JPH0127918Y2 - - Google Patents

Info

Publication number
JPH0127918Y2
JPH0127918Y2 JP1983190378U JP19037883U JPH0127918Y2 JP H0127918 Y2 JPH0127918 Y2 JP H0127918Y2 JP 1983190378 U JP1983190378 U JP 1983190378U JP 19037883 U JP19037883 U JP 19037883U JP H0127918 Y2 JPH0127918 Y2 JP H0127918Y2
Authority
JP
Japan
Prior art keywords
tank
water
detection mechanism
air
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983190378U
Other languages
Japanese (ja)
Other versions
JPS60100092U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1983190378U priority Critical patent/JPS60100092U/en
Publication of JPS60100092U publication Critical patent/JPS60100092U/en
Application granted granted Critical
Publication of JPH0127918Y2 publication Critical patent/JPH0127918Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【考案の詳細な説明】 本考案は、槽内に微生物付着用担体として粒状
固体を懸濁させ、槽内に配備したエアリフト管を
使用して気体撹拌を行いながら前記粒状固体を槽
内で循環流動させる汚水の生物処理装置に関する
ものである。
[Detailed description of the invention] This invention suspends granular solids in a tank as a carrier for microbial attachment, and circulates the granular solids in the tank while stirring the gas using an air lift tube installed in the tank. This invention relates to a biological treatment device for fluidized wastewater.

最近、活性汚泥法におけるバルキング現象や維
持管理の複雑さを解消したものとして、チユーブ
接触酸化法、回転円板法、粒状固体流動床法など
を採用した各種の生物膜式汚水処理装置が実用化
されている。これらのうち、槽内に懸濁させた粒
状固体の表面に微生物を付着させ、槽内に配備し
たエアリフト管を介して気体撹拌を行いながら槽
内で前記粒状固体を循環流動させて汚水と接触さ
せることにより汚水中の汚濁物質を除去する粒状
固体流動床法は、他の生物膜法に比べて微生物の
付着に供する粒状固体の表面積が飛躍的に大きく
とれるために槽内に多量の微生物を保持できる
点、粒状固体が槽内を循環流動しているので目詰
りや部分的な嫌気化などのトラブルが起こらない
点など、多くの利点を有しているため注目を集め
ている。
Recently, various biofilm-based sewage treatment systems have been put into practical use, employing tube catalytic oxidation methods, rotating disk methods, granular solid fluidized bed methods, etc., to solve the bulking phenomenon and complexity of maintenance in the activated sludge method. has been done. Among these methods, microorganisms are attached to the surface of granular solids suspended in a tank, and the granular solids are circulated and flowed in the tank while gas agitation is carried out via an air lift pipe installed in the tank, and the solids come into contact with wastewater. The granular solid fluidized bed method, which removes pollutants from wastewater by removing pollutants from wastewater, has a much larger surface area of the granular solids for microorganisms to attach to than other biofilm methods, so it is possible to collect a large amount of microorganisms in the tank. It is attracting attention because it has many advantages, such as the ability to hold solids, and because the granular solids circulate and flow within the tank, problems such as clogging and partial anaerobic formation do not occur.

このような粒状固体流動床法では、微生物付着
用として砂、アンスラサイト、活性炭、ゼオライ
ト、プラスチツク球などの微生物の付着に適して
おり、かつ槽内を円滑に循環流動するに適した比
重、粒径を持つた粒状固体が用いられるが、通
常、価格、入手の難易なども考慮して砂が多く用
いられている。
In this granular solid fluidized bed method, materials such as sand, anthracite, activated carbon, zeolite, and plastic spheres are suitable for attaching microorganisms, and particles with specific gravity and particles suitable for smooth circulation and fluidization within the tank are used. A granular solid with a diameter is used, but sand is usually used due to its price and availability.

また、前記エアリフト管はその下部に空気導入
管が連結されており、管内に吹込まれた空気のエ
アリフト作用により、粒状固体がエアリフト管の
内外を循環流動している。エアリフト管の配備さ
れた槽の上方の1部又は全周は、上端が水面上に
あり下端が水面下にある隔壁にて循環部と分離部
とが区画形成されており、槽内の懸濁液の一部
は、この分離部を上昇する間に、粒状固体を分離
し、上方より流出水として取り出される。さら
に、この流出水は後処理装置としての凝集沈殿、
砂ろ過装置などに送られ、該流出水中SS,
BOD,COD除去等の処理を受け、最終処理水と
なる。
Further, the air lift tube has an air introduction tube connected to its lower part, and the granular solids circulate and flow inside and outside the air lift tube due to the air lift action of the air blown into the tube. A part or the entire circumference above the tank in which the air lift pipe is installed is divided into a circulation part and a separation part by a partition wall whose upper end is above the water surface and whose lower end is below the water surface. A portion of the liquid separates granular solids while rising through this separation section, and is taken out from above as effluent water. Furthermore, this effluent is subjected to coagulation and sedimentation as a post-treatment device.
The outflow water is sent to a sand filter, etc., and SS,
After undergoing treatment such as BOD and COD removal, it becomes final treated water.

