JPS60168001A - Electrostatic capacity type position detecting device - Google Patents

Electrostatic capacity type position detecting device

Info

Publication number
JPS60168001A
JPS60168001A JP2388584A JP2388584A JPS60168001A JP S60168001 A JPS60168001 A JP S60168001A JP 2388584 A JP2388584 A JP 2388584A JP 2388584 A JP2388584 A JP 2388584A JP S60168001 A JPS60168001 A JP S60168001A
Authority
JP
Japan
Prior art keywords
sensor
detected
capacitance
coaxial tube
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2388584A
Other languages
Japanese (ja)
Inventor
Kunihiko Minagawa
皆川 邦彦
Hideyuki Iwamoto
英之 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOUNO DENSHI KK
Sakura Sokki KK
Original Assignee
KOUNO DENSHI KK
Sakura Sokki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOUNO DENSHI KK, Sakura Sokki KK filed Critical KOUNO DENSHI KK
Priority to JP2388584A priority Critical patent/JPS60168001A/en
Publication of JPS60168001A publication Critical patent/JPS60168001A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve an accuracy of a position detecting device by connecting a sensor part and an electronic converting circuit part by a special coaxial tube cable, and also widening an effective area of a probe of a sensor. CONSTITUTION:As for a sensor 11' of an electrostatic capacity type, its detecting area is wide remarkably. A special coaxial tube cable 6, a converting circuit 12, an indication adjusting part 9 and a display lamp are provided. When the sensor 11' having a wide probe area is used, a variation of an electrostatic capacity following a passage of an object to be detected 3 becomes large, therefore, an S/N can be improved, and also a detecting distance between the object 3 to be detected and the sensor 11 can be enlarged as shown by D. The distance D can be enlarged up to 250mm.. Since an area of a sensor prove is large, a variation of an electrostatic capacity following a passage of the object to be detected becomes large, therefore, a control point is set easily to an optional detecting position.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、静電容量の変化により移動する金属被検出物
の位置を検出する静電容量式位置検出装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a capacitive position detection device that detects the position of a moving metal object by changing capacitance.

(従来技術の問題点) 従来から製鉄所などにおいて搬送される鋼板、パイプ、
線材等の位置を無接触で検出する場合、第1図に示すよ
うに静電容量型、高周波発振型、マイクロウェーブ型、
磁気型、或いは光検知型などの近接スイッチと称する検
出装置を使用して被検出物の位置を検出している。
(Problems with conventional technology) Conventionally, steel plates, pipes,
When detecting the position of wire rods etc. without contact, as shown in Figure 1, there are capacitance type, high frequency oscillation type, microwave type,
The position of the object to be detected is detected using a detection device called a proximity switch, such as a magnetic type or a photodetection type.

第1図は、かかる従来例の要部を示す略図である。図に
おいて、(1)は近接スイッチ、(2)はローラ等の搬
送手段、(3)は矢印方向に移動する鋼板などの被検出
物、(4)は電源及び信号用導線である。ところが、在
来の近接スイッチは、第2図に示すようにセンサ部(1
1)と電子変換回路i(1(Ig)とが一体化された構
造になっているため、センサ部(1凰)が静電容量型の
場合センサ用プローブ(検出用電極)の面積が小さく、
感度の関係で近接スイッチ(1)と被検出物(3)との
距離(検出距離)dを大きくできず、常温の場合でも検
出距離dは30mmg程度と非常に小さいものである。
FIG. 1 is a schematic diagram showing the main parts of such a conventional example. In the figure, (1) is a proximity switch, (2) is a conveying means such as a roller, (3) is an object to be detected such as a steel plate that moves in the direction of the arrow, and (4) is a power supply and signal conductor. However, the conventional proximity switch has a sensor part (1) as shown in Figure 2.
1) and the electronic conversion circuit i (1 (Ig)) are integrated, so if the sensor part (1 凰) is a capacitance type, the area of the sensor probe (detection electrode) is small. ,
Due to sensitivity, the distance (detection distance) d between the proximity switch (1) and the detected object (3) cannot be increased, and even at room temperature, the detection distance d is very small, about 30 mm.

