JPS60166815A - Monitor for matter attached to compressor blade of gas turbine - Google Patents

Monitor for matter attached to compressor blade of gas turbine

Info

Publication number
JPS60166815A
JPS60166815A JP2174484A JP2174484A JPS60166815A JP S60166815 A JPS60166815 A JP S60166815A JP 2174484 A JP2174484 A JP 2174484A JP 2174484 A JP2174484 A JP 2174484A JP S60166815 A JPS60166815 A JP S60166815A
Authority
JP
Japan
Prior art keywords
sensor
temperature
attached
gas turbine
thermocouple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2174484A
Other languages
Japanese (ja)
Inventor
Mitsuo Teranishi
寺西 光夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2174484A priority Critical patent/JPS60166815A/en
Publication of JPS60166815A publication Critical patent/JPS60166815A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To monitor the amount of matters attached to blades quantitatively without stopping a gas turbine by measuring the difference between the temperature of an attached matter monitoring sensor and air temperature with a thermocouple for measuring air temperature to detect the amount of attached matters. CONSTITUTION:An attached matter monitoring sensor 3 and a thermocouple 4 are inserted into an air passage between compressor stationary blades 1 of a gas turbine. In the attached matter monitoring sensor 3, a heater current 7 is fed to a heater therein from a heater power source 5 at a fixed power so as to keep the calorific value constant. When a heating wire 17 is electrically energized during the operation of the gas turbine, the temperature in the sensor 3 rises higher than the heat generated by the heating wire 17, but the temperature at the center of the sensor after the steady state is reached is determined by the calorific value of the heater, ambient air temperature, heat transmission rate over the outer surface of the sensor and heat conductivity in the sensor. When any matter is attached to the outer surface of the sensor 3, the internal temperature of the sensor rises due to a thermal resistance of the matter attached. Thus, the amount of the matter attached can be estimated by measuring the temperature rise with a thermocouple 19 at the center of the sensor.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はガスタービンコンプレッサ翼付着物監視装置に
係り、特に、ガスタービンを運転している状態で常時定
量的に監視すね事が可能な付着物監視装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a gas turbine compressor blade deposit monitoring device, and in particular, the present invention relates to a gas turbine compressor blade deposit monitoring device, and in particular, deposits that can be constantly and quantitatively monitored while the gas turbine is operating. Regarding monitoring equipment.

〔発明の背景〕[Background of the invention]

従来のガスタービンコンプレッサ翼付着物監視には、ガ
スタービン停止中にコンプレッサ翼表面を直接目視観察
して付着物の量を確認する方式が広く行なわれていたが
、本方式によれば、運転中に付着量を監視することがで
きず、スチームタービンとの複合サイクルであるコンバ
インド発電プラント用ガスタービン等、長期間の連続運
転が行なわれる場合には適用できないという欠点があっ
た。
Conventionally, gas turbine compressor blade deposits have been monitored by directly visually observing the compressor blade surface while the gas turbine is stopped to confirm the amount of deposits. However, it is not possible to monitor the amount of adhesion and cannot be applied to cases where continuous operation is performed for a long period of time, such as in gas turbines for combined power generation plants that have a combined cycle with a steam turbine.

他の従来技術に、ガスタービンの出力と燃料消費量を測
定し、熱効率をめて、熱効率の低下からコンプレッサ翼
の付着物の量を推定する方法があるが、ガスタービンの
熱効率は大気の温度、圧力及び湿度により大きく変動し
、また、熱効率の低下原因も、タービン部の性能低下、
及び吸気。
Another conventional technique is to measure the output and fuel consumption of a gas turbine, calculate the thermal efficiency, and estimate the amount of deposits on the compressor blades from the decrease in thermal efficiency. , varies greatly depending on pressure and humidity, and the cause of the decrease in thermal efficiency is a decrease in the performance of the turbine section,
and inhalation.