このような従来の流動床生物処理装置では、粒
状固体の循環流動をただ吹き込まれた空気による
エアリフト作用によつているが、休止、停電、補
修などの理由により、空気の供給が停止した場合
には、槽内の粒状固体が槽底に沈積して、エアリ
フト管の下端等を閉塞させることになり、これを
空気吹込みだけの作用により再起動させることは
極めて困難なものとなる。従来、この沈積粒子を
再流動化させ、エアリフト作用による再循環流動
を容易ならしめるため、槽底部に起動用の散水機
構を設け、沈積した粒子を流動化させるに十分な
量の起動水を吹き込んでこれを流動化させ、しか
る後に空気吹込みによるエアリフト作用を利用し
て、再循環流動を図る方法が一般的にとられてき
た。
In conventional fluidized bed biological treatment equipment, granular solids are circulated through the air lift effect of simply blown air, but if the air supply is interrupted due to suspension, power outage, repairs, etc. In this case, the granular solids in the tank will settle on the bottom of the tank, clogging the lower end of the air lift pipe, etc., and it will be extremely difficult to restart the tank by just blowing air. Conventionally, in order to re-fluidize these sedimented particles and facilitate recirculation flow due to the air lift effect, a starting water spray mechanism was installed at the bottom of the tank, and a sufficient amount of starting water was blown in to fluidize the settled particles. A common method has been to fluidize this and then utilize the air lift effect by blowing air to achieve recirculation flow.

しかしながら、従来装置においては、これら操
作はすべて運転員の手操作と目視観察によつて行
われていたため、起動水吹込み後どの時点で空気
吹込みを開始し、さらにどの時点で起動水の吹込
みを停止すべきか判然とし難い場合が多く、勢い
大量の起動水を使用したり、分離部への水量負荷
の増加による粒状固体の槽外流出を引き起こすな
どのトラブルが発生したりして、この起動時の運
転に苦慮していたのが実情であつた。
However, in conventional equipment, all of these operations were performed manually and by visual observation by the operator, so at what point should air be started after the start-up water is injected, and at what point should the start-up water be blown? In many cases, it is difficult to know whether or not to stop the loading, and problems may occur such as using a large amount of startup water or causing particulate solids to flow out of the tank due to the increased water load on the separation section. The reality was that they were having trouble operating the engine when it started up.

本考案は、この様な従来装置で起こりがちなト
ラブルを排除し、簡易にして確実な再起動を行わ
せることができる新しい流動床生物処理装置を提
供することを目的とするものである。
The object of the present invention is to provide a new fluidized bed biological treatment apparatus that eliminates the troubles that tend to occur with conventional apparatuses and allows for simple and reliable restarting.

本考案は、原水流入部及び処理水流出部を有し
かつ微生物付着用の粒状固体を収容した槽内に、
上端が水面上で下端が槽底より離隔した隔壁にて
循環部と分離部とを区画形成し、前記循環部内に
上端が水面下にあり下端が槽底より離隔し、かつ
下端付近に空気導入管が連結されたエアリフト管
を配備するとともに槽底に起動水の噴出機構を設
け、さらに前記循環部に槽内に沈積した前記粒状
固体の膨張界面を検出する界面検出機構を設け、
該界面検出機構をその検出信号により前記エアリ
フト管への空気導入を開始し一定時間後前記噴出
機構の起動水噴出を停止せしめる制御回路に連絡
装備したことを特徴とするものである。
The present invention has a tank that has a raw water inlet and a treated water outlet and contains granular solids for adhesion of microorganisms.
A circulation section and a separation section are defined by a partition wall whose upper end is above the water surface and whose lower end is separated from the tank bottom, and in the circulation section, the upper end is below the water surface and the lower end is separated from the tank bottom, and air is introduced near the lower end. An air lift pipe with connected pipes is provided, and a starting water spouting mechanism is provided at the bottom of the tank, and an interface detection mechanism is further provided in the circulation section to detect an expansion interface of the granular solid deposited in the tank,
The invention is characterized in that the interface detection mechanism is connected to a control circuit that starts introducing air into the air lift tube in response to a detection signal thereof, and after a certain period of time, stops the jetting of startup water from the jetting mechanism.

