JPS60166093A - Method and device for controlling fluidized-bed biological treating apparatus - Google Patents

Method and device for controlling fluidized-bed biological treating apparatus

Info

Publication number
JPS60166093A
JPS60166093A JP59018186A JP1818684A JPS60166093A JP S60166093 A JPS60166093 A JP S60166093A JP 59018186 A JP59018186 A JP 59018186A JP 1818684 A JP1818684 A JP 1818684A JP S60166093 A JPS60166093 A JP S60166093A
Authority
JP
Japan
Prior art keywords
tank
solid particles
vessel
fluidized bed
microorganisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59018186A
Other languages
Japanese (ja)
Other versions
JPH0142759B2 (en
Inventor
Kazuyuki Suzuki
鈴木 一如
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP59018186A priority Critical patent/JPS60166093A/en
Publication of JPS60166093A publication Critical patent/JPS60166093A/en
Publication of JPH0142759B2 publication Critical patent/JPH0142759B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To keep stably the amt. of microorganisms in a vessel, and to treat stably by taking out solid particles in the vessel so that the measured value of SV of a sample taken from mixed liquid in the vessel may be within the appropriate range, stripping off the film of the microorganisms, and returning the solid particles to the inside of the vessel. CONSTITUTION:A sample of a mixed liquid in a vessel is taken from circulation part 6 in the vessel 4 with a sample-taking pump 10, and sent to an automatic SV measuring device 11. The measuring signal from the automatic SV measuring device 11 is sent to a comparator arithmetic unit 15, and compared with a present upper limit value of SV. When the measured value exceeds the upper limit value, the mixed liquid in the vessel is sent to a microorganism stripping device 18 through a controller 16 by operating a pump 17. The microorganism film on the surface of the solid particle is rubbed and washed with stripping particles, and stripped while the introduced solid particles coated with microorganisms pass through the vessel. And the solid particles, along with the microorganisms, are returned to the fluidized-bed biological treating vessel 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、槽内に微生物担体として固体粒子を懸濁させ
、槽内釦配設したエアリフト管を介して気体攪拌を行っ
て前記固体粒子を循環流動させる流動床生物処理装置に
おける固体粒子に付着する微生物量の制御方法およびそ
の装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention involves suspending solid particles as microbial carriers in a tank, and stirring the solid particles through an air lift pipe installed in a button inside the tank. The present invention relates to a method and apparatus for controlling the amount of microorganisms adhering to solid particles in a fluidized bed biological treatment apparatus that circulates and fluidizes solid particles.

〔従来技術〕[Prior art]

最近、活性汚泥法におけるバルキング現象や維持管理の
複雑さを解消したものとして、チューブ接触酸化法1回
転円板法1粒状固体流動床法などを採用した各種の生物
膜式汚水処理装置が実用化されている。これらのうち、
槽内に%i qさせた固体粒子の表面に微生物を付着さ
せ、槽内に配備したエアリフト管を介して気体攪拌を行
いながら槽内で前記固体粒子を循環流動させて汚水と接
触させること冗より汚水中の汚濁物質を除去する粒状固
体流動床法は、他の生物膜法に比べて微生物の付着に供
する固体粒子の表面積が飛躍的に大きくとれるために槽
内に多量の微生物を保持できる点。
Recently, various biofilm-type sewage treatment systems have been put into practical use that have solved the bulking phenomenon and complexity of maintenance in the activated sludge method, such as tube catalytic oxidation, one rotating disk method, and one granular solid fluidized bed method. has been done. Of these,
Microorganisms are attached to the surface of solid particles at a concentration of % iq in a tank, and the solid particles are circulated and flowed in the tank while gas agitation is carried out through an air lift pipe installed in the tank to bring them into contact with wastewater. The granular solid fluidized bed method, which removes pollutants from wastewater, can hold a large amount of microorganisms in the tank because the surface area of the solid particles for microbial attachment is dramatically larger than other biofilm methods. point.

