系フェライトも知られているが、0.5〜
2.0MH2の周波数領域での実効透磁率や損失係数か
や一次きく増巾器の能力に限界がおるため、ウィンチェ
スタ−のような大型電算機のディスクに用いる磁気ヘッ
ド用コアー材料としては不適当である。
It is known that manganese-zinc ferrite is used as a core material for magnetic heads. It has the advantage of showing However, this material has a low effective magnetic permeability in the frequency band used by floppy heads, making it difficult to obtain sufficient reproduction sensitivity and s/+q ratio, which may cause malfunctions, so it cannot be used as a magnetic head core material for electronic computers. It could not be used as. Also, this manganese-zinc ferrite for floppies is known, but
Because the effective magnetic permeability and loss coefficient in the 2.0 MH2 frequency range limit the ability of the first-order amplifier, it is not suitable as a core material for magnetic heads used in large computer disks such as Winchester. Appropriate.

このようなマンガン−亜鉛系フェライトの欠点を、酸化
ニオブの添加により改良したものも提案されている。こ
のものは、0.5〜2.QMHzの周波数領域では大き
い実効透磁率↑、や\小さい損失係数を示すが、現在要
求されている高密度記録を達成するだめの5.0〜7.
0MH2という高周波数領域では、十分満足できる結果
は得られない。
It has also been proposed to improve the drawbacks of manganese-zinc ferrite by adding niobium oxide. This one is 0.5 to 2. In the QMHz frequency range, it shows a large effective magnetic permeability ↑ and a small loss coefficient, but it is 5.0 to 7.
In the high frequency range of 0MH2, sufficiently satisfactory results cannot be obtained.

本発明者らは、このような実状に鑑み、高周波数領域に
おいて大きい実効透磁率と適切な損失係数を示し、高密
度記録の要求に十分こたえ得るマンガン−亜鉛系フェラ
イト磁性材料を開発するだめに鋭意研究を重ねた結果、
所定量の酸化ニオブを、所定量の酸化バナジウム及び酸
化カルシウムとともに添加し、高密度に焼結させること
によりその目的を達成しうろことを見出し、この知見に
基づいて本発明をなすに至った。
In view of these circumstances, the present inventors have decided to develop a manganese-zinc-based ferrite magnetic material that exhibits a large effective permeability and an appropriate loss coefficient in the high frequency range and can fully meet the demands of high-density recording. As a result of extensive research,
It was discovered that the objective could be achieved by adding a predetermined amount of niobium oxide together with predetermined amounts of vanadium oxide and calcium oxide and sintering it to a high density, and based on this knowledge, the present invention was accomplished.

すなわち、本発明は、Fe2O355,0−57,0モ
ル%、zno 5.0−25.0 モル%及びMnO4
0,0〜18゜0モル%から成る基本組成をもつマンガ
ン−亜鉛系フェライトに対し、酸化ニオブ0.005〜
0.1重量%、酸化バナジウム0.005〜0.05重
量%及び酸化カルシウム0.01〜0.30重量2を含
有させ゛だ磁気記録用磁性材料を提供するものでちる。
That is, the present invention uses Fe2O355.0-57.0 mol%, zno 5.0-25.0 mol% and MnO4
Manganese-zinc ferrite with a basic composition of 0.0 to 18゜0 mol%, and niobium oxide of 0.005 to 18゜0 mol%.
The present invention provides a magnetic material for magnetic recording containing 0.1% by weight of vanadium oxide, 0.005 to 0.05% by weight of vanadium oxide, and 0.01 to 0.30% by weight of calcium oxide.

本発明の磁性材料は、0.5〜1.0 M Hzの高周
波数領域において非常に大きい実効透磁率を示すという
特徴を有している。例えば、このものは、3.5MHz
において1500以上、5.01vlH2において12
00以上、7.0MH2において800以上の実効透磁
率を示す。また、このものは0.05〜0.2000と
いう低い抗磁力を有し、かつ損失係数Qが1となるとき
の周波数が3.0〜5.QMHzの範囲内に入るという
特徴を有している。
The magnetic material of the present invention is characterized in that it exhibits a very large effective magnetic permeability in a high frequency region of 0.5 to 1.0 MHz. For example, this one is 3.5MHz
1500 or more in , 12 in 5.01vlH2
00 or more, exhibiting an effective magnetic permeability of 800 or more at 7.0MH2. Moreover, this material has a low coercive force of 0.05 to 0.2000, and a frequency of 3.0 to 5.0 when the loss coefficient Q is 1. It has the characteristic that it falls within the range of QMHz.