そのため、近接スイッチ(1)が被検出物(3)と接触
して破損する危険があるばかりでなく、被検出物(3)
が高温になると変換回路(1□)が熱の影響を受けて使
用不能となっていた。
Therefore, there is not only a risk that the proximity switch (1) may come into contact with the detected object (3) and be damaged, but also
When the temperature reached a high temperature, the conversion circuit (1□) was affected by the heat and became unusable.

そこで、1000〜200℃描度の温度に対して使用で
きるような装置が考えられた。第3図は、かような従来
例の要部を示す略図である。図において、第1及び第2
図と対応する部分圧は同一の符号を付しである。(5)
は耐熱同軸ケーブルで、これによりセンサ部(11)と
変換回路部(12)とを離して耐熱対策としている。第
4図は、かかる耐熱同軸ケーブルの例を示す一部切開図
である。この種の位置検出装置では、センサ(11)と
被検出物(3)の間に高周波電気信号を加えるので、高
周波微弱信号の減衰を防止し且つ外部からの雑音を受け
にくくするため、同軸ケーブルを使用する必要がある。
Therefore, an apparatus was devised that can be used at temperatures ranging from 1000 to 200 degrees centigrade. FIG. 3 is a schematic diagram showing the main parts of such a conventional example. In the figure, the first and second
Partial pressures corresponding to those in the figure are given the same reference numerals. (5)
is a heat-resistant coaxial cable, which separates the sensor section (11) and the conversion circuit section (12) for heat resistance. FIG. 4 is a partially cutaway view showing an example of such a heat-resistant coaxial cable. In this type of position detection device, a high-frequency electrical signal is applied between the sensor (11) and the detected object (3), so a coaxial cable is used to prevent the weak high-frequency signal from attenuating and to make it less susceptible to external noise. need to be used.

第4図において、(51)は内部導体、(52)はポリ
エチレン又はテフロン絶縁体、(53)は外部導体、(
54)は塩化ビニール又はテフロン被覆である。
In Fig. 4, (51) is the inner conductor, (52) is the polyethylene or Teflon insulator, (53) is the outer conductor, (
54) is coated with vinyl chloride or Teflon.

内部導体(51)は細い軟鏑製単線又は撚り線で、外部
導体(53)は編組銅線より構成されている。
The inner conductor (51) is made of a thin single wire or stranded wire made of soft iron, and the outer conductor (53) is made of a braided copper wire.

第3図において、温度が200’C以下の場合は、上記
の如き耐熱同軸ケーブル(5)はテフロン被覆の耐熱性
により使用可能である。しかし、温度が500℃を超え
ると、耐熱鋳鋼か鋼板製のセンサ部(1x)は充分耐え
られるが、上記のような従来ケーブル(5)では、材質
的な変化と共に物性の変化が起こる。例えば、比誘電率
が変化し、ケーブル(5)の有する分布容量が変化する
。容量変化を検出する装置において、ケーブル(5)の
静電容量が大きく変化したのでは使用不可能である。ま
た、このように熱の影響を強(受けるため、センサのプ
ローブの面積を大きくすることも困難である。
In FIG. 3, when the temperature is below 200'C, the heat-resistant coaxial cable (5) as described above can be used due to the heat resistance of the Teflon coating. However, when the temperature exceeds 500° C., the sensor part (1x) made of heat-resistant cast steel or steel plate can withstand it sufficiently, but in the conventional cable (5) as described above, the physical properties change as well as the material. For example, the dielectric constant changes, and the distributed capacitance of the cable (5) changes. A device for detecting capacitance changes cannot be used if the capacitance of the cable (5) changes significantly. Furthermore, since it is strongly influenced by heat, it is difficult to increase the area of the sensor probe.

第3図の場合も、検出釦@dは大きくとれないので、第
1図のものと同様な欠点がある。第1及び第3図のもの
は、共に検出感度の経年変化がある。また、これらのも
のでは、センサ部(11)上を被検出物(3)が通過す
るどきにランプを点灯させていたが、被検出物(3)が
さび(スケール)で被われた鋼板のような場合、誤動作
することがあった。
In the case of FIG. 3 as well, since the detection button @d cannot be made large, there is a drawback similar to that of FIG. 1. In both the cases of Figs. 1 and 3, there is a change in detection sensitivity over time. In addition, in these devices, the lamp was turned on when the object to be detected (3) passed over the sensor part (11), but the object to be detected (3) was a steel plate covered with rust (scale). In such cases, malfunctions could occur.