固体粒子が槽内を循環流動しているので月詰りゃ部分的
な嫌気化などのトラブルが起こらない点など、多(の利
点を有しているため注目を集めている。
It is attracting attention because it has many advantages, such as the fact that solid particles circulate and flow inside the tank, so problems such as partial anaerobic formation do not occur if the moon becomes clogged.

このような粒状固体流動床法では、微生物付着用として
砂、アンスラサイト、活性炭、ゼオライト、プラスチッ
ク球などの微生物の付着に適しており、かつ槽内を円滑
に循環流動するに適した比重、粒径を持った固体粒子が
用いられるが1通常。
In this granular solid fluidized bed method, materials such as sand, anthracite, activated carbon, zeolite, and plastic spheres are suitable for the attachment of microorganisms, and have specific gravity and particles suitable for smooth circulation and fluidization within the tank. Solid particles with a diameter are used, but 1 usually.

価格、入手の難易なども考慮して砂が多(用いられてい
る。
Considering the price and difficulty of obtaining, sand is often used.

また、前記エアリフト管はその下部に空気導入管が連結
されており、管内に吹込まれた空気のエアリフト作用に
より、固体粒子はエアリフト管の内外を循環流動してい
る。エアリフト管の配備された槽の上方の1部又は全周
は、上端が水面上にあり下端が水面下にある隅壁にて循
環部と分離部とが区画形成されており、槽内の)V濁液
の一部は。
Further, the air lift tube has an air introduction tube connected to its lower part, and solid particles circulate inside and outside the air lift tube due to the air lift action of the air blown into the tube. A part or the entire circumference above the tank where the air lift pipe is installed is divided into a circulation part and a separation part by a corner wall whose upper end is above the water surface and whose lower end is below the water surface. Part of the V suspension.

この分離部を上昇する間に、固体粒子を分離し、上方よ
り流出水として取り出される。さらに、この流出水は後
処理装置としての凝集沈殿、砂ろ過装置などに送られ、
該流出水中の88.BOD、 COD除去等の処理を受
け、最終処理水となる。
While rising through this separation section, solid particles are separated and taken out from above as effluent water. Furthermore, this runoff water is sent to coagulation sedimentation, sand filtration equipment, etc. as a post-treatment equipment.
88. in the effluent. After undergoing treatments such as BOD and COD removal, it becomes final treated water.

ところで、従来の前記流動床装置においては、処理の継
続に伴って、粒状固体表面で微生物が増殖して粒子は肥
大化し、そのみかげ密度が低下して粒子は次第に軽くな
って沈降速度が低下するため、遂には分離部においては
分離しきれなくなって流出水に同儲して槽外へ流出する
ことになる。
By the way, in the conventional fluidized bed apparatus, as the treatment continues, microorganisms proliferate on the surface of the granular solids, the particles become enlarged, the apparent density decreases, the particles gradually become lighter, and the sedimentation rate decreases. As a result, the separation section can no longer completely separate the water and the water flows out of the tank along with the outflow water.

その結果、槽内の微生物量が少なくなり生物処理装置と
しての機能が低下するのみならず、後段の凝集沈殿装置
や砂ろ過装置などの閉塞、摩耗等のトラブルを引き起こ
すことになり、廃水処理装置として致命的な問題を引き
起こすことになる。従来の流動床装置では、この様なト
ラブルを回避するために、分メfn部面積をできるだけ
余裕をもって大きく設計することてよって対応してきた
が、その場合、どの程度にまで微生物が付着し、沈降速
度がどの程度てまで低下した粒子の分離をすべきなのか
判然とし敵いため、勢い過大な設計とならざるを得ない
が、余り大きくすると逆に浮遊状SSの槽内蓄積を引き
おこして、微生物の付着を妨げたり、該SSの架橋によ
る分離速度の一層の低下によって、粒子の槽外流出を助
長するなどの新たなトラブルを引き起こす原因となるこ
とが多かった。
As a result, the amount of microorganisms in the tank decreases, which not only reduces the functionality of the biological treatment device, but also causes problems such as clogging and wear of the coagulation sedimentation device and sand filtration device in the downstream stages, and the wastewater treatment device This will cause a fatal problem. In conventional fluidized bed equipment, in order to avoid such troubles, the area of the part fn was designed to be as large as possible, but in that case, to what extent microorganisms could adhere and settle. It is obvious to what extent particles whose velocity has decreased should be separated, so the design must be designed with excessive force, but if it is too large, it will cause suspended SS to accumulate in the tank. This often causes new problems such as preventing the adhesion of microorganisms and further reducing the separation rate due to the crosslinking of the SS, promoting particles to flow out of the tank.