本発明の磁性祠料においては、少量の酸化ニオブ、酸化
バナジウム及び酸化カルシウムを含有させることが必要
である。酸化ニオブは、高周波数領域における磁気特性
を向上させるための成分であり、o、oos〜0.1重
量%の範囲内で加えられる。
The magnetic abrasive of the present invention needs to contain small amounts of niobium oxide, vanadium oxide, and calcium oxide. Niobium oxide is a component for improving magnetic properties in a high frequency region, and is added in an amount of o,oos to 0.1% by weight.

との量が0.005重量%未満では、磁気特性の改善が
不十分であるし、まだ0.1重量%よりも多くなると異
常結晶が発生し、また理論密度せでの高密度焼成が困離
になる。他方、酸化バナジウムは、比抵抗を向上させる
ための成分であり、0.005〜0.05重量%の範囲
内で加えられる。この量が0.005重量%未満では十
分な比抵抗の向上が達成されないし、また0、05重量
%よりも多くなると異常結晶が発生する。さらに、酸化
カルシウムは酸化バナジウムと複合的に作用しで、酸化
ニオブの存在に起因する異常結晶を抑制するとともに、
加工性を向上させる役割を果す成分であLO’旧〜0.
30重量%の範囲内で用いられる。この16か0.01
重量%未満では、所望の効果が’4られないし、ま70
0.30重量%よりも多くなると抗磁力が増大するので
好1しくない。
If the amount is less than 0.005% by weight, the improvement in magnetic properties is insufficient, and if it is still more than 0.1% by weight, abnormal crystals will occur, and high-density firing at the theoretical density will be difficult. Become apart. On the other hand, vanadium oxide is a component for improving specific resistance, and is added within the range of 0.005 to 0.05% by weight. If this amount is less than 0.005% by weight, sufficient improvement in resistivity will not be achieved, and if this amount is more than 0.05% by weight, abnormal crystals will occur. Furthermore, calcium oxide acts in combination with vanadium oxide to suppress abnormal crystals caused by the presence of niobium oxide, and
It is a component that plays a role in improving processability and has a LO' old to 0.
It is used within a range of 30% by weight. This 16 or 0.01
If the amount is less than 4% by weight, the desired effect may not be achieved or
If it exceeds 0.30% by weight, the coercive force increases, which is not preferable.

本発明の磁性材料は、Fe2O355,0−57,0モ
/l/%、ZnO5,0−25,0モル%、MnO40
、0−18,0モル%の組成のフェライトを形成させる
のに必吸な原料粉末混合物に対し、酸化ニオブ0.00
5〜0.1重量%、酸化バナジウム0 、005〜0.
05重量%及び酸化カルシウム0.01〜0.30重量
%を粉末状で加え、常法に従って成形後、非酸化性雰囲
気中、1100〜1400℃において理論密度の95〜
98%になるまで一次焼成し、次いで少量くとも800
 K9 / c、lに加圧しながら、1100−140
0 ℃において理論密度の99.8%以上になるまで二
次焼成することにより製造することができる。
The magnetic material of the present invention includes Fe2O355,0-57,0 mol/l/%, ZnO5,0-25,0 mol%, MnO40
, 0.00 niobium oxide to the raw material powder mixture essential for forming ferrite with a composition of 0-18.0 mol%.
5-0.1% by weight, vanadium oxide 0,005-0.
05% by weight and 0.01 to 0.30% by weight of calcium oxide are added in powder form, and after molding according to a conventional method, the theoretical density is 95 to 95% by weight at 1100 to 1400°C in a non-oxidizing atmosphere.
Primary firing until 98%, then a small amount of at least 800%
K9/c, 1100-140 while pressurizing l
It can be manufactured by performing secondary firing at 0° C. until the density reaches 99.8% or more of the theoretical density.

前記したように、・マンガン−亜鉛系フェライトに酸化
ニオブを添加すると異常結晶を生じ焼結密度が減る傾向
があるが、これは、焼結過程において径0.1〜1.0
μmの細孔が形成されるためである。
As mentioned above, when niobium oxide is added to manganese-zinc ferrite, abnormal crystals tend to occur and the sintered density decreases.
This is because pores of μm size are formed.

本発明においては、酸化ニオブとともに酸化バナジウム
及び酸化カルシウムを添加した原料混合物を用い、これ
を−次焼成段階で、ち密な被覆層を形成させ、連通孔を
閉塞したのち、二次焼成段階で外部加圧しながらおし固
めて、所望の磁気特性をもつ焼結体とする。
In the present invention, a raw material mixture in which vanadium oxide and calcium oxide are added together with niobium oxide is used, and this is formed into a dense coating layer in the secondary firing stage to close the communicating holes, and then the external layer is formed in the secondary firing stage. It is compacted under pressure to form a sintered body with desired magnetic properties.