排気圧損の増大等があり、コンプレッサ翼の付着物が原
因しているものだけを区別できないため、粒度良く定量
的に監視することは困難であった。
It has been difficult to quantitatively monitor problems with good granularity because there is an increase in exhaust pressure drop, etc., and it is not possible to distinguish between problems caused by deposits on the compressor blades.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、ガスタービンを停止させることなく、
ガスタービンコンプレッサ翼付着物の量を定量的に監視
することが可能なガスタービンコンプレッサ翼付着物監
視装置を提供するにある。
The purpose of the present invention is to
An object of the present invention is to provide a gas turbine compressor blade deposit monitoring device capable of quantitatively monitoring the amount of deposits on gas turbine compressor blades.

〔発明の概要〕[Summary of the invention]

本発明は、ガスタービンコンプレッサ翼付着物をガスタ
ービンの運転中に監視するための手段として、コンプレ
ッサ静翼間空気流路内に、内部に電気ヒータ及び熱電対
を持った付着物監視センーサを8置して電気ヒータによ
って加熱された付着物監視センサーの温度を測定可能と
し、さらに、コンプレッサの同一段における空気温度を
別体の熱電対で測定して、このセンサーと空気温度との
温度差を算出することにより、センサー外表面に付着し
た付着物の量を、外表面の熱抵抗の増大に起因するセン
サー温度の増大として測定可能とし、コンプレッサ翼付
着物の量を、このセンサー外表面付着物によるセンサー
の温度変化によって定量的に監視することを可能にした
ものである。
The present invention provides a means for monitoring deposits on gas turbine compressor blades during operation of the gas turbine, in which a deposit monitoring sensor having an electric heater and a thermocouple inside is installed in the air flow path between compressor stator vanes. It is possible to measure the temperature of a deposit monitoring sensor heated by an electric heater at the same stage of the compressor, and also to measure the air temperature at the same stage of the compressor with a separate thermocouple to calculate the temperature difference between this sensor and the air temperature. By calculating the amount of deposits on the outer surface of the sensor, it is possible to measure the amount of deposits on the outer surface of the sensor as an increase in sensor temperature due to an increase in the thermal resistance of the outer surface, and the amount of deposits on the compressor blade can be calculated based on the amount of deposits on the outer surface of the sensor. This makes it possible to quantitatively monitor the temperature changes of the sensor.

〔発明の実施例〕[Embodiments of the invention]

第1図、第2図、第3図及び第4図に本発明の実施例を
示す。
Embodiments of the present invention are shown in FIGS. 1, 2, 3, and 4.

第1図において、ガスタービンコンプレッサ静翼1間の
空気流路に、ケーシング2の外部から、付着物監視セン
サー3及び熱電対4が挿入されている。付着物監視セン
サー3には、ヒータ用電源5及び外部nI器6が接続さ
れ、ヒータ用電源5からは、ヒータ電流7が、センサー
内のヒータへ、発熱量が一定となるように一定の電力で
供給されている。熱電対4もまた、外部計器6に接続さ
れており、付着物監視センサー3及び熱電対4がらは、
それぞれ、付着物監視センサー温度信号8及びコンプレ
ッサ空気温度信号9が、外部計器6内のセンサー及び空
気各温度計算部10.11を介してセンサー温度上昇表
示部12に入力され、この表示部12で、付着物監視セ
ンサー温度13と、コンプレッサ空気温度14との温度
差ΔTが計算され表示される。
In FIG. 1, a deposit monitoring sensor 3 and a thermocouple 4 are inserted from the outside of a casing 2 into an air flow path between gas turbine compressor stationary blades 1. A heater power source 5 and an external nI device 6 are connected to the deposit monitoring sensor 3, and a heater current 7 is supplied from the heater power source 5 to the heater in the sensor at a constant power so that the amount of heat generated is constant. is supplied by. The thermocouple 4 is also connected to an external instrument 6, and the deposit monitoring sensor 3 and the thermocouple 4 are
The deposit monitoring sensor temperature signal 8 and the compressor air temperature signal 9 are respectively input to the sensor temperature increase display section 12 via the sensor and air temperature calculation sections 10.11 in the external instrument 6, and the display section 12 , the temperature difference ΔT between the deposit monitoring sensor temperature 13 and the compressor air temperature 14 is calculated and displayed.

