JPS60166892A - Steam relief valve - Google Patents

Steam relief valve

Info

Publication number
JPS60166892A
JPS60166892A JP59021721A JP2172184A JPS60166892A JP S60166892 A JPS60166892 A JP S60166892A JP 59021721 A JP59021721 A JP 59021721A JP 2172184 A JP2172184 A JP 2172184A JP S60166892 A JPS60166892 A JP S60166892A
Authority
JP
Japan
Prior art keywords
pressure
steam
reactor
relief valve
psia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59021721A
Other languages
Japanese (ja)
Inventor
富永 研司
山成 省三
真田 高宥
高史 仲山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59021721A priority Critical patent/JPS60166892A/en
Publication of JPS60166892A publication Critical patent/JPS60166892A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は軽水冷却型原子炉(以下軽水炉と呼ぶ)におい
て原子炉隔離時に炉心の崩壊熱で発生する蒸気を一次系
から系外に放出する逃し弁に係゛す、特に原子炉スクラ
ム後の崩壊熱を除去するに好適な蒸気放出方法及び装置
に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a light water-cooled nuclear reactor (hereinafter referred to as a light water reactor), which uses a relief system to release steam generated by the decay heat of the core from the primary system to the outside of the system during reactor isolation. The present invention relates to a steam release method and apparatus suitable for removing decay heat related to valves, particularly after a nuclear reactor scram.

〔発明の背景〕[Background of the invention]

従来技術の一例を第1図及び第2図を用いて説原子炉隔
離時に炉心lで発生する崩壊熱を除去する手段として、
沸騰水型原子炉(BWR)2では、第1図に示すように
蒸気ドーム3に接続した主蒸気管4に設置された逃し安
全弁(S/RV)5を介し、−次系の蒸気を排出するこ
とにより、原子炉隔離時又は異常事象時に原子炉圧力容
器(RPV)6の圧力を制御・抑制している。
An example of the conventional technology will be explained using FIGS. 1 and 2 as a means for removing decay heat generated in the reactor core during reactor isolation.
In the boiling water reactor (BWR) 2, as shown in Figure 1, secondary steam is discharged through a safety relief valve (S/RV) 5 installed in the main steam pipe 4 connected to the steam dome 3. By doing so, the pressure in the reactor pressure vessel (RPV) 6 is controlled and suppressed during reactor isolation or abnormal events.

このS/RVは、複数個の弁から構成され(1100M
Weプラントでは18個)、計測したRPV6圧力に基
づき複数の圧力グループで開閉することとしている。
This S/RV is composed of multiple valves (1100M
At the We plant, there are 18 valves), which are opened and closed in multiple pressure groups based on the measured RPV6 pressure.

従って、−次系の急激な圧力上昇に対しては、上記S/
RV5の全弁が開放することにより圧力を抑制し、通常
高温待機のような原子炉隔離事象に対しては複数個のS
/RV5のうち、最低設定圧力の1弁がスクラム後の崩
壊熱に相当する蒸気を排出することができ一次系の圧力
を制御することが可能である。
Therefore, the above S/
Pressure is suppressed by opening all RV5 valves, and multiple S
Of /RV5, one valve with the lowest set pressure can discharge steam corresponding to the decay heat after scram, and it is possible to control the pressure of the primary system.

従来例では、複数少のS/RV5は全て同一仕様・同一
容量で設計・製造されており、ただS/RV5の開閉設
定圧力が弁によって異なっていた。
In the conventional example, a plurality of S/RV5s are all designed and manufactured with the same specifications and the same capacity, but the opening/closing set pressure of the S/RV5s differs depending on the valve.