本考案の一実施例を図面を参照しながら説明す
れば、第1図示例において、原水流入管1及び処
理水流出管2を有し、微生物付着用の粒状固体3
を収容した槽4内は、上端が水面上で下端が槽底
より離隔した隔壁5により、循環部6と分離部7
とが区画形成されている。循環部6内には、上端
が水面下にあり下端が槽底より離隔し、かつ下端
付近に空気導入管8が連結されたエアリフト管9
が配備され、空気導入管8はブロワなどの送風設
備10に接続されている。
An embodiment of the present invention will be described with reference to the drawings. The first illustrated example has a raw water inflow pipe 1 and a treated water outflow pipe 2, and has granular solids 3 for attaching microorganisms.
Inside the tank 4 containing the water, a circulation part 6 and a separation part 7 are separated by a partition wall 5 whose upper end is above the water surface and whose lower end is separated from the tank bottom.
The area is divided into sections. Inside the circulation section 6, there is an air lift pipe 9 whose upper end is below the water surface, whose lower end is separated from the tank bottom, and to which an air introduction pipe 8 is connected near the lower end.
is provided, and the air introduction pipe 8 is connected to air blowing equipment 10 such as a blower.

また、槽4の底部には圧力室11が区画形成さ
れ、該圧力室11上面にはデイフユーザ12が設
置され、圧力室11にポンプ13により圧入され
た起動水がデイフユーザ12から槽内に噴出する
構造となつている。図示例では、起動水として分
離部7の上澄水を使用する例を示しているが、外
部より起動水を採取できる場合もあり、また、槽
4の底部の起動水の噴出機構として、図示例の如
き圧力室11にデイフユーザ12を敷設したタイ
プのほか、圧力水噴出ノズルを用いるタイプ、通
常の散水管を敷設するタイプ等、槽4内底部に沈
積した粒状固体3を流動化させるに足る水量を槽
内に吹き込むことが可能な構造ならば、いずれの
タイプでも適用可能である。
Further, a pressure chamber 11 is defined at the bottom of the tank 4, and a diff user 12 is installed on the top surface of the pressure chamber 11, and the starting water pressurized into the pressure chamber 11 by a pump 13 is spouted from the diff user 12 into the tank. It has a structure. In the illustrated example, the supernatant water of the separation section 7 is used as the starting water, but the starting water may be collected from the outside. In addition to the type in which a diffuser 12 is installed in the pressure chamber 11, the type that uses a pressure water jet nozzle, and the type that uses a normal watering pipe, etc., have a sufficient amount of water to fluidize the granular solids 3 deposited at the bottom of the tank 4. Any type can be applied as long as it has a structure that allows for the injection of water into the tank.

さらにまた、循環部6内の適当位置には、槽4
内に沈積した粒状固体3の膨張界面を検出する超
音波式界面計などの界面検出機構14が設けら
れ、この界面検出機構14は信号変換器A、調節
器B、制御器C等の回路からなる制御回路15に
連絡装備され、この制御回路15によつて界面検
出機構14による検出信号によつて送風設備10
を稼動させその後一定時間後にポンプ13を停止
させるように自動制御可能になつている。
Furthermore, a tank 4 is provided at an appropriate position within the circulation section 6.
An interface detection mechanism 14 such as an ultrasonic interface meter is provided to detect the expansion interface of the granular solid 3 deposited in the interior of the granular solid. The control circuit 15 controls the air blowing equipment 10 based on the detection signal from the interface detection mechanism 14.
Automatic control is possible to operate the pump 13 and then stop the pump 13 after a certain period of time.

ポンプ13の停止は、例えばタイマーD及び制
御器C′を制御回路15に備えて行うのもよく、あ
るいは界面検出機構14からの濃度信号によつて
行われるようなシーケンス回路を備えるのもよ
い。
The pump 13 may be stopped, for example, by providing the control circuit 15 with a timer D and a controller C', or by providing a sequence circuit that uses a concentration signal from the interface detection mechanism 14.

