JPS6016565B2 - Leak test device using rotary valve type pressurization device - Google Patents

Leak test device using rotary valve type pressurization device

Info

Publication number
JPS6016565B2
JPS6016565B2 JP8775877A JP8775877A JPS6016565B2 JP S6016565 B2 JPS6016565 B2 JP S6016565B2 JP 8775877 A JP8775877 A JP 8775877A JP 8775877 A JP8775877 A JP 8775877A JP S6016565 B2 JPS6016565 B2 JP S6016565B2
Authority
JP
Japan
Prior art keywords
rotary table
test
rotary valve
pressure
conveyor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8775877A
Other languages
Japanese (ja)
Other versions
JPS5422888A (en
Inventor
和和 大冨
哲夫 久保
一成 大内
良男 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Shimazu Seisakusho KK
Original Assignee
Hitachi Ltd
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Shimazu Seisakusho KK filed Critical Hitachi Ltd
Priority to JP8775877A priority Critical patent/JPS6016565B2/en
Publication of JPS5422888A publication Critical patent/JPS5422888A/en
Publication of JPS6016565B2 publication Critical patent/JPS6016565B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 冷蔵庫等に用いられる3〜6リットル程度の容量の空気
圧縮機の漏れ試験を行なうのに、始めに被試験物に一定
圧力の気体を導入して密封した後、一定時間放置してか
ら、その内圧の変化を測定検出して、漏れの状態を試験
するのは通常行なわれる方法である。
Detailed Description of the Invention: To perform a leakage test on an air compressor with a capacity of about 3 to 6 liters used in refrigerators, etc., first introduce gas at a constant pressure into the test object, seal it, and then It is a usual method to test for leakage by measuring and detecting changes in the internal pressure after allowing the product to stand for a certain period of time.

この発明はこのような漏れ試験を連続的な流れ作業とし
て行なう漏れ試験装置にかかるものである。複数の被試
験物を順次圧縮気体源につないでその内部に気体を加圧
注入し、一定時間経過後において今度は各被試験物を順
次圧力計につなぎ、その内圧を測定する場合、当初被試
験物に封入される圧力気体が相当高圧のため、被試験物
は、その後圧力計につながれるまでの間に高温となり、
同時に内部の温度も上昇する。
The present invention relates to a leak test device that performs such a leak test as a continuous flow operation. When multiple test objects are sequentially connected to a compressed gas source and gas is injected into their interiors under pressure, and after a certain period of time has passed, each test object is sequentially connected to a pressure gauge and its internal pressure is measured. Because the pressure gas sealed in the test object is quite high pressure, the test object becomes hot until it is connected to the pressure gauge.
At the same time, the internal temperature also rises.

このため、被試験物内部の気体は膨脹して内圧が上がる
方向に作用し、漏れによる減圧を逆に埋め合わせ、内圧
差を検知するにあたって悪影響を与えるといった問題点
がある。この発明は、このような問題点を解決し、精度
の高い漏れ試験を行なうことのできる漏れ試験装置を提
供することを目的とする。上詫間題点を解決するため、
この発明は次のような構成を有する。
For this reason, there is a problem in that the gas inside the test object expands and acts in the direction of increasing the internal pressure, which counterbalances the reduced pressure due to leakage and adversely affects the detection of the internal pressure difference. SUMMARY OF THE INVENTION An object of the present invention is to provide a leak test device that can solve these problems and perform highly accurate leak tests. In order to solve the Kamitakuma problem,
This invention has the following configuration.

