JPS6016853B2 - Method for straightening L-curvature of steel plates and steel strips - Google Patents

Method for straightening L-curvature of steel plates and steel strips

Info

Publication number
JPS6016853B2
JPS6016853B2 JP16528479A JP16528479A JPS6016853B2 JP S6016853 B2 JPS6016853 B2 JP S6016853B2 JP 16528479 A JP16528479 A JP 16528479A JP 16528479 A JP16528479 A JP 16528479A JP S6016853 B2 JPS6016853 B2 JP S6016853B2
Authority
JP
Japan
Prior art keywords
warp
variation
plate thickness
amount
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16528479A
Other languages
Japanese (ja)
Other versions
JPS5689327A (en
Inventor
東光 手柴
俊二 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16528479A priority Critical patent/JPS6016853B2/en
Publication of JPS5689327A publication Critical patent/JPS5689327A/en
Publication of JPS6016853B2 publication Critical patent/JPS6016853B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はテンションレベラによる鋼板及び鋼帯のL反り
矯正方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for straightening L-curvature of steel plates and steel strips using a tension leveler.

一般に、冷間圧延鋼板やブリキのL反り(長手方向反り
)は、レベラの圧下操作である程度矯正できるといわれ
ていた。
Generally, it was said that L-curvature (longitudinal curvature) of cold-rolled steel plates and tinplate can be corrected to some extent by rolling down the leveler.

従来のローラレベラによるL反り矯正方法は、コイルト
ップで数lq女のL反り測定を行ない、ローラレベラの
主として最終ロールの位置を調整し、以後loツト(1
00q女、約10n)に1回L反りを測定し、L反りの
変動があればしべラの圧下量を調整していたところであ
る。
The conventional L warp correction method using a roller leveler measures the L warp of several liters at the coil top, adjusts the position of the final roll mainly of the roller leveler, and then
The L warp was measured once every 00q female (approximately 10n), and if there was a change in the L warp, the amount of reduction of the shingles was adjusted.

通常のコイルは約1仇onからIQonあり、1コイル
につき10〜15回の調整を行なう必要があった。近年
、特にブリキに要求されているL反りの許容範囲は厳し
くなり、例えば、数断長さ(80仇駁)当り吊り反り量
が12肋以下の管理値とされる場合もある。しかしなが
ら、上記の如き管理値を満足させることは、従来のしべ
ラ操作では非常に困難であり、また、製品の歩蟹り低下
を招いている。また、ボックス暁錨ブリキ材に関し、従
釆のテンションレベラにより、レベリング速度30仇m
pm時のL反り矯正をなし、電気錫メッキ工程を経て奥
断された製品の板厚とL反りの関係は第1図の如くなる
。この図に示されるように、原板の板厚変動に伴ないL
反りが大きな影響を受けでいるが、上記従来においては
板厚変動によるL反りを防止することは極めて困難であ
り、この種のL反り制御は行なわれていなかった。なお
、第1図で測定距離は1.7のである。板厚変動による
L反り制御に関して、板厚変動に対するL反り量が判明
すれば、レベラ上流に設置された厚み計の信号によりし
べラ以下を操作して一定範囲内のL反りを得ようとする
予測制御も考えられるが、このような方法では、シャー
ラィンに設直されていない高価な設備を必要とする。例
えば、ライン速度に追従するための遅れ時間補正は、D
DC(ダィジェクト・ディジタル・コントロール)制御
となるため、マイクロコンピュータが必要となり、しか
も非常に短周期の板厚変動を制御するのであるから、圧
下モータの大容量化、高応答性が必要となり、設備上の
問題重点がある。本発明は上記従釆の問題点に着目し、
従釆なされていない板厚変動によるL反りに対し、極め
て有効な矯正方法とすることができるL反り矯正方法を
提供することを目的とする。
A typical coil has an IQon of about 1 to 1, and each coil needs to be adjusted 10 to 15 times. In recent years, the tolerance range for L warpage that is particularly required for tinplate has become stricter, and for example, the amount of hanging warp per several cutting lengths (80 squares) may be set to a control value of 12 ribs or less. However, it is very difficult to satisfy the above-mentioned control values using the conventional shingler operation, and this also causes a decline in product quality. In addition, regarding the box Akatsuki Anchor tin material, the leveling speed is 30 m by the tension leveler of the subordinate.
The relationship between the plate thickness and the L warp of a product that has undergone L warp correction during PM and has been cut through the electrolytic tin plating process is as shown in Figure 1. As shown in this figure, L
Warpage is greatly affected, but in the above-mentioned conventional art, it is extremely difficult to prevent L warp due to variation in plate thickness, and this type of L warp control has not been carried out. In addition, the measured distance in FIG. 1 is 1.7. Regarding L warpage control due to plate thickness fluctuations, once the amount of L warp due to plate thickness fluctuations is known, it is possible to control the L warp within a certain range by operating the leveler and below based on the signal from the thickness gauge installed upstream of the leveler. Predictive control can also be considered, but such a method requires expensive equipment that has not been reinstalled in the shear line. For example, the delay time correction to follow the line speed is D
Because it is DC (direct digital control) control, a microcomputer is required, and because it controls plate thickness fluctuations in a very short period, the reduction motor needs to have a large capacity and high response. The above problems are important. The present invention focuses on the problems of the above-mentioned problems,
It is an object of the present invention to provide an L-curvature correction method that can be an extremely effective correcting method for L-curvature due to uncontrolled plate thickness variations.