更に、センサ部(11)の面積が小さいため、被検出物
(3)がセンサ部(11)を完全に被わないと動作せず
、被検出物(3)の移動速度が早くなるとランプの点灯
が遅れるという問題もあった。
Furthermore, since the area of the sensor part (11) is small, it will not operate unless the detected object (3) completely covers the sensor part (11), and if the moving speed of the detected object (3) increases, the lamp will not work. There was also a problem with the lighting being delayed.

(発明の目的) 本発明の目的は、」一連の如き欠点を大幅に改善した静
電容量式位置検出装置を提供するにある。
(Object of the Invention) An object of the present invention is to provide a capacitance type position detection device which has significantly improved the following drawbacks.

(発明の概要) 本発明は、センサに静電容量型のものを使用し、センナ
部と電子変換回路部とを中空同軸管中に内部導体を配し
た特殊同軸ケーブルを用いて分離することにより、また
、これと合わせてセンサ用プローブの有効面積を大きく
することにより、上記の目的を達成したものである。
(Summary of the invention) The present invention uses a capacitance type sensor, and separates the sensor section and electronic conversion circuit section using a special coaxial cable in which an internal conductor is arranged in a hollow coaxial tube. In addition, the above object has been achieved by increasing the effective area of the sensor probe.

(実施例) 第5図は、本発明に用いる特殊同軸管ケーブルの例を示
す部分的断面図である。図において、(6)は特殊同軸
管ケーブルを全体として示し、(61)は内部導体、(
62)は同軸管(外部導体を兼ねる。)、(63)はス
ペーサ、(64)はロック・ナツト、(6b)はソケッ
トを示す。(7)は、必要に応じてケーブル(6)を高
温物体の熱輻射より保護するためのパイプである。スペ
ーサ(63)の孔に内部導体(61)を通し、これKよ
り内部導体(61)を同軸管(62)内の中央に支持す
る。同軸管(62)は、高温用の炭素鋼管などで作る。
(Example) FIG. 5 is a partial sectional view showing an example of a special coaxial tube cable used in the present invention. In the figure, (6) shows the special coaxial tube cable as a whole, (61) shows the internal conductor, (
62) is a coaxial tube (which also serves as an external conductor), (63) is a spacer, (64) is a lock nut, and (6b) is a socket. (7) is a pipe for protecting the cable (6) from thermal radiation of high temperature objects as necessary. The internal conductor (61) is passed through the hole of the spacer (63), and the internal conductor (61) is supported by the hole K at the center of the coaxial tube (62). The coaxial tube (62) is made of high temperature carbon steel tube or the like.

内部導体(6エ)は、撚り線ワイヤを用いる。The internal conductor (6D) uses twisted wire.

このような構成の特殊同軸管ケーブル(6)は、例えば
%インチ径の同軸管(6g)を使用した場合、静電容量
値が1m当たり20pFであった。従来の耐熱同軸ケー
ブルでは最小の静電容量値でも1m当たり60pFであ
るから、上述の特殊同軸管ケーブル(6)では単位長静
電容量値が1/3に低下することになる。このことは、
ケーブルの伝送可卵距離が3倍に伸びることを意味する
。また、特殊同軸管ケーブル(6)の絶縁体は空気であ
るので、温度変化による比誘電率変化が無視でき、50
0°〜1000℃の高温度でも耐熱同軸ケーブルとして
静電容量及びその変化量の小さいものが得られる。した
がって、耐熱材質も自由に選択できる利点がある。
The special coaxial tube cable (6) having such a configuration had a capacitance value of 20 pF per 1 m when a coaxial tube (6 g) having a diameter of, for example, % inch was used. Since the minimum capacitance value of a conventional heat-resistant coaxial cable is 60 pF per 1 m, the unit length capacitance value of the above-mentioned special coaxial tube cable (6) is reduced to 1/3. This means that
This means that the cable transmission distance will be tripled. In addition, since the insulator of the special coaxial tube cable (6) is air, changes in relative permittivity due to temperature changes can be ignored, and 50
Even at high temperatures of 0° to 1000° C., a heat-resistant coaxial cable with small capacitance and small change in capacitance can be obtained. Therefore, there is an advantage that the heat-resistant material can be freely selected.