一方、加圧木型原子炉(PWR)7では、−次゛系ルー
プ配管の一部に加圧器9が設置されており、この加圧器
9で原子炉圧力容器6の圧力を通常運転及び異常事象時
に制御・抑制する。例えば、通常運転時に一次系の圧力
が低下した場合には、前記加圧器9に設置したヒータ1
0で加熱することにより一次系の圧力を所定の圧力に戻
す。逆に、−次系の圧力が増加した場合には、前記加圧
器9の気相部に設置したスプレィ系11を作動し蒸気を
凝縮することにより一次系の圧力を所定の圧力に維持す
る設計となっている。それにも関わらず、−次系の圧力
上昇を抑制できない場合には加圧器9の頂部に設けられ
た安全弁12が開放し蒸気を一次系より放出することに
より、−次系の圧力を制御することができる。
On the other hand, in the pressurized wooden reactor (PWR) 7, a pressurizer 9 is installed in a part of the -order system loop piping, and this pressurizer 9 controls the pressure in the reactor pressure vessel 6 during normal operation and during abnormal operation. Control and suppress when an event occurs. For example, if the pressure in the primary system drops during normal operation, the heater 1 installed in the pressurizer 9
By heating at 0, the pressure of the primary system is returned to a predetermined pressure. On the other hand, when the pressure in the secondary system increases, the spray system 11 installed in the gas phase of the pressurizer 9 is operated to condense the steam, thereby maintaining the pressure in the primary system at a predetermined pressure. It becomes. Nevertheless, if the pressure rise in the secondary system cannot be suppressed, the safety valve 12 provided at the top of the pressurizer 9 opens and releases steam from the primary system, thereby controlling the pressure in the secondary system. I can do it.

以上説明したように、BWR2及びPWR7共に一次系
の圧力制御に関しては十分でかつ多重の制御装置を有し
ている。しかし、原子炉隔離事象のような圧力上昇が緩
慢な事象に対しては、前記S/RV5や安全弁12の容
量は大きすぎて、事象が収束するまでの間、開閉運動を
繰返すこととなっていた。即ち、第3図に示す如<S/
RV5の開閉により、PRV6の圧力が変動する。これ
は、原子炉1がスクラムすると炉心で発生する蒸気量は
定格運転時の3〜1.5%(スクラム後1分〜1日の長
期に亘り)であるのに対し、S/RV1弁当りの吹き出
し蒸気流量が定格主蒸気流量の約6%であることに起因
している。
As explained above, both the BWR 2 and the PWR 7 have sufficient pressure control in the primary system and have multiple control devices. However, in the event of a slow pressure increase such as a reactor isolation event, the capacity of the S/RV 5 and safety valve 12 is too large, and the valves must repeatedly open and close until the event is resolved. Ta. That is, as shown in FIG.
The pressure in PRV6 fluctuates as RV5 opens and closes. This is because when reactor 1 scrams, the amount of steam generated in the core is 3 to 1.5% of the rated operation (over a long period of 1 minute to 1 day after scram), but This is because the flow rate of blown steam is approximately 6% of the rated main steam flow rate.

S/RV5の開閉が繰り返すことは、第4図に示す如<
S/RV5の駆動源であるアキュムレータ13の容量を
大きいものとしていた。
The repeated opening and closing of S/RV5 is as shown in Figure 4.
The capacity of the accumulator 13, which is the driving source of the S/RV 5, was made large.

〔発明の目的〕[Purpose of the invention]

本発明の目的は定格主蒸気流量の1.5〜3%の蒸気を
1弁で処理することができ、またその弁の吹き止まり設
定圧力を下げた蒸気逃し弁により、原子炉隔離時におけ
る原子炉圧力の変動と弁の繰返し作動を減少させる良好
な崩壊熱除去システムを提供するにある。
The purpose of the present invention is to be able to process steam of 1.5 to 3% of the rated main steam flow rate with one valve, and to provide a steam relief valve that lowers the blow-off setting pressure of the valve, thereby improving the efficiency of nuclear reactor isolation. The objective is to provide a good decay heat removal system that reduces furnace pressure fluctuations and repetitive valve operation.

〔発明の概要〕[Summary of the invention]

本発明は、原子炉隔離時の崩壊熱が原子炉スクラム後長
期にわたり定格主蒸気流量の3〜1.5%程度であるの
に着目し、−次系の圧力上昇防止の観点から崩壊熱に見
あった蒸気を一次系から排出するようにしたものである
The present invention focuses on the fact that the decay heat during reactor isolation is about 3 to 1.5% of the rated main steam flow rate for a long period after the reactor scram. This system is designed to exhaust steam from the primary system.