上記目的を達成するために、レベラ加工の際、その加工
速度によって板厚変動のL反りに対する寄与率が変化す
ることにかんがみ、高価な制御機器を用いずに、従来の
ローラレベラでは矯正できなかった板厚変動によるL反
りの変動を高速テンションレベラを使用して最小のL反
り変動に制御し、歩留りの向上を図るようにした。
In order to achieve the above objective, in consideration of the fact that the contribution rate of plate thickness variation to L warp changes depending on the processing speed during leveling processing, we have developed a method that cannot be corrected with conventional roller levelers without using expensive control equipment. A high-speed tension leveler was used to control the variation in L warp due to plate thickness variation to the minimum variation in L warp, thereby improving yield.

以下に本発明に係る鋼板及び鋼帯のL反り矯正方法の実
施例について詳細に説明する。
Examples of the method for straightening L-curvature of steel plates and steel strips according to the present invention will be described in detail below.

ボックス燐鎚ブリキ材についてしべリング速度30肌p
mにおける板厚変動量Rと該板厚Rに対するL反り量W
は第1図に示されているが、これを散布図と回帰線に表
わしたものを第2図に示す。
About the box phosphor hammer tin material, the stamen ring speed is 30 skin p.
The amount of plate thickness variation R in m and the amount of L warp W with respect to the plate thickness R
is shown in FIG. 1, and its representation as a scatter diagram and regression line is shown in FIG.

この図によれば、回帰式はW=−81狐十273(Rは
板厚、WはL反り量)にて示され、相関係数はr=0.
74である。一方、同一材料につき、テンションレベラ
を用い、レベリング速度120皿pm‘こてしべリング
後、電気錫メッキ工程後、灘断ラインで鱗断して製造し
たブリキ材の板厚RとL反り量Wの関係及び、その散布
図及び回帰線に表わした図が、第3図及び第4図である
According to this figure, the regression equation is expressed as W=-81 (R is the plate thickness, W is the amount of L warp), and the correlation coefficient is r=0.
It is 74. On the other hand, the plate thickness R and L warpage amount of the same material were manufactured by using a tension leveler at a leveling speed of 120 pm' with a trowel, after electro-tin plating process, and then scaled on a cutting line. The relationship between W and its scatter diagram and regression line are shown in FIGS. 3 and 4.