本発明の磁性材料の製造に際しては、前記した酸化ニオ
ブ、酸化バナジウム及び酸化カルシウムの代りに、焼成
によりこれらの物質に変換しうる物質例えば炭酸塩、重
炭酸塩、水酸化物などを用いることもできる。
When producing the magnetic material of the present invention, instead of the above-mentioned niobium oxide, vanadium oxide, and calcium oxide, substances that can be converted into these substances by firing, such as carbonates, bicarbonates, and hydroxides, may be used. can.

また、−次焼成の非酸化雰囲気は、例えば不活性ガス又
は制御された酸素濃度の不活性ガスを用いて形成するか
、あるいは減圧により形成することができる。
Further, the non-oxidizing atmosphere for the second firing can be formed using, for example, an inert gas or an inert gas with a controlled oxygen concentration, or can be formed by reducing pressure.

二次焼成における加圧は、例えば熱間静水圧プレス装置
を用いて行うことができる。
Pressure in the secondary firing can be performed using, for example, a hot isostatic press device.

本発明の磁性材料は、高周波数領域において、非常に大
きい実効透磁率を有する低損失フェライトであり、低い
抗磁力、大きい比抵抗を示すので、高密度記録用の磁気
−・ラドコアー材料として好適である。
The magnetic material of the present invention is a low-loss ferrite having a very large effective magnetic permeability in a high frequency region, and exhibits low coercive force and high specific resistance, so it is suitable as a magnetic rad core material for high-density recording. be.

次に実施例により、本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例 Fe2O255,0モル%、ZnO8,0モ/l、%及
びMn37モル%の基本組成に対し、表に示す割合で五
酸化ニオブ、五酸化バナジウム及び炭酸カルシウムの粉
末を加え、よく混合したのち850 ℃で1.20分間
仮焼する。
Example: To a basic composition of 55.0 mol% Fe2O2, 8.0 mol% ZnO, and 37 mol% Mn, powders of niobium pentoxide, vanadium pentoxide, and calcium carbonate were added in the proportions shown in the table and mixed well. Calcinate at 850°C for 1.20 minutes.

次いで、この仮焼物を粉砕したのち、バインダーとして
ポリビニルアルコール少量を加えて成形圧粉体とし、酸
素2容量%、窒素98容量%の混合雰囲気下、1250
〜1300℃において理論密度の95%になるまで加熱
する。次に、これを熱間静水圧装置を用い、1000に
9/cJ、1200℃において、理論密度になるまで焼
結した。
Next, after pulverizing this calcined product, a small amount of polyvinyl alcohol was added as a binder to form a compacted powder, and the powder was pulverized at 1250 °C in a mixed atmosphere of 2% by volume of oxygen and 98% by volume of nitrogen.
Heat to 95% of theoretical density at ~1300°C. Next, this was sintered using a hot isostatic pressure apparatus at 1000:9/cJ and 1200° C. until it reached the theoretical density.

このようにして得た磁性材料の物性を次表に示す。The physical properties of the magnetic material thus obtained are shown in the table below.

扁6は無添加の特性である、これに酸化ハナンウムと酸
化カルシウドを加えたが、茄5で酸化ニオブと酸化カル
シウムを加えたのが扁4である。扁6と比較すれば、少
しの特性改善どなるが、//63の複合添加物効果に及
ばない。又扁1の酸化カルシウム添加でも、多少の改善
か認められるが、朋3よりは劣る。
Bamboo 6 has the characteristic of no additives, and hananium oxide and calcium oxide are added to it, but Bamboo 4 has niobium oxide and calcium oxide added to it. Compared to Flat 6, there is a slight improvement in properties, but it is not as good as the composite additive effect of //63. Also, some improvement was observed with the addition of calcium oxide to Bian 1, but it was inferior to Tomo 3.

従って、酸化ニオブ、酸化バナジウム、酸化カル/ラム
の複合添加物が最も優れている。
Therefore, a composite additive of niobium oxide, vanadium oxide, and cal/rum oxide is the best.

特許出願人 ティーディーケイ株式会社代理人 阿 形
 明
Patent Applicant TDC Co., Ltd. Agent Akira Agata

Claims (1)