第2図は付着物監視センサー3の断面図である。FIG. 2 is a sectional view of the deposit monitoring sensor 3.

ステンレス鋼製の外筒15内に中心孔をもつセラミック
軸1Gが挿入され、セラミック軸16の外周に電熱a1
7が巻かれて電気ヒーターとなっている。電熱線17を
巻いたセラミック軸■6と外筒】5の間には絶縁用の酸
化マグネシウム粉末18が充填されている。セラミック
軸16の中心孔内には、温度測定のためのシース型熱電
対19が挿入され、セラミック軸16と、シース型熱電
対19の間の間隙には、熱雷対19の先端の温度検知部
のまわりに、近傍の温度を平均化して検知するための金
属筒20が設置され、また、熱電対J9の根本付近では
周囲に酸化マグネット粉末】8が充填されている。この
付着物監視センサー3をコンプレッサ静翼間空気流路に
設置し、ガスタービン運転中に電熱線17に通電した場
合、センサー3内の温度は、電熱線エフより発生する熱
により上昇するが、定常状態に達した後のセンサー中心
の温度は、ヒーター発熱量と、周囲空気温度及び、セン
サー外表面熱伝達率、センサー内熱伝導率により決る。
A ceramic shaft 1G having a center hole is inserted into an outer cylinder 15 made of stainless steel, and an electric heating a1 is applied to the outer periphery of the ceramic shaft 16.
7 is wound around to form an electric heater. Magnesium oxide powder 18 for insulation is filled between the ceramic shaft 6 around which the heating wire 17 is wound and the outer cylinder 5. A sheathed thermocouple 19 for temperature measurement is inserted into the center hole of the ceramic shaft 16 , and a temperature sensor at the tip of the thermocouple 19 is inserted into the gap between the ceramic shaft 16 and the sheathed thermocouple 19 . A metal tube 20 is installed around the thermocouple J9 to average and detect the temperature in the vicinity, and oxide magnet powder 8 is filled around the base of the thermocouple J9. When this deposit monitoring sensor 3 is installed in the air flow path between compressor stator vanes and the heating wire 17 is energized during gas turbine operation, the temperature inside the sensor 3 will rise due to the heat generated from the heating wire F. The temperature at the center of the sensor after reaching a steady state is determined by the amount of heat generated by the heater, the ambient air temperature, the heat transfer coefficient on the outer surface of the sensor, and the thermal conductivity inside the sensor.

センサー3の外表面に付着物が生じた場合には、その付
着物の熱抵抗によりセンサー内部の温度は上昇し、その
温度上昇をセンサー中心の熱電対19で測定することに
より、付着物の量を推定することができる。
When deposits occur on the outer surface of the sensor 3, the temperature inside the sensor rises due to the thermal resistance of the deposits, and by measuring this temperature rise with the thermocouple 19 at the center of the sensor, the amount of deposits can be determined. can be estimated.