次にその作用を説明すれば、停電、補修などの
ために運転停止後再び運転を開始する場合、ポン
プ13によつて起動水を圧力室11及びデイフユ
ーザ12から槽底部に沈積していた粒状固体3を
流動化させるに足る十分な水量を噴出すると、沈
積していた粒状固体3は次第に膨張し、粒状固体
3の界面は上昇する。粒状固体3の界面が界面検
出機構14の位置に達すると、その界面検出信号
により制御回路15中の信号変換器A、調節器
B、制御器C等の回路を送風設備10の例えばブ
ロワが稼動し、空気導入管8からの空気導入によ
つて粒状固体3を含む液のエアリフト管9による
揚液、循環流動が始まる。
Next, to explain its operation, when restarting the operation after stopping due to power outage, repair, etc., the pump 13 pumps starting water from the pressure chamber 11 and the diffuser 12 into the granular solids that had settled at the bottom of the tank. When a sufficient amount of water is ejected to fluidize the granular solid 3, the deposited granular solid 3 gradually expands and the interface of the granular solid 3 rises. When the interface of the granular solid 3 reaches the position of the interface detection mechanism 14, the interface detection signal causes circuits such as the signal converter A, regulator B, and controller C in the control circuit 15 to be operated by a blower in the blower equipment 10, for example. However, by introducing air from the air introduction pipe 8, the liquid containing the granular solids 3 starts to be lifted and circulated through the air lift pipe 9.

その後、一定時間後にポンプ13を停止して起
動水の噴出が止めるが、タイマーDを制御回路1
5に組み込んだ場合には、調節器Bの信号はタイ
マーDにも送られてこれを稼動させ、あらかじめ
設定してある時間後に制御器C′を介してポンプ1
3を停止し、起動水の噴出は停止する。
After that, the pump 13 is stopped after a certain period of time and the start-up water stops spewing out, but the timer D is controlled by the control circuit 1.
5, the signal from regulator B is also sent to timer D to activate it, and after a preset time, pump 1 is activated via controller C'.
3, and the spout of startup water stops.

また、タイマーを用いずにポンプ13の停止を
行うものとして、界面検出機構14からの信号に
もとづいて、第2図示の如く、検出固体濃度がH
と高まつた時点でブロワが稼動し、槽内に粒状固
体3が万遍なく循環流動する固体濃度Lと下つた
時点でポンプ13を停止するシーケンス回路を構
成しておけばよい。
In addition, if the pump 13 is stopped without using a timer, based on the signal from the interface detection mechanism 14, as shown in the second diagram, the detected solid concentration is H.
A sequence circuit may be configured in which the blower is operated when the concentration of solids 3 reaches a certain level, and the pump 13 is stopped when the solids concentration falls to a level L at which the granular solids 3 are uniformly circulated in the tank.

そして、ポンプ13の停止に引続いて、原水を
槽内に流入させるが、この原水の流入を開始する
シーケンスは任意に採用される。
Then, following the stop of the pump 13, the raw water is allowed to flow into the tank, and the sequence for starting the flow of this raw water can be arbitrarily adopted.

以上述べたように、本考案によれば、従来運転
員の熟練によつてなされてきた流動床生物処理装
置の起動を容易に行うことができ、さらに過大な
起動水量を要することなく、粒状固体流出のトラ
ブルも解消され、安定した運転が可能になるなど
のきわめて有益なる効果を生ずるものである。
As described above, according to the present invention, it is possible to easily start up a fluidized bed biological treatment equipment, which conventionally required the operator's skill, and to remove granular solids without requiring an excessive amount of startup water. This has extremely beneficial effects, such as eliminating the problem of leakage and making stable operation possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す縦断面図で、
第2図は検出部における粒状固体濃度の時間的変
動を示す線図である。 1……原水流入管、2……処理水流出管、3…
…粒状固体、4……槽、5……隔壁、6……循環
部、7……分離部、8……空気導入管、9……エ
アリフト管、10……送風設備、11……圧力
室、12……デイフユーザ、13……ポンプ、1
4……界面検出機構、15……制御回路、D……
タイマー。
FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention.
FIG. 2 is a diagram showing temporal fluctuations in the concentration of particulate solids in the detection section. 1... Raw water inflow pipe, 2... Treated water outflow pipe, 3...
... Granular solid, 4 ... Tank, 5 ... Partition wall, 6 ... Circulation section, 7 ... Separation section, 8 ... Air introduction pipe, 9 ... Air lift pipe, 10 ... Air blowing equipment, 11 ... Pressure chamber , 12...Diff user, 13...Pump, 1
4... Interface detection mechanism, 15... Control circuit, D...
timer.