〔発明の目的〕[Purpose of the invention]

本発明は、槽内微生物景、ずなわち微生物の固体粒子へ
の付着量を簡易にしてかつ正確に把握し、固体粒子への
微生物付着量を制御し、微生物付着粒子の槽外流出を防
止し、従来の前記トラブルを一挙に解消し、安定かつ高
性能な処理を継続し得る流動床生物処理装置における制
御方法及びその制御装置を提供することを目的とするも
のである。
The present invention makes it possible to easily and accurately grasp the microbial landscape in a tank, that is, the amount of microorganisms attached to solid particles, to control the amount of microorganisms attached to solid particles, and to prevent the microorganisms attached to the particles from flowing out of the tank. However, it is an object of the present invention to provide a control method and a control device for a fluidized bed biological treatment apparatus that can eliminate the above-mentioned conventional problems at once and continue stable and high-performance treatment.

〔発明の構成〕[Structure of the invention]

本発明は、槽内に微生物担体として固体粒子を懸濁状態
下に備え、槽内に配設したエアリフト管を介して気体攪
拌を行って前記固体粒子を循環流動させる流動床を形成
した生物処理装置において、槽内混合液のサンプルを採
取してSV値、すなわ七− を測定し、該SV値が適正範囲内にあるように。
The present invention provides biological treatment in which solid particles are suspended as microbial carriers in a tank, and a fluidized bed is formed in which the solid particles are circulated and fluidized by agitating gas through an air lift pipe installed in the tank. In the device, take a sample of the mixed liquid in the tank and measure the SV value, i.e. 7-, to ensure that the SV value is within the appropriate range.

槽内固体粒子を抜き出して微生物膜を剥離したのち槽内
に返送することを特徴とする流動床生物処理装置の制御
方法及び制御装置である。
A control method and a control device for a fluidized bed biological treatment apparatus are characterized in that solid particles in the tank are extracted, microbial membranes are removed, and then returned to the tank.

〔実施例〕〔Example〕

さらに本発明の一実施例を図面を参照しながら説明すれ
ば次の通りである。
Further, one embodiment of the present invention will be described below with reference to the drawings.

第1図示例において、原水流入管1および処理水流出管
2を有し、かつ微生物付着用の粒状固体6を収容した流
動床生物処理槽4内が、上端が水面上で下端が槽底より
隔離した隔壁5にて循環部6と分離部7とが区画形成さ
れており、循環部乙には上端が水面下にあり下端が槽底
より隔離し、かつ下端付近に空気導入管8が連結された
エアリフト管9が配設されている流動床生物処理装置に
おいて、導入された原水はエアリフト管9内に吹き込ま
れた空気のエアリフト作用により槽4内を循環流動する
間に、固体粒+6に付着した微生物の作用によって、水
中の有機物が分解除去される。
In the first illustrated example, the interior of the fluidized bed biological treatment tank 4, which has a raw water inflow pipe 1 and a treated water outflow pipe 2 and contains granular solids 6 for attaching microorganisms, has an upper end above the water surface and a lower end below the tank bottom. A circulation part 6 and a separation part 7 are divided by an isolated partition wall 5, and the circulation part B has an upper end below the water surface, a lower end isolated from the tank bottom, and an air introduction pipe 8 connected to the vicinity of the lower end. In the fluidized bed biological treatment equipment in which the air lift pipe 9 is installed, the raw water introduced into the air lift pipe 9 is circulated and flows in the tank 4 due to the air lift action of the air blown into the air lift pipe 9. Organic matter in the water is decomposed and removed by the action of attached microorganisms.