センサー3の直径が151III+、ヒーター発熱量が
センサー軸方向長さぁたり47W10n、また、センサ
ー3を設置しているコンプレッサ中間段の空気温度を1
80℃、圧力4.6Kg/ CiA、流速150m/s
とした場合、付着物の無い状態でセンサー中心の温度は
約370℃となり、空気温度との温度差、71T=19
0℃が測定される。このセンサー外表面に厚さ100μ
の付着物が生じた場合、その熱抵抗によりセンサー中心
温度は約35℃上昇し1.!7T=225℃となる。こ
のΔTの変化を測定することにより、センサー外表面の
付着物の量を推定することができるため、センサー外表
面と同程度の付着物が生じていると考えられるコンプレ
ッサ翼について、付着物の量を監視することができる6
また、コンプレッサ空気温度は、外気温の変化により変
動が激しく、それによりセンサー温度も影響を受けるた
め、付着物量の評価には、センサー温度そのものでは無
く、センサー温度と空気温度との温度差ATを用いるこ
とが必要であろう 第3図は付着物監視センサー3の取付位置を示したもの
で、コンプレッサ動翼21及びコンプレッサローター2
2に接触しないよう、コンプレッサ静】ぺ1間の空気流
路内にケーシング2外部より挿入されている。
The diameter of sensor 3 is 151III+, the amount of heat generated by the heater is 47W10n per sensor axial length, and the air temperature in the middle stage of the compressor where sensor 3 is installed is 1
80℃, pressure 4.6Kg/CiA, flow rate 150m/s
In the case of
0°C is measured. The outer surface of this sensor has a thickness of 100μ.
If deposits occur, the temperature at the center of the sensor will rise by approximately 35°C due to its thermal resistance.1. ! 7T=225°C. By measuring the change in ΔT, it is possible to estimate the amount of deposits on the outer surface of the sensor. 6.
In addition, the compressor air temperature fluctuates widely due to changes in the outside temperature, which also affects the sensor temperature. Therefore, when evaluating the amount of deposits, the temperature difference AT between the sensor temperature and the air temperature is used, rather than the sensor temperature itself. Figure 3, which may be necessary to use, shows the installation position of the deposit monitoring sensor 3, and shows the installation position of the deposit monitoring sensor 3, which is attached to the compressor rotor blade 21 and the compressor rotor 2.
It is inserted from the outside of the casing 2 into the air flow path between the compressor caps 1 and 1 so as not to come into contact with the casing 2.

第4図は、運転時間に対するコンプレッサ翼付着物厚さ
δ及び付着物監視センサー温度と空気温度の温度差AT
の変化を示す。当初付着物厚さδは0であるが、運転を
開始すると、翼表面に付着物が生じ始め、運転時間とと
もに、付着物厚さδは増加する。外部計器に表示される
ATは付着物厚さδの増加とともに増加するため、AT
を監視して、ある一定の許容値を超えた時点で、コンプ
レッサ翼の付着物除去を行なう。付着物除去の方法には
、コンプレッサ入口に一定の堅さ、粒径を持った固形粒
子を注入する方法等があり、ガスタービンの運転を継続
したままで、コンプレッサ翼の付着物厚さの監視及び付
着物の除去を行なうことができる。付着物除去後もガス
タービンの運転を継続し、その後も付着物厚さの監視及
び除去をくり返すことにより、ガスタービスを止めるこ
とが無く、ガスタービンコンプレッサ翼の付着物量を常
に少量に維持して、常時、コンプレッサ性能の良好な条
件で、運転を行なうことができる。
Figure 4 shows the compressor blade deposit thickness δ and the temperature difference AT between the deposit monitoring sensor temperature and the air temperature with respect to the operating time.
shows the change in Initially, the deposit thickness δ is 0, but once the operation starts, deposits begin to form on the blade surface, and the deposit thickness δ increases as the operation time increases. Since the AT displayed on the external instrument increases as the deposit thickness δ increases, the AT
is monitored, and when a certain tolerance value is exceeded, deposits on the compressor blades are removed. Methods for removing deposits include injecting solid particles with a certain hardness and particle size into the compressor inlet, and the thickness of deposits on the compressor blades can be monitored while the gas turbine continues to operate. and removal of deposits. By continuing to operate the gas turbine even after the deposits have been removed, and repeating the monitoring and removal of the deposits, the gas turbine is not stopped and the amount of deposits on the gas turbine compressor blades is always maintained at a small amount. , the compressor can be operated under conditions with good compressor performance at all times.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ガスタービンを運転したままで、コン
プレッサ翼の付着物量を定量的に監視し付着物の除去を
行なうことができる。
According to the present invention, it is possible to quantitatively monitor the amount of deposits on the compressor blades and remove the deposits while the gas turbine is in operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の系統図、第2図は付着物監
視センサーの一実施例の断面図、第3図は付着物監視セ
ンサーの取付位置を示す断面図、第4図は運転時間に対
する付着物厚さδ及びATの変化を表すグラフである。 1・・・コンプレッサ静翼、2・・・ケーシング、3・
・・付着物監視センサー、4・・・熱電対、5・・・ヒ
ータ用電源、6・・・外部計器、7・・・ヒータ電流、
8・・・付着物監視センサー温度信号、9・・・コンプ
レッサ空気温度信号、10・・・センサー温度計算部、
11・・・空気温度計算部、12・・・センサー温度上
昇表示部、13・・・付着物監視センサー温度、14・
・・コンプレッサ空気温度、15・・・外筒、16・・
・セラミック軸、17・・・電熱線、18・・・酸化マ
グネシウム粉末、19・・・シース型熱電対、20・・
・金属筒、21・・・コンプレッサー動翼、22・・・
コンプレッサローター。 代理人 弁理士 高橋明夫
Fig. 1 is a system diagram of an embodiment of the present invention, Fig. 2 is a sectional view of an embodiment of a deposit monitoring sensor, Fig. 3 is a sectional view showing the mounting position of the deposit monitoring sensor, and Fig. 4 is a sectional view of an embodiment of the deposit monitoring sensor. It is a graph showing changes in deposit thickness δ and AT with respect to operating time. 1... Compressor stationary blade, 2... Casing, 3...
...Adhesion monitoring sensor, 4...Thermocouple, 5...Power supply for heater, 6...External meter, 7...Heater current,
8... Deposition monitoring sensor temperature signal, 9... Compressor air temperature signal, 10... Sensor temperature calculation unit,
DESCRIPTION OF SYMBOLS 11... Air temperature calculation section, 12... Sensor temperature rise display section, 13... Deposition monitoring sensor temperature, 14.
...Compressor air temperature, 15...Outer cylinder, 16...
・Ceramic shaft, 17... Heating wire, 18... Magnesium oxide powder, 19... Sheath type thermocouple, 20...
・Metal tube, 21... Compressor rotor blade, 22...
compressor rotor. Agent Patent Attorney Akio Takahashi