ただし、テンションレベラでほぼL反り矯正を行なった
ために灘断ラインでの圧下はほとんど行なっていない。
第4図における回帰式は、W=−31駅十105(Rは
板厚、WはL反り量)で示され、相関係数はr=0.5
3である。これらのことから、板厚変動】OAに対して
従来の30比hpmでのローラレベラでは、L反りが8
肌の変動をもつのに対し(第2図)、レベリング速度1
20仇hpmでしべラ矯正した場合は、L反りが3柵の
変動量となっていることがわかる。このように、レベリ
ング速度の変化により、各材料の板厚変動量に対するL
反り変動量は異なるものであるが、レベリング速度V=
300〜120仇hpmにおけるボックス競錨ブリキ材
及び連続燐鈍ブリキ材について、板厚変動量△R=10
rに対するL反り変動量△Wを表わすと第5図の如くな
る。
However, since most of the L warp was corrected using a tension leveler, there was almost no rolling down at the cut line.
The regression equation in Figure 4 is shown as W = -31 105 (R is the plate thickness, W is the amount of L warp), and the correlation coefficient is r = 0.5.
It is 3. For these reasons, with the conventional roller leveler at 30 ratio hpm for plate thickness variation] OA, L warpage is 8.
While the skin has fluctuations (Figure 2), the leveling speed is 1.
It can be seen that when the stamens are corrected at 20 hpm, the L warp fluctuates by 3 bars. In this way, by changing the leveling speed, L
Although the warpage fluctuation amount is different, the leveling speed V=
Plate thickness variation △R = 10 for box competitive tinplate material and continuous phosphorescent tinplate material at 300 to 120 hpm
The L warp variation amount ΔW with respect to r is expressed as shown in FIG.

なお、ボックス燐鈍ブリキ材は曲線A、連続燐鈍ブリキ
材は曲線Bで示されている。この図から、レベリング速
度が低くなるほど、又、材質の軟らかいものほど、板厚
変動によるL反り変動量△Wが大きくなることが分った
。ここで、曲線A,Bは一般に次式で近似できる。
In addition, the box phosphorescent tinplate material is shown by curve A, and the continuous phosphorescent tinplate material is shown by curve B. From this figure, it was found that the lower the leveling speed and the softer the material, the larger the L warp variation ΔW due to plate thickness variation. Here, curves A and B can generally be approximated by the following equations.

△VV=a‐b・VC ……‘
1}a,b,cは正の係数であり、鋼板の変形抵抗、板
厚変動量△R、原板の板厚等により変化す0る。
△VV=a-b・VC...'
1}a, b, and c are positive coefficients that change depending on the deformation resistance of the steel plate, the plate thickness fluctuation amount ΔR, the plate thickness of the original plate, etc.

従って、上述したように、各対象材毎に予め実験により
算出しておく必要がある。第5図の曲線A.Bは各々次
の■,‘3}式で表わされる。△W=16一1.23V
o・34(相関係数r:0.磯).・・.・・{21夕
△W=8.5一0.N8V0・6o4(相関係数r=
0.99)・…・・■そこで、本実施例では、L反り量
Wをある一定の管理値に制御する方法につき、次のよう
に行なつo今、ボックス鱗錨ブリキ材のL反り値をla
吻以下に制御する場合、テンションレベラによる同一板
厚におけるL反り値のばらつきBを測定する。
Therefore, as mentioned above, it is necessary to calculate it in advance by experiment for each target material. Curve A in FIG. B is expressed by the following formulas . △W=16-1.23V
o・34 (correlation coefficient r: 0. Iso).・・・. ...{21st evening △W=8.5-0. N8V0・6o4 (correlation coefficient r=
0.99) ......■ Therefore, in this embodiment, the method of controlling the L warp amount W to a certain control value is carried out as follows. Now, the L warp value of the box scale anchor tin material La
In the case of controlling the warpage to be less than the diameter, the variation B of the L warp value at the same board thickness is measured using a tension leveler.

本実施例では、第2図及び第4図からばらつきは約B=
7風である。次に、冷間圧延での板厚の変動量Rを測定
するが、通常、上記ブリキ材では変動量は△R=10仏
である。
In this example, from FIGS. 2 and 4, the variation is approximately B=
7 winds. Next, the amount of variation R in plate thickness during cold rolling is measured, and normally for the above-mentioned tinplate material, the amount of variation is ΔR=10 France.