そして、槽内液の一部は1分離部7に流入し、ここで微
生物付着粒子を沈降分離して、上部の処理水流出管2か
ら処理水として流出する。
Then, a part of the liquid in the tank flows into the first separation section 7, where the microorganism-attached particles are sedimented and separated, and then flowed out as treated water from the treated water outflow pipe 2 in the upper part.

かかる処理の進行に伴って、固体粒子表面で微生物が増
殖するため1粒子は肥大化して容積を増し次第にそのみ
かけ密度が低下して軽くなる。粒子が過度に肥大して軽
くなりすぎると、分離部7の上昇流速に打勝って沈降分
離できなくなり、処理水とともに槽外に流出してしまう
ことになるため、この状態以前に槽内より微生物付着固
体粒子を抜き出して微生物膜を剥離する必要がある。
As this treatment progresses, microorganisms proliferate on the surface of the solid particles, so each particle becomes enlarged and increases in volume, and gradually its apparent density decreases and becomes lighter. If the particles become too large and too light, they will overcome the upward flow velocity in the separation section 7 and will not be able to settle and separate, and will flow out of the tank together with the treated water. It is necessary to extract the attached solid particles and peel off the microbial film.

微生物の付着度合と微生物付着固体粒子群の沈殿容量と
の間には、第2図に示す様な良い相関関係があるため、
槽内混合液一定量中に占めるこの微生物付着固体粒子群
の沈殿容量を測定することてより、微生物の付着度合即
ち槽内の微生物量を制御することが可能になる。すなわ
ち、定期的に槽内混合液を採取し。
There is a good correlation between the degree of adhesion of microorganisms and the sedimentation capacity of solid particles adhering to them, as shown in Figure 2.
By measuring the sedimentation capacity of the microorganism-adhered solid particles occupying a certain amount of the mixed liquid in the tank, it becomes possible to control the degree of adhesion of microorganisms, that is, the amount of microorganisms in the tank. In other words, periodically collect the mixed liquid in the tank.

を測定し、該SV値が適正範囲内にあるかどうかを確認
し、適正範囲上限を越えていたら、槽内混合液を抜出し
て、固体粒子より微生物膜を剥離して、再び槽内に返送
し、これを該SV値が適正範囲になるまで継続する訳で
ある。
Check whether the SV value is within the appropriate range. If it exceeds the upper limit of the appropriate range, extract the mixed liquid from the tank, peel off the microbial film from the solid particles, and return it to the tank. This is continued until the SV value falls within the appropriate range.

第1図は、この操作を自動化した一例を示すもので、サ
ンプル採取ポンプ10にて例えば槽4内循環部6から槽
内の混合液のサンプルを採取し、SV自動測定装置11
に送る。SV自動測定装置11としては、第3図に例示
するように、サンプル採取ポンプ10によって適正量の
槽内混合液のサンプルがシリンダー12に採取されると
、シリンダー12を挾む光源り及び受光器Rは、モータ
により上下に昇降可能となりでおり、シリンダー12の
水面位置Aからスタートして、サーボ機構により沈降粒
子群の界面に追従しながら下降する。所定時間後の界面
位置Bおよび前記A位置とよりSV測定ユニット13に
よってSV値がめられる。
FIG. 1 shows an example of automating this operation, in which a sample of the mixed liquid in the tank is collected, for example, from the internal circulation section 6 of the tank 4 using the sample collection pump 10, and the SV automatic measuring device 11
send to As illustrated in FIG. 3, the SV automatic measuring device 11 includes a light source and a light receiver that sandwich the cylinder 12 when an appropriate amount of sample of the mixed liquid in the tank is collected into the cylinder 12 by the sample collection pump 10. R can be moved up and down by a motor, and starts from the water surface position A of the cylinder 12 and descends while following the interface of the sedimented particle group by a servo mechanism. The SV value is determined by the SV measurement unit 13 from the interface position B and the above-mentioned A position after a predetermined time.