Claims (1)

【特許請求の範囲】[Claims] ■、ガスタービン軸流コンプレッサにおいて、中空金属
容器内に絶縁された電気ヒータ及び絶縁された熱電対を
挿入した付着物監視センターと、空気温度測定用熱電対
どを、それぞれコンプレツザD翼間空気流路内に設置し
、コンプレッサケーシングの外側に置かれた外部計器に
前記付着物監視センターと前記空気温度測定用熱電対を
接続して、内部の電気ヒータにより加熱された前記付着
物監視センターの温度と、前記空気温度測定用熱電対に
より測定つれる空気温度との差を測定して前記付着物の
量を検出する手段としたことを特徴どするガスタービン
コンプレッサ翼付着物監視装置。
■In a gas turbine axial flow compressor, a deposit monitoring center with an insulated electric heater and an insulated thermocouple inserted into a hollow metal container, and a thermocouple for measuring air temperature are installed in the air flow between compressor D blades. The deposit monitoring center and the air temperature measuring thermocouple are connected to an external instrument installed in the road and placed outside the compressor casing, and the temperature of the deposit monitoring center heated by an internal electric heater is measured. and the air temperature measured by the air temperature measuring thermocouple to detect the amount of the deposits.
JP2174484A 1984-02-10 1984-02-10 Monitor for matter attached to compressor blade of gas turbine Pending JPS60166815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2174484A JPS60166815A (en) 1984-02-10 1984-02-10 Monitor for matter attached to compressor blade of gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2174484A JPS60166815A (en) 1984-02-10 1984-02-10 Monitor for matter attached to compressor blade of gas turbine

Publications (1)

Publication Number Publication Date
JPS60166815A true JPS60166815A (en) 1985-08-30

Family

ID=12063578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2174484A Pending JPS60166815A (en) 1984-02-10 1984-02-10 Monitor for matter attached to compressor blade of gas turbine

Country Status (1)