第6図は、かかる特殊同軸管ケーブルを用いた本発明の
好適な実施例を示す略図である。図中、第3図と対応す
る部分には同−又は類似の符号を付した。(11)は静
電容量型のセンサであるが、上述のセンサ(11)と興
なる点は、センサのグローブ(検出用電極)の有効面積
が大幅に広くなっていることである。センサ(11)は
(1工)の場合と同様に絶縁碍子を含む支持体で支持す
るが、図では省略しである。プローブ面積の広いセンサ
(11)を用いると、被検出物(3)の通過に伴う静電
容量の変化が大きくなるので、S/N比を改善できると
共に被検出物(3)とセンサ(11)間の検出距離なり
で示すように大きくできる。実験によれば、距離りを2
50uまで大きくすることができた。
FIG. 6 is a schematic diagram showing a preferred embodiment of the present invention using such a special coaxial tube cable. In the figure, parts corresponding to those in FIG. 3 are given the same or similar symbols. (11) is a capacitance type sensor, but the difference from the above-mentioned sensor (11) is that the effective area of the sensor's globe (detection electrode) is significantly larger. The sensor (11) is supported by a support including an insulator as in the case of (1st construction), but it is not shown in the figure. If a sensor (11) with a large probe area is used, the change in capacitance due to the passage of the object (3) will increase, so the S/N ratio can be improved and the distance between the object (3) and the sensor (11) can be improved. ) can be increased as shown by the detection distance between According to experiments, the distance is 2
I was able to increase the size to 50u.

第6図において、(6)は特殊同軸管ケーブル、(8)
は一般ケーブル、(9)は指示調節部、 (1Gは表示
ランプを示す。第3図や第6図のようにセンサ部(ll
)。
In Figure 6, (6) is a special coaxial tube cable, (8)
is a general cable, (9) is an indicator adjustment section, (1G is an indicator lamp, and as shown in Figures 3 and 6, the sensor part (ll
).

(11’)と変換回路(12)間を耐熱同軸ケーブル(
5)・(6)で接続すると、耐熱同軸ケーブルの静電容
量値が問題になる。第3図の場合、耐熱同軸ケーブル(
5)の1mfiたり静電容量値が大きいことは既に述べ
たとおりで、被検出物(3)の有無によりセンサ部(1
1)が検出する最大静電容量変化は101)F程度であ
るから、被検出物(3)の移動速度を考えて実際に位置
検出に使用される静電容量変化は数pF以下となる。耐
熱同軸ケーブル(5)を含めた高温用センサ部の初期容
量値は一般に200〜400pFと大きいから、これを
含めたのでは、静電容量分解能を小さくすることができ
ず、任意の検出位置に制御(例えばスイッチ)点を設定
するととなど側底おぼつかない。制御点設定つまみの回
転角から静電容量最小分解能はせいぜい1.5〜ZpF
どまりで、それ以下の分解能で制御点を設定することは
無理である。そこで、数pF以下の容量変化でも充分な
分解能で制御点を設定できるよ5K、静電容量変化値か
ら耐熱同軸ケーブル(5)の容量値を除去したセンサ部
(11)のみの容量値を取出して使用する。こうすると
、耐熱同軸ケーブル(5)の長さに比例する初期容量値
に関保なく制御点の設定が行なえる。第6図の場合には
、センサ・プローブの面積を広くすると共にこの技法を
用いる。
(11') and the conversion circuit (12) using a heat-resistant coaxial cable (
When connecting using 5) and (6), the capacitance value of the heat-resistant coaxial cable becomes a problem. In the case of Figure 3, the heat-resistant coaxial cable (
5) has a large capacitance value of 1 mfi, and the sensor part (1
Since the maximum capacitance change detected by 1) is about 101) F, the capacitance change actually used for position detection is several pF or less considering the moving speed of the detected object (3). The initial capacitance value of the high-temperature sensor section including the heat-resistant coaxial cable (5) is generally as large as 200 to 400 pF, so if this is included, the capacitance resolution cannot be reduced, and the Setting the control (eg switch) point and basolateral unsteadiness. The minimum capacitance resolution is at most 1.5 to ZpF based on the rotation angle of the control point setting knob.
Therefore, it is impossible to set control points with a resolution lower than that. Therefore, it is possible to set the control point with sufficient resolution even when the capacitance change is less than a few pF.The capacitance value of only the sensor section (11) is obtained by removing the capacitance value of the heat-resistant coaxial cable (5) from the capacitance change value. and use it. In this way, the control points can be set regardless of the initial capacitance value, which is proportional to the length of the heat-resistant coaxial cable (5). In the case of FIG. 6, this technique is used in conjunction with increasing the area of the sensor probe.