【特許請求の範囲】 l Fe2O355,0−57,0モル%、ZnO5,
0−25,0モル%、MnO2,0,0〜18.0モ/
l、%から成るマンガン亜鉛系フェライトに対し、酸化
ニオブ0.005〜01重量%、酸化バナジウム0.0
05〜0.05重量%及び酸化カルシウム0.01〜0
.30重量%を含有させたことを特徴とする磁気記録用
磁性材料。 2 Fe2O355,0−57,0モル%、Zr1O5
,0−25,0モル%、Mn040.0〜18.0モル
χの組成のフェライトを形成させるのに必要な原料粉末
混合物に対し酸化ニオブ0.005〜0.1重量%、酸
化バナジウム0 、005〜0.05重量%及び酸化カ
ル/ラム0.01〜0.30重量%を粉末状で加え、成
形後非酸化性雰囲気中、1100〜1400℃において
理論密度の95〜98%に在る寸で一次焼成し、次いで
少なくとも800 Kg /cnjに加圧しながら、1
100〜1400℃において理論密度の99.8%以上
になる捷で二次焼成することを特徴とする磁気記録用磁
性材料の製造方法。
[Claims] l Fe2O355,0-57,0 mol%, ZnO5,
0-25.0 mol%, MnO2, 0.0-18.0 mol/
0.005-01% by weight of niobium oxide and 0.0% vanadium oxide for manganese-zinc ferrite consisting of
05-0.05% by weight and calcium oxide 0.01-0
.. A magnetic material for magnetic recording, characterized in that it contains 30% by weight. 2 Fe2O355,0-57,0 mol%, Zr1O5
, 0-25.0 mol%, Mn0 0.005-0.1% by weight of niobium oxide, vanadium oxide 0, 005-0.05% by weight and Cal/Ram oxide 0.01-0.30% by weight are added in powder form, and after molding, the density is 95-98% of the theoretical density at 1100-1400°C in a non-oxidizing atmosphere. The first firing was carried out at a temperature of
1. A method for producing a magnetic material for magnetic recording, which comprises performing secondary firing at a temperature of 100 to 1,400° C. to achieve a density of 99.8% or more of the theoretical density.
JP58123954A 1983-07-07 1983-07-07 Manganese-zinc ferrite magnetic recording magnetic material and manufacture Granted JPS6016863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58123954A JPS6016863A (en) 1983-07-07 1983-07-07 Manganese-zinc ferrite magnetic recording magnetic material and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58123954A JPS6016863A (en) 1983-07-07 1983-07-07 Manganese-zinc ferrite magnetic recording magnetic material and manufacture

Publications (2)

Publication Number Publication Date
JPS6016863A true JPS6016863A (en) 1985-01-28
JPH0455990B2 JPH0455990B2 (en) 1992-09-07

Family

ID=14873454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58123954A Granted JPS6016863A (en) 1983-07-07 1983-07-07 Manganese-zinc ferrite magnetic recording magnetic material and manufacture

Country Status (1)

Country Link
JP (1) JPS6016863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102376408A (en) * 2011-11-28 2012-03-14 无锡斯贝尔磁性材料有限公司 Wide-temperature manganese-zinc ferrite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102376408A (en) * 2011-11-28 2012-03-14 无锡斯贝尔磁性材料有限公司 Wide-temperature manganese-zinc ferrite

Also Published As

Publication number Publication date
JPH0455990B2 (en) 1992-09-07

Similar Documents

Publication Publication Date Title
US7524433B2 (en) Ferrite material
JPH10163018A (en) Soft-magnetic material for inductor and manufacture of inductor using the same
JPH10163017A (en) High frequency soft-magnetic material for low temp. sintering and manufacture of inductor using the same
JPS5836974A (en) Low magnetic loss mn-zn ferrite and manufacture
JP3492802B2 (en) Low loss ferrite material
US6623879B2 (en) Soft-magnetic hexagonal ferrite composite particles, and green sheet using the same and soft-magnetic hexagonal ferrite sintered ceramics
JPS6016863A (en) Manganese-zinc ferrite magnetic recording magnetic material and manufacture
EP1283529B1 (en) Mn-Zn ferrite and coil component using the same
CN100372800C (en) Process for preparing high density double 5000Mn Zn ferrite material
JPS5983977A (en) High density manganese zinc ferrite
US3609083A (en) Heat treatment of nickel zinc cobalt ferrite
JP2802839B2 (en) Oxide soft magnetic material
KR0174387B1 (en) Mn-Zn Ferrite Core Composition and its Manufacturing Method
JPS6143291B2 (en)
JPS62278162A (en) Oxide ferrite composition and manufacture
JPS6043644B2 (en) Manufacturing method of NiZn ferrite with high magnetic permeability in high frequency band
JP2775740B2 (en) High frequency high permeability magnetic material
JP2939035B2 (en) Soft magnetic oxide substance
JPH0376762B2 (en)
JPS6297114A (en) Magnetic head
JPS6286510A (en) Magnetic head
JPH0122228B2 (en)
JP2566143B2 (en) High density and high coefficient of thermal expansion ferrite for composite magnetic head and manufacturing method thereof
JPH03234003A (en) Ferrite magnetic substance
JPS6259069B2 (en)