測定終了後は、サンプルはシリンダー12よりドレンさ
れ、清水、空気によりシリンダーが洗浄される。
After the measurement is completed, the sample is drained from the cylinder 12, and the cylinder is cleaned with fresh water and air.

これらの工程はすべてシーケンスコントローラ14によ
り制御されている。なお、測定時間は粒子の沈降速度を
考慮して任意に決定されるが、通常5〜60分で良い。
All of these steps are controlled by a sequence controller 14. Note that the measurement time is arbitrarily determined in consideration of the sedimentation speed of the particles, but it is usually 5 to 60 minutes.

次いでSv自動測定装置11よりの測定信号は、比較演
算器15に送られ、あらかじめ設定しであるSV上限値
と比較され、これを越えていたら、調節器16を介して
、槽内混合液の抜き出しポンプ17を稼動させ、抜き出
された槽内混合液は微生物膜剥離装置18へ送られる。
Next, the measurement signal from the Sv automatic measuring device 11 is sent to the comparator 15 and compared with a preset SV upper limit value. The extraction pump 17 is operated, and the extracted mixed liquid in the tank is sent to the microbial film stripping device 18.

第4図は微生物膜剥離装置18の一例を示したものであ
り、内部に粒状固体よりも粒径の犬なる剥離用粒子19
が収容されて攪拌機20によって混合されており、導入
された微生物付着固体粒子は槽内な通過する間に、剥離
用粒子19によってもみ洗われて固体粒子表面の微生物
膜が剥離され、微生物ともども流動床生物処理槽4に返
送される。この工程が、SVが適正範囲内になるまでく
り返されることになり、固体粒子6の肥大化が常に防止
され、槽外への固体粒子の流出がなくなり、安定した処
理が継続される。
FIG. 4 shows an example of the microbial membrane peeling device 18, in which peeling particles 19 having a particle size smaller than that of a granular solid are contained inside.
are contained and mixed by a stirrer 20, and while the introduced microbial-adhered solid particles pass through the tank, they are massaged and washed by the peeling particles 19, and the microbial film on the solid particle surface is peeled off, and together with the microorganisms, they are fluidized. It is returned to the floor biological treatment tank 4. This step is repeated until the SV falls within the appropriate range, so that the solid particles 6 are constantly prevented from becoming enlarged, solid particles do not flow out of the tank, and stable processing is continued.

なお、前記実施例では槽内混合液の取り出しに、サンプ
ル採取ポンプ10及び抜き出しポンプ17を使用してい
るが、ヘッド差を利用することができる場合には、これ
らのポンプに代えて開閉弁のみで操作することができる
。また、微生物膜剥離装置18としては、槽4外にわざ
わざ設けることな(、槽内の一部に攪拌機を設けること
によって代用し、その駆動装置を前記比較演算器15の
SV値によって稼動させるようにすることもできる。
In the above embodiment, the sample collection pump 10 and extraction pump 17 are used to take out the mixed liquid in the tank, but if the head difference can be used, only an on-off valve can be used instead of these pumps. It can be operated with. In addition, the microbial film peeling device 18 does not have to be provided outside the tank 4 (it can be replaced by providing a stirrer in a part of the tank, and its drive device is operated by the SV value of the comparator 15). It can also be done.