Claims (1)

【実用新案登録請求の範囲】 1 原水流入部及び処理水流出部を有しかつ微生
物付着用の粒状固体を収容した槽内に、上端が
水面上で下端が槽底より離隔した隔壁にて循環
部と分離部とを区画形成し、前記循環部内に上
端が水面下にあり下端が槽底より離隔し、かつ
下端付近に空気導入管が連結されたエアリフト
管を配備するとともに槽底に起動水の噴出機構
を設け、さらに前記循環部に槽内に沈積した前
記粒状固体の膨張界面を検出する界面検出機構
を設け、該界面検出機構をその検出信号により
前記エアリフト管への空気導入を開始し一定時
間後前記噴出機構の起動水噴出を停止せしめる
制御回路に連絡装備したことを特徴とする流動
床生物処理装置。 2 前記制御回路に前記起動水噴出の停止を行わ
しめるタイマーを備えたものである実用新案登
録請求の範囲第1項記載の流動床生物処理装
置。 3 前記制御回路に前記界面検出機構の検出濃度
信号によつて前記起動水噴出の停止を行わしめ
るシーケンス回路を備えたものである実用新案
登録請求の範囲第1項記載の流動床生物処理装
置。
[Scope of Claim for Utility Model Registration] 1. Circulation in a tank having a raw water inlet and a treated water outlet and containing granular solids for adhesion of microorganisms through a partition whose upper end is above the water surface and whose lower end is separated from the tank bottom. An air lift pipe is provided in the circulation part, the upper end of which is below the water surface, the lower end of which is separated from the tank bottom, and an air introduction pipe connected to the bottom of the tank. Further, an interface detection mechanism is provided in the circulation section to detect an expansion interface of the granular solid deposited in the tank, and the interface detection mechanism starts introducing air into the air lift tube in response to a detection signal from the interface detection mechanism. A fluidized bed biological treatment apparatus, characterized in that it is connected to a control circuit that stops the ejection of startup water from the ejection mechanism after a certain period of time. 2. The fluidized bed biological treatment apparatus according to claim 1, wherein the control circuit is provided with a timer for stopping the start-up water jetting. 3. The fluidized bed biological treatment apparatus according to claim 1, wherein the control circuit includes a sequence circuit for stopping the start-up water spout based on the concentration signal detected by the interface detection mechanism.
JP1983190378U 1983-12-12 1983-12-12 Fluidized bed biological treatment equipment Granted JPS60100092U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1983190378U JPS60100092U (en) 1983-12-12 1983-12-12 Fluidized bed biological treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1983190378U JPS60100092U (en) 1983-12-12 1983-12-12 Fluidized bed biological treatment equipment

Publications (2)

Publication Number Publication Date
JPS60100092U JPS60100092U (en) 1985-07-08
JPH0127918Y2 true JPH0127918Y2 (en) 1989-08-24

Family

ID=30410219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1983190378U Granted JPS60100092U (en) 1983-12-12 1983-12-12 Fluidized bed biological treatment equipment

Country Status (1)

Country Link
JP (1) JPS60100092U (en)

Also Published As

Publication number Publication date
JPS60100092U (en) 1985-07-08

Similar Documents

Publication Publication Date Title
US20200147621A1 (en) Composite ozone flotation integrated device
US3807563A (en) Individual household aerated waste treatment system
JPH06508059A (en) Method and device for clarifying wastewater
JPH06319525A (en) Device for controlling growth of biomass for fluidized bed type bioreactor
KR101757205B1 (en) A Filtration Device For Swirl Upflow Type Water Processing
JP3772028B2 (en) Anaerobic water treatment device
JPH0127918Y2 (en)
JP3836576B2 (en) Fluidized bed wastewater treatment equipment
JPH0128867Y2 (en)
CN106517401A (en) Intermittent air flotation water-purifying device
JP2544712B2 (en) Wastewater treatment facility
JPH0738989B2 (en) Method and apparatus for controlling water sparging in variable volume bioreactor
JPS60166093A (en) Method and device for controlling fluidized-bed biological treating apparatus
JPH0128871Y2 (en)
JPH10151475A (en) Contact oxidation type biological treatment apparatus
JPH0127917Y2 (en)
JPH022472Y2 (en)
JPS598799Y2 (en) Biological treatment equipment for wastewater
JPH04959Y2 (en)
JPH0127919Y2 (en)
JPS586555Y2 (en) Biological treatment equipment for wastewater
JPH0214118B2 (en)
JPH10192878A (en) Wastewater treatment apparatus
JPH09276885A (en) Biological membrane filter apparatus using foldable filter material
JPH0910787A (en) Fluidized bed type waste water treatment method and apparatus