指示調節部(9)には、被検出物(3)がない状態の初
期静電容量値をゼロに定めるゼロ点調整部、センサ部(
11’)の静電容量変化範囲を目盛全長00〜100%
にセットするフルスパン調整部、検出された位置を指示
する目盛部、センサ(Is’)上における任意の位置を
被検出物(3)の制御点に設定しうる制御点設定つまみ
等が設けられる。これにより、被検出物(3)のないと
きを目盛O1被検出物(3)力センサ(11’)を完全
に被ったときを目盛100とし、制御点設定つまみで制
御位置を決める。目盛部の指示から被検出物(3)の移
動状態や変換回路部(12)の動作状況が判り、つまみ
を回すだけで簡単に制御位置の設定・変更ができる。な
お、α0)は被検出物(3)が制御位置に到達した時に
リレー等が動作して点灯するランプであるが、これは指
示調節部(9)と一体に設けてもよい。
The indication adjustment section (9) includes a zero point adjustment section that sets the initial capacitance value to zero when there is no object (3) to be detected, and a sensor section (
11') The capacitance change range is scaled from 00 to 100% of the total length.
A full span adjustment section for setting the detected position, a scale section for indicating the detected position, a control point setting knob for setting an arbitrary position on the sensor (Is') as a control point of the detected object (3), etc. are provided. Thereby, when there is no object to be detected (3), the scale is O1, and when the object to be detected (3) completely covers the force sensor (11'), it is 100, and the control position is determined by the control point setting knob. The moving state of the object to be detected (3) and the operating state of the conversion circuit section (12) can be determined from the indications on the scale, and the control position can be easily set or changed by simply turning the knob. Note that α0) is a lamp that is turned on when a relay or the like is operated when the detected object (3) reaches the control position, but this may be provided integrally with the instruction adjustment section (9).

(発明の効果) 本発明は、センサ部と電子変換回路部との間を特殊同軸
管ケーブルで接続したものと、このように特殊同軸管ケ
ーブルで接続すると同時にセンサのグローブの有効面積
を広くしたものとの2発明を含むと考えられる。
(Effects of the Invention) The present invention connects the sensor section and the electronic conversion circuit section with a special coaxial tube cable, and at the same time connects the sensor section with the special coaxial tube cable and widens the effective area of the sensor's globe. It is thought that this invention includes two inventions.

第1の発明による効果は、次のとおりである。The effects of the first invention are as follows.

(al 特殊同軸管ケーブルは単位長当たり静電容量値
が非常に小さいので、ケーブルの長さを伸ばしても従来
と同じ検出感度を維持できる。したがって、電子変換回
路部を熱より遠ざけることができるので、500℃以上
の高温に対し有利である。
(al) Since the special coaxial tube cable has a very small capacitance value per unit length, the same detection sensitivity as before can be maintained even if the length of the cable is increased. Therefore, the electronic conversion circuit part can be kept away from heat. Therefore, it is advantageous for high temperatures of 500°C or higher.

(b) %殊同軸管ケーブルは、絶縁体が空気であるか
ら温度変化による比誘電率変化が無視でき、500°〜
1000℃の高温度でも静電容量の変化が極め℃小さい
。したがって、静電容量式位置検出装置に好適であり、
ケーブルの材質も耐熱性のものを自由に選択できる利点
がある。
(b) Since the insulator of the % special coaxial tube cable is air, the change in dielectric constant due to temperature change can be ignored, and the
Even at a high temperature of 1000°C, the change in capacitance is extremely small. Therefore, it is suitable for a capacitive position detection device,
There is also the advantage of being able to freely select heat-resistant cable materials.