以上述べたように本発明によれば、流動床生物処理装置
における懸濁固体粒子への微生物付着壕を正確に把握し
、適時その微生物付着蚤を適正範囲内たるべく制御し、
槽内微生物量を安定して保持することができ、固体粒子
の槽外流出もなく、安定した高性能な処理を継続するこ
とができるものである。
As described above, according to the present invention, the microbial adhesion to suspended solid particles in a fluidized bed biological treatment device is accurately grasped, and the microbial adhesion fleas are controlled to be within an appropriate range in a timely manner.
The amount of microorganisms in the tank can be stably maintained, solid particles do not flow out of the tank, and stable and high-performance processing can be continued.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すもので、第1図は縦断説明
図、第2図は微生物の付着度合と微生物付着固体粒子群
の沈殿容量との関係を示す線図。 第3図は自動制御装置の一部を示す説明図、第4図は微
生物膜剥離装置の一例を示す縦断面図である。 1・・・原水流入管、2・・・処理水流出管、6・・・
固体粒子、4・・・流動床生物処理槽、6・・・循環部
、7・・・分離部、8・・・空気導入管、9・・・エア
リフト管、10・・・サンプル採取ポンプ、11・・・
sv自動測定装置、12・・・シリンダー、16・・・
SV自動測定ユニッ)、14・・・シーケンスコントロ
ー?、15・・・比較演算器、16・・・調節器、17
・・・抜き出しポンプ、18・・・微生物剥離装置。 特許出願人 荏原インフィルコ株式会社代理人弁理士 
高 木 正 行 代理人弁理士 千 1) 稔 代理人弁理士 丸 山 隆 夫
The drawings show examples of the present invention, and FIG. 1 is a longitudinal sectional view, and FIG. 2 is a diagram showing the relationship between the degree of adhesion of microorganisms and the sedimentation capacity of solid particles attached to the microorganisms. FIG. 3 is an explanatory diagram showing a part of the automatic control device, and FIG. 4 is a longitudinal cross-sectional view showing an example of the microbial film peeling device. 1... Raw water inflow pipe, 2... Treated water outflow pipe, 6...
Solid particles, 4... Fluidized bed biological treatment tank, 6... Circulation section, 7... Separation section, 8... Air introduction pipe, 9... Air lift pipe, 10... Sample collection pump, 11...
sv automatic measuring device, 12... cylinder, 16...
SV automatic measurement unit), 14...Sequence controller? , 15... Comparison calculator, 16... Adjuster, 17
...Extraction pump, 18...Microorganism stripping device. Patent applicant: Patent attorney representing Ebara Infilco Co., Ltd.
Masayuki Takagi, Patent Attorney 1) Minoru, Patent Attorney Takao Maruyama

Claims (1)

【特許請求の範囲】 1、 槽内に微生物担体として固体粒子を懸濁状態下に
備え、槽内に配設したエアリフト管を介して気体攪拌を
行って前記固体粒子を循環流動させる流動床を形成した
生物処理装置において、槽内混合液のサンプルを採取し
てSV値、すなわち を測定し、該SV値が適正範囲内にあるように、槽内固
体粒子を抜き出して微生物膜をφ]離したのち槽内に返
送することを特徴とする流動床生物処理装置の制御方法
。 2、 槽内に微生物担体として固体粒子を懸濁状態下に
備え、槽内に配設したエアリフト管を介して気体攪拌を
行って前記固体粒子を循環流動させる流動床を形成した
生物処理装置において、槽内混合液を導出させて前記S
V値を測定するSV自動測定装置と、vsv自動測定装
置のSV測定値とSv設定値とを比較演算する比較演算
器とを備え、さらに該比較演算器により、前記SV測定
値が′前記3V設定値を越えたときに、稼動せしめられ
る微生物膜剥離装置を備えたことを特徴とする流動床生
物処理装置の制御装置。 3 前記S自動測定装置が、サンプル採取ポンプを備え
たものであって、光透過式SV自動ユニットを内蔵し、
該ユニットと前記サンプル採取ポンプを定期的に連動せ
しめるコントローラを有するものである特許請求の範囲
第2項記載の流動床生物処理装置の制御装置。
[Claims] 1. A fluidized bed in which solid particles are suspended as microbial carriers in a tank, and the solid particles are circulated and fluidized by agitating gas through an air lift pipe installed in the tank. In the formed biological treatment device, a sample of the mixed liquid in the tank is taken and the SV value, that is, is measured, and the solid particles in the tank are extracted and the microbial film is separated by φ] so that the SV value is within the appropriate range. A method for controlling a fluidized bed biological treatment device, characterized in that the fluidized bed is then returned to a tank. 2. In a biological treatment device in which solid particles are suspended as microbial carriers in a tank, and a fluidized bed is formed in which the solid particles are circulated and fluidized by agitating gas through an air lift pipe arranged in the tank. , the mixed liquid in the tank is drawn out and the above-mentioned S
It is equipped with an SV automatic measurement device that measures the V value, and a comparison calculator that compares and calculates the SV measurement value of the vsv automatic measurement device and the Sv setting value. 1. A control device for a fluidized bed biological treatment device, comprising a microbial membrane peeling device that is activated when a set value is exceeded. 3. The S automatic measurement device is equipped with a sample collection pump, and has a built-in light transmission type SV automatic unit,
3. The control device for a fluidized bed biological treatment apparatus according to claim 2, further comprising a controller for periodically interlocking said unit and said sample collection pump.
JP59018186A 1984-02-06 1984-02-06 Method and device for controlling fluidized-bed biological treating apparatus Granted JPS60166093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59018186A JPS60166093A (en) 1984-02-06 1984-02-06 Method and device for controlling fluidized-bed biological treating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59018186A JPS60166093A (en) 1984-02-06 1984-02-06 Method and device for controlling fluidized-bed biological treating apparatus