本発明の推奨される′一実施例においては、RPV気相
部と連結した複数個のS/RVのうち最低設定圧力の弁
1弁又は2弁の蒸気吹き出し流量を減少させるとともに
吹き止まり設定圧力を600〜900psia程度まで
引き下げるシステムとなっている。
In a preferred embodiment of the present invention, the steam blowout flow rate of one or two valves having the lowest set pressure among a plurality of S/RVs connected to the RPV gas phase section is reduced, and the blow-off set pressure is reduced. The system reduces the pressure to around 600 to 900 psia.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第5図に示す。 An embodiment of the present invention is shown in FIG.

(1)本発明の構成 原子炉−次系は、第1図に示すようにRPV6と前記R
PV6の上部の蒸気ドーム3に接続された主蒸気管4及
び前記主蒸気管4に設けられた主蒸気隔離弁(MSIV
) 14から構成される。原子炉隔離時には、MSiV
14が閉鎖しタービン及び復水器での熱除去が不可能と
なるため、原子炉はスクラムし炉心1の崩壊熱で発生す
る蒸気は、MSIV 14の上流に設置された複数個の
S/RV5を介し、圧力抑制プール15に導かれる。
(1) The reactor system according to the present invention consists of the RPV6 and the RPV6 as shown in FIG.
A main steam pipe 4 connected to the steam dome 3 at the top of the PV 6 and a main steam isolation valve (MSIV) installed in the main steam pipe 4
) Consists of 14. During reactor isolation, MSiV
14 is closed and heat removal in the turbine and condenser is no longer possible, the reactor is scrammed and the steam generated by the decay heat of core 1 is transferred to multiple S/RV 5s installed upstream of MSIV 14. is led to the pressure suppression pool 15 via the pressure suppression pool 15.

本発明は、このS/RVに係わるものであり、その吹き
出し・吹きどまり圧力、吹き出し容量及び員数を表1に
示すようにした蒸気逃し弁16である。
The present invention relates to this S/RV, and is a steam relief valve 16 whose blowout/stop pressure, blowout capacity, and number of valves are shown in Table 1.

即ち、最低設定圧力で吹き出すS/RVの吹きどまり圧
力を600〜800psiaまで下げ、その1弁当りの
吹き出し容量を定格主蒸気流量の1.5〜3%の範囲(
1100MWeプラントで100〜200 ton/h
r・弁)にすることを特徴としている。
That is, the dead-end pressure of the S/RV that blows out at the lowest set pressure is lowered to 600 to 800 psia, and the blowout capacity per valve is set in the range of 1.5 to 3% of the rated main steam flow rate (
100-200 ton/h in 1100 MWe plant
r valve).

本発明の蒸気逃し弁16の動作機構は第4図に示す如〈
従来例と基本的に動−であり、RPV6圧力高信号によ
り三方向電磁弁17を切り換えることにより、蒸気逃し
弁16のバネ19の作用とあいまって蒸気逃し弁16を
開放する。
The operating mechanism of the steam relief valve 16 of the present invention is as shown in FIG.
This is basically a dynamic system compared to the conventional example, and by switching the three-way solenoid valve 17 in response to the RPV6 pressure high signal, the steam relief valve 16 is opened in conjunction with the action of the spring 19 of the steam relief valve 16.

一方、RPV6圧力゛があらかじめ600〜900 p
siaの範囲で設定した圧力値に達すると、三方向電磁
弁17を再度切り換えることにより蒸気逃し弁16を閉
鎖する。この際、蒸気逃し弁16の操作用駆動ガスは、
AC系20またはアキュムレータ13より供給される・ 本発明では、後述するS/RV5作動頻度の減少により
アキュムレータ13の容量を低減できる。
On the other hand, the RPV6 pressure is set to 600 to 900 p in advance.
When the pressure value set in the range of sia is reached, the steam relief valve 16 is closed by switching the three-way solenoid valve 17 again. At this time, the driving gas for operating the steam relief valve 16 is
In the present invention, the capacity of the accumulator 13 can be reduced by reducing the S/RV5 operation frequency, which will be described later.