(C) 特殊同軸管ケーブルの使用により、センサ部を
大きくしても熱による影響を減少しうるので、センサの
プローブの有効面積を太き(することが可能となる。
(C) By using a special coaxial tube cable, the effect of heat can be reduced even if the sensor section is enlarged, so it is possible to increase the effective area of the sensor probe.

第2の発明は、上述の効果に加えて更に次の如き効果を
有する。
In addition to the above-mentioned effects, the second invention has the following effects.

(d) センサのプローブの有効面積が大きいため、被
検出物の通過に伴う静電容量変化が大きくなり、8/N
比が改善され検出感度が向上する。
(d) Since the effective area of the sensor probe is large, the change in capacitance due to the passage of the object to be detected becomes large, resulting in 8/N
The ratio is improved and the detection sensitivity is improved.

したがって、検出距離りを大き゛くとれるので、センサ
部と被検出物との接触の心配がなく、振動や衝撃の影響
を受けにくくなる。
Therefore, since the detection distance can be increased, there is no need to worry about contact between the sensor section and the object to be detected, and the sensor is less susceptible to vibrations and shocks.

(e) 検出感度の向上により、被検出物例えば鋼板に
数1011IIの厚さのスケールが付いていても、誤動
作しなくなる。また、特殊同軸管ケーブルの使用と相俟
って検出感度の経年変化が少なくなる。
(e) Improved detection sensitivity prevents malfunctions even if the object to be detected, for example, a steel plate, has a scale of several 1011 II thick. In addition, the use of a special coaxial tube cable reduces the change in detection sensitivity over time.

(f) センサ・プローブの面積が大きいため、被検出
物の通過に伴う静電容量の変化が大きくなるので、任意
の検出位置に制御点を設定するととが容易となる。した
がって、例えば、被検出物の通過開始位置近くに制御点
を設定することにより、被検出物の移動速度が早い場合
の之ンプ点灯の遅れを防止できる。
(f) Since the area of the sensor probe is large, the change in capacitance due to the passage of the object to be detected becomes large, so it is easy to set a control point at an arbitrary detection position. Therefore, for example, by setting a control point near the passage start position of the detected object, it is possible to prevent a delay in lighting the lamp when the moving speed of the detected object is fast.

(g) 囲じ理由により、指示調節鄭の指示を見て被検
出物の通過状態(移動量)や電子変換回路部の動作状況
を知ることができる。
(g) Due to the boxed reason, it is possible to know the passing state (travel amount) of the object to be detected and the operating status of the electronic conversion circuit section by looking at the instructions of the indicating adjustment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は位置検出装置の従来例の要部を示す略図、第2
図はこれに用いる近接スイッチの構成を示す図、第3図
は第1図の改良例を示す略図、第4図はこれに用いる従
来の耐熱同軸ケーブルの例を示す一部切開図、第5図は
本発明に用いる特殊同軸管ケーブルの例を示す部分的断
面図、第6図は本発明の好適な実施例を示す略図である
。 (11’)・・・・・グローブ面積の大きいセンサ部、
(12)・・・・・電子変換回路部、(2)・・・・・
搬送手段、(3)・・・・・被検出物、(6)・・・・
・特殊同軸管ケーブル、(61)・・・・・内部導体、
(62)・・・・・中空同軸管。
Fig. 1 is a schematic diagram showing the main parts of a conventional example of a position detection device;
The figure shows the configuration of a proximity switch used in this, Figure 3 is a schematic diagram showing an improved example of Figure 1, Figure 4 is a partially cutaway diagram showing an example of a conventional heat-resistant coaxial cable used in this, and Figure 5 The figure is a partial cross-sectional view showing an example of a special coaxial tube cable used in the present invention, and FIG. 6 is a schematic diagram showing a preferred embodiment of the present invention. (11')...Sensor part with large globe area,
(12)...Electronic conversion circuit section, (2)...
Transport means, (3)... Object to be detected, (6)...
・Special coaxial tube cable, (61)...Inner conductor,
(62)...Hollow coaxial tube.