Country Link
JP (1) JPS60166815A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09166568A (en) * 1995-12-14 1997-06-24 Snow Brand Milk Prod Co Ltd Method for measuring fouling degree of manufacturing equipment and cleaning effect to it
US7819578B2 (en) * 2006-12-01 2010-10-26 Rolls-Royce Plc Fluid temperature measurement device
CN106123725A (en) * 2016-06-20 2016-11-16 上海交通大学 The reverse implementation method of the compressor blade of correction various dimensions mismachining tolerance
US20190186283A1 (en) * 2017-12-18 2019-06-20 Rolls-Royce North American Technologies Inc. Apparatus and method for measuring turbine temperature
CN113945602A (en) * 2021-10-22 2022-01-18 攀钢集团攀枝花钢铁研究院有限公司 Experimental device and method for rapid sample loading of metallurgy molten drops
CN113970292A (en) * 2021-10-09 2022-01-25 同济大学 Method for identifying object surface attachment area

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09166568A (en) * 1995-12-14 1997-06-24 Snow Brand Milk Prod Co Ltd Method for measuring fouling degree of manufacturing equipment and cleaning effect to it
US7819578B2 (en) * 2006-12-01 2010-10-26 Rolls-Royce Plc Fluid temperature measurement device
CN106123725A (en) * 2016-06-20 2016-11-16 上海交通大学 The reverse implementation method of the compressor blade of correction various dimensions mismachining tolerance
CN106123725B (en) * 2016-06-20 2018-06-12 上海交通大学 Correct the reverse implementation method of the compressor blade of various dimensions mismachining tolerance
US20190186283A1 (en) * 2017-12-18 2019-06-20 Rolls-Royce North American Technologies Inc. Apparatus and method for measuring turbine temperature
US10697316B2 (en) * 2017-12-18 2020-06-30 Rolls-Royce North American Technologies Inc. Apparatus and method for measuring turbine temperature
CN113970292A (en) * 2021-10-09 2022-01-25 同济大学 Method for identifying object surface attachment area
CN113970292B (en) * 2021-10-09 2023-10-31 同济大学 Method for identifying object surface attachment area
CN113945602A (en) * 2021-10-22 2022-01-18 攀钢集团攀枝花钢铁研究院有限公司 Experimental device and method for rapid sample loading of metallurgy molten drops

Similar Documents

Publication Publication Date Title
US8004423B2 (en) Instrumented component for use in an operating environment
EP3124929B1 (en) Cooled thermocouple and method for determining a temperature
EP2818839B1 (en) Thermocouple probe
CN102353469A (en) Online measurement device of high temperature of outer surface of high-speed aircraft, and preparation and measurement methods thereof
US20110098943A1 (en) Thermal, flow measuring device
JP2017187497A (en) Method for determining fatigue lifetime consumption of engine component
Morris et al. Heat transfer measurements in rectangular channels with orthogonal mode rotation
JPS60166815A (en) Monitor for matter attached to compressor blade of gas turbine
Kinnear et al. Design, calibration and testing of transient thin film heat transfer gauges
Baughn et al. Heat transfer, temperature, and velocity measurements downstream of an abrupt expansion in a circular tube at a uniform wall temperature
JP2006504966A (en) Measuring element for detecting flow velocity
BR112021007699A2 (en) device and method for monitoring the service life of at least one hydraulic apparatus
US9506819B2 (en) Fast response temperature measurement within a gas turbine
GB2395561A (en) Fluid temperature measurement
JP3414582B2 (en) High temperature equipment life monitoring device
JP5157821B2 (en) Attachment detection apparatus and detection method
Buttsworth et al. Unsteady total temperature measurements downstream of a high-pressure turbine
O’Brien Effects of wake passing on stagnation region heat transfer
JPH061185B2 (en) Method and apparatus for detecting state of adhered matter in fluid pipe
JPS61153555A (en) Method and device for detecting presence of substance or generation of change immediately before physical state change in fluid
EP3047284B1 (en) Sensor for high temperature turbulent flow
JP5157822B2 (en) Adherent detection unit and detection apparatus
KR200450290Y1 (en) Elements for detecting temperature of engine exhaust gas
JP2001303969A (en) Monitor device for gas turbine internal device
JP5962134B2 (en) Cooling water line contamination monitoring method and chemical injection control method