(2)本発明の内容 本発明は1表1に示す如く最低設定圧力の逃し弁16 
1弁で崩壊熱で発生する蒸気を排出することができるよ
う、1100MWe BWR2プラントの場合、以下の
容量とする。
(2) Contents of the present invention As shown in Table 1, the present invention provides a relief valve 16 with a minimum set pressure.
In the case of a 1100 MWe BWR2 plant, the capacity will be as follows so that steam generated by decay heat can be discharged with one valve.

吹き出は蒸気流量:100〜200 t;on/ hr
・弁最少流路面積 :0.03〜0.06ft”吹き出
し圧力 : 1084psia 吹き止り圧力 : 600〜900psiaなお、本発
明は上記仕様の蒸気逃し弁16を1弁又は2弁、従来容
量のS/RV5に組み込むことを特徴としている。
Steam flow rate: 100-200 t; on/hr
・Valve minimum flow path area: 0.03 to 0.06 ft" Blowout pressure: 1084 psia Blow-off pressure: 600 to 900 psia In addition, the present invention can replace the steam relief valve 16 with the above specifications with one or two valves, with the conventional capacity S/ It is characterized by being built into the RV5.

(3)実施例の結果 本発明は採用した実施例の異常事象時のプラント挙動を
第5図に示す。
(3) Results of Examples FIG. 5 shows plant behavior during an abnormal event in an example adopted in the present invention.

本発明は、崩壊熱相当の蒸気を処理する小容量の蒸気逃
し弁16を採用している為、原子炉圧力は第6図に示す
ようにほぼ一定圧力に維持される。
Since the present invention employs a small-capacity steam relief valve 16 that processes steam equivalent to decay heat, the reactor pressure is maintained at a substantially constant pressure as shown in FIG.

この為、S / R’V 5の開閉頻度が減少し弁の信
頼度を向上させるとともに弁駆動用アキュムレータ13
の容量を低減することができる。
For this reason, the frequency of opening and closing of the S/R'V 5 is reduced, improving the reliability of the valve, and reducing the frequency of opening and closing of the S/R'V 5.
capacity can be reduced.

本発明の変形例として、第6図に示すように既設プラン
トに対しS/RV5の下流側配管に流量制限オリフィス
21を設置し、吹き出し蒸気流量を適切にすることがで
きる。
As a modification of the present invention, as shown in FIG. 6, a flow rate limiting orifice 21 can be installed in the downstream piping of the S/RV 5 in an existing plant to appropriate the flow rate of the blown steam.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、原子炉隔離時のS/RVの作動回数を
大幅に低減できるので、弁の信頼度向上と7キユムレー
タの容量低減を図ることができる。
According to the present invention, the number of S/RV operations during reactor isolation can be significantly reduced, so it is possible to improve the reliability of the valve and reduce the capacity of the 7 cumulator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、BWRの従来例を示す図、第2図はPWRの
の従来例を示す図、第3図はBWR従来例の場合の異常
事象時のプラント挙動を示す図、第4図はS/RVの作
動機構を示す図、第5図は実施例の場合の異常事象時の
プラント挙動を示す図、第6図は本発明の変形例を示す
図である。 l・・・炉心、2・・・沸騰水型原子炉(BWR)、3
・・・蒸気ドーム、4・・・主蒸気管、5・・・逃し安
全弁(S/RV)、6・・・原子炉圧力容器(RPV)
、7・・・加圧木型原子炉(PWR)、8・・・−次系
ループ、9・・・加圧器、10・・・ヒータ、11・・
・スプレィ系、12・・・安全弁、13・・・アキュム
レータ、14・・・主蒸気隔離弁(MSIO) 、15
・・・圧力抑制プール、16・・・蒸気逃し弁、17・
・・ガス排気弁、18・・・ガス供給弁、19・・・バ
ネ、20・・・AC系、21・・・流量制御オリフィス
。 ゝへ、 O3 弔3図 率ω図 (B) MSし も5図
Fig. 1 is a diagram showing a conventional example of BWR, Fig. 2 is a diagram showing a conventional example of PWR, Fig. 3 is a diagram showing plant behavior during an abnormal event in the case of conventional BWR example, and Fig. 4 is a diagram showing a conventional example of PWR. FIG. 5 is a diagram showing the operating mechanism of the S/RV, FIG. 5 is a diagram showing plant behavior at the time of an abnormal event in the case of the embodiment, and FIG. 6 is a diagram showing a modification of the present invention. l...Reactor core, 2...Boiling water reactor (BWR), 3
... Steam dome, 4... Main steam pipe, 5... Safety relief valve (S/RV), 6... Reactor pressure vessel (RPV)
, 7... Pressurized wooden reactor (PWR), 8...-secondary system loop, 9... Pressurizer, 10... Heater, 11...
・Spray system, 12...Safety valve, 13...Accumulator, 14...Main steam isolation valve (MSIO), 15
... Pressure suppression pool, 16... Steam relief valve, 17.
...Gas exhaust valve, 18...Gas supply valve, 19...Spring, 20...AC system, 21...Flow rate control orifice. To ゝ, O3 Funeral 3 figure ratio ω figure (B) MS Shimo 5 figure