Publications (2)

Publication Number Publication Date
JPS60166093A true JPS60166093A (en) 1985-08-29
JPH0142759B2 JPH0142759B2 (en) 1989-09-14

Family

ID=11964578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59018186A Granted JPS60166093A (en) 1984-02-06 1984-02-06 Method and device for controlling fluidized-bed biological treating apparatus

Country Status (1)

Country Link
JP (1) JPS60166093A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU682517B2 (en) * 1993-06-23 1997-10-09 Nordic Water Products Ab Process and apparatus for biological treatment of water
CN110655203A (en) * 2019-08-30 2020-01-07 郑温斌 Sewage ecological treatment is with steady voltage microorganism antithetical couplet water purification tower

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8882561B2 (en) 2006-04-07 2014-11-11 Mattel, Inc. Multifunction removable memory device with ornamental housing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU682517B2 (en) * 1993-06-23 1997-10-09 Nordic Water Products Ab Process and apparatus for biological treatment of water
CN110655203A (en) * 2019-08-30 2020-01-07 郑温斌 Sewage ecological treatment is with steady voltage microorganism antithetical couplet water purification tower

Also Published As

Publication number Publication date
JPH0142759B2 (en) 1989-09-14

Similar Documents

Publication Publication Date Title
US5126042A (en) Floating media biofilter
US7419595B2 (en) Multiple barrier biological treatment process
JP6630054B2 (en) Wastewater treatment method and wastewater treatment device
CN109052838A (en) Sewage treatment strategy dynamic adjusting system
CN107162185A (en) A kind of industrial wastewater denitrification denitrogenation device and technique
JPS60166093A (en) Method and device for controlling fluidized-bed biological treating apparatus
JP3836576B2 (en) Fluidized bed wastewater treatment equipment
JPH0210719B2 (en)
JPH0128871Y2 (en)
JPH0128867Y2 (en)
JP3729585B2 (en) Wastewater treatment facility
JPH0127917Y2 (en)
JPH0434960Y2 (en)
JPH0128868Y2 (en)
JPH0127918Y2 (en)
JPH105787A (en) Fluidized bed type biological treatment device and method therefor
JPS598799Y2 (en) Biological treatment equipment for wastewater
JPH0128870Y2 (en)
JP3155457B2 (en) Wastewater treatment equipment
JPS6138719Y2 (en)
JPS586555Y2 (en) Biological treatment equipment for wastewater
JPS6216238Y2 (en)
JP3716461B2 (en) Concentration method in the receiving tank for biological filtration backwash wastewater
JPH022472Y2 (en)
JPH0910787A (en) Fluidized bed type waste water treatment method and apparatus