以上から、L反り値を管理値C=12側以下に制御する
ためには、L反り変動量△Wは次式を満足しなければな
らない。
From the above, in order to control the L warp value to be below the control value C=12 side, the L warp variation amount ΔW must satisfy the following equation.

△W+BミC ・・・…■すなわ
ち、本実施例では、C=12肋、B=7側を{41式に
代入して、△Wミ5風 を満足しなければならない。
△W+BmiC......■In other words, in this embodiment, C=12 ribs and B=7 side must be substituted into equation {41 to satisfy △Wmi5 wind.

上記を満足するしべリング速度は、予め求められた板厚
変動量△R=10仏に対するL反り変動量△Wとしべリ
ング速度Vとの関係図(第5図曲線A)若しくは■式か
らV〒60肌pmとなり、従って、テンションレベラを
V=6皿hpm以上で運転するものである。
The shingling speed that satisfies the above can be determined from the relationship diagram between the L warp fluctuation amount △W and the shingling speed V for the plate thickness fluctuation amount ΔR = 10 degrees determined in advance (curve A in Figure 5) or from the formula V is 60 skin pm, so the tension leveler is operated at V=6 plate hpm or higher.

第6図は‘41式の左辺の意味を模式的に示したもので
、直線Aは第2図,第4図の回帰線に対応するものであ
る。
FIG. 6 schematically shows the meaning of the left side of the '41 formula, and straight line A corresponds to the regression line in FIGS. 2 and 4.

このように、本発明は冷間圧延時の板厚変動量が△Rの
場合の、L反り変動量△Wとしべリング速度Vとの関係
を予め求めておき(第5図、【11式)、L反り管理値
C以内となるように{41式からL反り変動量△Wを算
出し、次に前記‘1}式等から求められる速度以上にし
べリングを行うことで、簡単かつ確実にL反り量を管理
値以下に制御でできるのである。
As described above, in the present invention, when the plate thickness variation during cold rolling is ΔR, the relationship between the L warp variation ΔW and the leveling speed V is determined in advance (see FIG. 5, [Equation 11] ), calculate the L warp fluctuation amount △W from formula {41} so that it is within the L warp control value C, and then perform beveling at a speed higher than that calculated from formula '1} etc., to easily and reliably In this way, the amount of L warpage can be controlled to be below the control value.