Claims (1)

【特許請求の範囲】 1、軽水型原子炉の原子炉隔離時または異常事象時にお
いて、原子炉スクラム後の崩壊熱により生成される蒸気
を前記軽水型原子炉の一次系の気相空間部より排出する
に際し、−次系の圧力や冷却材量等のプロセス量信号で
開閉することを特徴とした蒸気逃し弁。 2、特許請求の範囲第1項において、スクラム後の崩壊
熱で発生する原子炉定格出力運転時に発生する蒸気の1
.5〜3%の蒸気を原子炉運転圧力近傍で排出可能な容
量を有する少なくとも1個以上の弁を有することを特徴
とする蒸気逃し弁。 3、特許請求の範囲第1項において、逃し弁の最小絞り
部面積を0.03〜ft”〜0.06ft”の範囲とす
ることを特徴とする蒸気逃し弁。 4、特許請求の範囲第1項、第2項、第3項において、
弁の開閉を原子炉−次系の圧力で制御し、その際いくつ
かにグループ分割した圧力範囲で複数個の弁を開閉し、
特に最低設定圧力で開放する蒸気逃し弁の吹き止まり圧
力を他のグループよりも低くすることを特徴とする蒸気
逃し弁。 5、特許請求の範囲第4項において、グループ分割した
逃し弁の開閉設定圧力を以下にすることを特徴とする蒸
気逃し弁。 弁グループ 弁数′開放圧力 吹き止り圧力最低設定圧
 1弁 1084psia 600〜900psia第
2グループ 複数弁 1094psia 1018〜1
061061p第3グループ 複数弁 1104psi
a 1027〜1071psia第4グループ 複数弁
 1114psia 1036〜1080psia
[Claims] 1. During reactor isolation of a light water reactor or during an abnormal event, steam generated by decay heat after reactor scram is transferred from the gas phase space of the primary system of the light water reactor. A steam relief valve characterized by opening and closing in response to a process amount signal such as the pressure of the secondary system or the amount of coolant when discharging the steam. 2. In claim 1, 1 of the steam generated during reactor rated power operation generated by decay heat after scram
.. A steam relief valve characterized by having at least one valve having a capacity to discharge 5 to 3% of steam at near reactor operating pressure. 3. A steam relief valve according to claim 1, characterized in that the minimum constricted area of the relief valve is in the range of 0.03 to 0.06 ft''. 4. In claims 1, 2, and 3,
The opening and closing of valves is controlled by the pressure of the reactor-subsystem, and at that time, multiple valves are opened and closed within pressure ranges divided into several groups,
In particular, a steam relief valve that opens at the lowest set pressure has a lower dead-end pressure than other groups. 5. The steam relief valve according to claim 4, characterized in that the set pressure for opening and closing of the relief valves divided into groups is set to the following. Valve group Number of valves Opening pressure Dead end pressure Minimum set pressure 1 valve 1084 psia 600~900 psia 2nd group Multiple valves 1094 psia 1018~1
061061p 3rd group multiple valves 1104psi
a 1027~1071 psia 4th group multiple valves 1114 psia 1036~1080 psia
JP59021721A 1984-02-10 1984-02-10 Steam relief valve Pending JPS60166892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59021721A JPS60166892A (en) 1984-02-10 1984-02-10 Steam relief valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59021721A JPS60166892A (en) 1984-02-10 1984-02-10 Steam relief valve