Claims (1)

【特許請求の範囲】 1、搬送手段により移動する被検出物とこれに対向して
設置された静電容量型センサとの間の静電容量変化を検
出することによって被検出物の位置を検出する静電容量
式位置検出装置において、上記センサ部と電子変換回路
部との間を中空同軸管内の中央に内部導体を配した特殊
同軸管ケーブルで接続したことを特徴とする静電容量式
位置検出装置。 2、゛搬送手段により移動する被検出物とこれに対向し
て設置された静電容量型センサとの間の静電容量変化を
検出するととKよって被検出物の位置を検出する静電容
量式位置検出装置において、上記センサ部と電子変換回
路部との間を中空同軸管内の中央に内部導体を配した特
殊同軸管ケーブルで接続すると共に、上記センサのプロ
ーブの表面積を広くしたことを特徴とする静電容量式位
置検出装置。
[Claims] 1. Detecting the position of an object by detecting a change in capacitance between the object being moved by a conveyance means and a capacitance sensor installed opposite the object. A capacitance type position detection device characterized in that the sensor part and the electronic conversion circuit part are connected by a special coaxial tube cable having an internal conductor arranged in the center of a hollow coaxial tube. Detection device. 2. ``When detecting a change in capacitance between an object to be detected that is moved by a conveyance means and a capacitance type sensor installed opposite to it, the capacitance that detects the position of the object to be detected is detected. In the type position detection device, the sensor section and the electronic conversion circuit section are connected by a special coaxial tube cable in which an internal conductor is placed in the center of a hollow coaxial tube, and the surface area of the probe of the sensor is widened. Capacitive position detection device.
JP2388584A 1984-02-10 1984-02-10 Electrostatic capacity type position detecting device Pending JPS60168001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2388584A JPS60168001A (en) 1984-02-10 1984-02-10 Electrostatic capacity type position detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2388584A JPS60168001A (en) 1984-02-10 1984-02-10 Electrostatic capacity type position detecting device

Publications (1)

Publication Number Publication Date
JPS60168001A true JPS60168001A (en) 1985-08-31

Family

ID=12122898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2388584A Pending JPS60168001A (en) 1984-02-10 1984-02-10 Electrostatic capacity type position detecting device

Country Status (1)

Country Link
JP (1) JPS60168001A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634311A (en) * 1992-05-26 1994-02-08 Universities Res Ass Inc Capacitive probe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634311A (en) * 1992-05-26 1994-02-08 Universities Res Ass Inc Capacitive probe

Similar Documents

Publication Publication Date Title
US5400209A (en) In-situ real-time sheet resistance measurement system and method using an electrostatic chuck
US5491423A (en) Device for detecting the presence of a food container, such as a saucepan, dish or the like, on a glass ceramic cooking hob
US4823603A (en) Capacitance manometer having stress relief for fixed electrode
JP2004502156A (en) In particular, a non-contact distance measuring device for detecting position and movement amount
EP0644409B1 (en) A method of remotely measuring process data
US2619538A (en) Wave guide attenuator
US2768266A (en) Electrical noise element
US2468125A (en) Standing wave indicator
JPH03118490A (en) Magnetic flux measuring sensor
US3447071A (en) Probes having guard ring and primary sensor at same potential to prevent collection of stray wall currents in ionized gases
US2615973A (en) Temperature responsive detector system
JPS60168001A (en) Electrostatic capacity type position detecting device
US5354130A (en) Method and apparatus for measuring the temperature of an electrically conductive material
US2710899A (en) Resistor unit for thermal noise thermometer
US3826980A (en) Enameled electrical sensing probe
US10856452B1 (en) Sensor apparatus
SE506154C2 (en) Method and apparatus for inductively measuring the dimensions and position of objects of electrically conductive material
US2349436A (en) Temperature measuring device
US2676196A (en) Electrical transducing element
JPH03504158A (en) Measuring device for measuring rotation angle
US2401962A (en) Measuring instrument
FR2438271A1 (en) Device for detection of specific gas - comprises two probes of variable conductance, one of pure nickel oxide one of doped or non-stoichiometric nickel oxide
JPS56153262A (en) Detecting method for short circuited point of wiring pattern
JP2000081472A (en) Heat insulating structure of nmr probe
JPH08306286A (en) Proximity sensor for high temperature