以上の如く、本発明に係る鋼板及び鋼帯のL反り矯正方
法によれば、従来行なわれていない板厚変動によるL反
り変動をしべリング速度変化により、充分に管理値内に
制御することができ、歩蟹りの向上した鋼板,鋼帯を得
ることができる効果がある。
As described above, according to the method for straightening L-warpage of steel plates and steel strips according to the present invention, it is possible to sufficiently control L-warp fluctuations due to changes in sheet thickness, which has not been done in the past, to within a control value by changing the sillage speed. This has the effect of making it possible to obtain steel plates and steel strips with improved rolling properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はラィン速度30肌pmにおける板厚変動草とL
反り童とを示すグラフ図、第2図は第1図の回帰線を表
わした散布図、第3図はライン速度1200hpmにお
ける板厚変動量とL反り量を示すグラフ図、第4図は第
3図の回帰線を表わした散布図、第5図はしべリング速
度と板厚変動量10rにおけるL反り変動量を示すグラ
フ図、第6図は板厚変動量、L反りのばらつき、及びL
反り変動量との関係を示す模式図である。 第1図 第2図 第3図 第4図 第5図 第6図
Figure 1 shows plate thickness fluctuations and L at a line speed of 30 skin pm.
Fig. 2 is a scatter diagram showing the regression line of Fig. 1, Fig. 3 is a graph showing the amount of plate thickness variation and L warpage at a line speed of 1200 hpm, and Fig. 4 is a graph showing the amount of L warp. Figure 3 is a scatter diagram showing the regression line, Figure 5 is a graph showing the amount of variation in L warpage at the shingling speed and variation in plate thickness 10r, and Figure 6 is a graph showing the amount of variation in plate thickness, variation in L warpage, and L
It is a schematic diagram which shows the relationship with the amount of warpage variation. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1 鋼板及び鋼帯のL反りを矯正するテンシヨンレベラ
に対し、板厚変動によるL反り変動量ΔWを次式により
算出し、ΔW+B≦C 但し、B:同一板厚におけるL反り値のばらつきC:
L反りの管理値 次いで、次式により前記L反り変動量ΔWに相当する
レベリング速度Vを求め、ΔW=a−b・V^c 但し、a,b,cは正の係数 該レベリング速度Vをもつて矯正することにより、板
厚変動によるL反り変動量を制御することを特徴とする
鋼板及び鋼帯のL反り矯正方法。
[Claims] 1. For a tension leveler that corrects the L warp of steel plates and steel strips, the amount of L warp variation ΔW due to plate thickness variation is calculated using the following formula, and ΔW+B≦C, where B: for the same plate thickness. Dispersion of L warpage value C:
Management value of L warp Next, use the following formula to find the leveling speed V corresponding to the above L warp fluctuation amount ΔW, ΔW = a-b・V^c, where a, b, and c are positive coefficients. A method for straightening L-curvature of steel plates and steel strips, which comprises controlling the amount of L-curvature variation due to variation in plate thickness by straightening the L-curvature of steel plates and steel strips.
JP16528479A 1979-12-19 1979-12-19 Method for straightening L-curvature of steel plates and steel strips Expired JPS6016853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16528479A JPS6016853B2 (en) 1979-12-19 1979-12-19 Method for straightening L-curvature of steel plates and steel strips

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16528479A JPS6016853B2 (en) 1979-12-19 1979-12-19 Method for straightening L-curvature of steel plates and steel strips

Publications (2)

Publication Number Publication Date
JPS5689327A JPS5689327A (en) 1981-07-20
JPS6016853B2 true JPS6016853B2 (en) 1985-04-27

Family

ID=15809400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16528479A Expired JPS6016853B2 (en) 1979-12-19 1979-12-19 Method for straightening L-curvature of steel plates and steel strips

Country Status (1)

Country Link
JP (1) JPS6016853B2 (en)

Also Published As

Publication number Publication date
JPS5689327A (en) 1981-07-20

Similar Documents

Publication Publication Date Title
AU603309B1 (en) Wet skin-pass rolling method
JPS6132087B2 (en)
CN108555032A (en) A kind of hot continuous rolling band tail portion method for controlling thickness
CN110170535B (en) Automatic control method for welding seam passing rolling force of galvanizing skin pass mill
JPS6016853B2 (en) Method for straightening L-curvature of steel plates and steel strips
CN113458151B (en) Control method of SPA-H steel edge wave shape for hot-rolled thin-specification container
JP4623738B2 (en) Shape control method in cold rolling
JP4227686B2 (en) Edge drop control method during cold rolling
JP3150059B2 (en) Cold rolling method for metal strip
JPS59185524A (en) Controlling method of tension leveler
JP4102267B2 (en) Sheet width control method in cold tandem rolling
JP2004090079A (en) Edge drop controller for rolling mill
CN111451294B (en) Method for improving strip shape precision of hot-rolled strip steel
JPH0687011A (en) Method for rolling thick plate
JP2001212608A (en) Method of controlling plate thickness for hot continuous roller
JPH1034215A (en) Method for controlling edge drop in cold rolling
JP3117913B2 (en) Shape control method and temper rolling mill in temper rolling
JPH05111716A (en) Method for operating roller leveler
JPS6032522B2 (en) Plate crown reduction method
JPH10235421A (en) Method for controlling camber in cold rolling
JPH11207405A (en) Method for controlling thickness of steel sheet
JPS59107701A (en) Setting method of draft in dull rolling
JPS62238012A (en) Shape control method for plate stock
SU1044348A1 (en) Strip continuous rolling method
JP2000301221A (en) Method for controlling edge drop during cold rolling