Publications (1)

Publication Number Publication Date
JPS60166892A true JPS60166892A (en) 1985-08-30

Family

ID=12062941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59021721A Pending JPS60166892A (en) 1984-02-10 1984-02-10 Steam relief valve

Country Status (1)

Country Link
JP (1) JPS60166892A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538190B1 (en) 1999-08-03 2003-03-25 Pioneer Corporation Method of and apparatus for reproducing audio information, program storage device and computer data signal embodied in carrier wave
US6831883B1 (en) 1999-08-04 2004-12-14 Pioneer Corporation Method of and apparatus for reproducing audio information, program storage device and computer data signal embodied in carrier wave
WO2008156086A1 (en) * 2007-06-18 2008-12-24 Kabushiki Kaisha Toshiba Drive system for safety valve

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538190B1 (en) 1999-08-03 2003-03-25 Pioneer Corporation Method of and apparatus for reproducing audio information, program storage device and computer data signal embodied in carrier wave
US6831883B1 (en) 1999-08-04 2004-12-14 Pioneer Corporation Method of and apparatus for reproducing audio information, program storage device and computer data signal embodied in carrier wave
WO2008156086A1 (en) * 2007-06-18 2008-12-24 Kabushiki Kaisha Toshiba Drive system for safety valve
JP4768855B2 (en) * 2007-06-18 2011-09-07 株式会社東芝 Safety valve drive system
US8528588B2 (en) 2007-06-18 2013-09-10 Kabushiki Kaisha Toshiba Safety valve drive system

Similar Documents

Publication Publication Date Title
KR20130000572A (en) Apparatus for safety improvement of passive type emergency core cooling system with a safeguard vessel and method for heat transfer-function improvement using thereof
JPS58191989A (en) Reactor power control device
US20150194225A1 (en) Passively initiated depressurization for light water reactor
JPS60166892A (en) Steam relief valve
EP0318323A2 (en) Variable delay reactor protection system
US8559585B2 (en) Cold shutdown assembly for sodium cooled reactor
JPS6375691A (en) Natural circulation type reactor
Chang et al. Advanced design features adopted in SMART
EP3493218A1 (en) Safety system
JPS5928279B2 (en) Main condenser
CA1157580A (en) Pressurized water reactor
JPS6049278B2 (en) Boiling water reactor safety protection method
Lee et al. Test result for simulation of a loss of residual heat removal system accident during a mid-loop operation in ATLAS facility
JPH0529278B2 (en)
JPS6050318B2 (en) Reactor control device
Siebe et al. TRAC-PF1/MOD1 calculations and data comparisons for mist small-break LOCA, feed-and-bleed and steam-generator tube-rupture experiments
JPH08262185A (en) Reactor output control device
Gandrille et al. High pressure path prevention in severe accidents scenarios
JPH0480356B2 (en)
JPS6020193A (en) Water supply system for boiling-water type reactor
JPS61119993A (en) Vacuum degree controller of main condenser
Park et al. Natural Circulation Cooldown Analysis for APR 1400 using the SPACE code
JPS58100785A (en) Coolant auxiliary device for reactor
JPS63184096A (en) Automatic decompression device for boiling water type reactor
JPS6036997A (en) Water supply system for boiling-water type nuclear reactor