すなわちこの発明にかかる漏れ試験装置は、被試験物が
順次移送されるコンベアの折返し部の内側領域に設置さ
れ、一定点を回転中心として回転駆動されるとともに、
半径方向の導通路が等酢された環状の回転テーブルと、
この回転テーブルの前記導通路の外周閉口位置ごとに取
り付けられ、連結器具を介して前記被試験物がそれぞれ
接続される複数個の開閉弁と、前記コンベアの流れの上
流側に前記回転テーブルの前記導通路の内周閉口への第
1の導入口を有するとともに、圧力計が接続され、前記
第1の導入口を介して所定圧力の圧縮気体を前記被試験
物にその移送動作に従って順次導入してゆく圧縮気体導
入管と、前記コンベァの流れの下流側に、かつ第1の導
入口とは所定角度間隔をもった位置に前記回転テーブル
の前記導通路の内周閉口への第2の導入口を有し、検出
用圧力計が接続された管路とを備えてなるロータリバル
ブ式加圧装置を利用する漏れ試験装置において、前記回
転テーブルの前記導通路の内周開□への前記第2の導入
口に対して、前記回転テーブルの回転方向とは反対方向
で、前記開閉弁の等配角度ピッチだけずらせた位置に、
前記回転テーブルの前記導通路の内周開□への第3の導
入口を設け、この第3の導入口と前記第2の導入口とを
互いに連絡する導通路を設けるとともに、この導通路に
差圧計を介在させたことを特徴とする。まずこの発明の
原理および作用について述べる。
That is, the leak test device according to the present invention is installed in the inner region of the folded part of the conveyor where the test objects are sequentially transferred, and is driven to rotate around a certain point as the rotation center.
an annular rotary table with equal radial conduction paths;
A plurality of on-off valves are installed at each closing position on the outer periphery of the conduction path of the rotary table, and each of the test objects is connected via a connecting device; It has a first inlet to the closed inner circumference of the conduit passage, is connected to a pressure gauge, and sequentially introduces compressed gas at a predetermined pressure into the test object through the first inlet according to its transfer operation. A compressed gas introduction pipe and a second introduction port to the inner peripheral closed opening of the conduit passage of the rotary table are arranged downstream of the flow of the conveyor and at a predetermined angular interval from the first introduction port. In a leak test device that utilizes a rotary valve type pressurizing device comprising a pipe line having a port and a detection pressure gauge connected to the leakage test device, there is provided a leakage test device that utilizes a rotary valve type pressurizing device having a pipe line connected to a pressure gauge for detection. With respect to the inlet of No. 2, in a direction opposite to the rotation direction of the rotary table, at a position shifted by the equal angular pitch of the on-off valve,
A third introduction port is provided to the inner peripheral opening □ of the conduction path of the rotary table, a conduction path is provided that connects the third introduction port and the second introduction port, and a conduction path is provided in the conduction path. It is characterized by the inclusion of a differential pressure gauge. First, the principle and operation of this invention will be described.

第1図はこの発明を説明するための原理図である。図で
1は回転テーブルである。回転テーフルには導通路2が
等間隔に半径方向に放射状に設けられ、その外側端には
開閉弁3が全周に亘り取付けられている。4は開閉弁3
それぞれに一体に結合された連結器で被試験体と開閉弁
とを容易に接合することができる。
FIG. 1 is a principle diagram for explaining the present invention. In the figure, 1 is a rotary table. Conduction passages 2 are provided radially in the rotary table at equal intervals in the radial direction, and an on-off valve 3 is attached to the outer end thereof over the entire circumference. 4 is on-off valve 3
The test object and the on-off valve can be easily connected with the couplers that are integrally connected to each other.

これらの導通路2、開閉弁3および連結器4が一体に連
結し、回転テーフル1の回転と相換って。ータリバルブ
を構成している。つぎに5は被試験物、6はコンベァで
ある。被試験物5はコンベア6上に等間隔に取付けられ
ており、A点においてロータリバルプと連結される。P
oは所定圧気体源で7は導入口である。A点において被
試験物5は導入口7、ロータリバルブを介して所定圧気
体を供給された後、開閉弁3は閉じられ一定圧で密封さ
れる。その後コンベアは一定時間内に一定距離徐々に送
られ、一定時間を経過した被試験物5′について最終的
にはC点において検出用圧力計G,によって内圧測定が
行なわれるが、その内圧測定の直前に対応する開閉弁を
閉じたままの状態で検出用圧力計G,を含む導通路10
内に補給用圧力気体源P,から当所の所定気圧まで圧力
気体を補給して内部導通路空間(デッドスペース)を所
定圧に調整した後、開閉弁を開いて被試験物の内圧を検
出して漏れ試験を行なうのであるが、この最終内圧検出
に先立って、B点に到達した次の被試験物5″との間に
差圧許G2を含む導通路1 1をそれぞれ導入口8およ
び9を介して連結し、両被試験物5′と5″との内圧の
菱圧を検出する操作を挿入する。この差圧測定を行なう
ことによって、被試験物5′,5″との間の差圧計の検
出値が小さい時は両者とも漏れは少なく、双方とも温度
変化等のバックグラウンドの影響のみを受けていること
が予知され、バックグラウンドの変動による影響を消去
することができる。また、差圧計の検出値が大きい時は
一方の被試験物の漏れが大きいことが予知されるので、
後で実施される内圧検出にこれらの結果を加味すること
により精度のよい検出測定を行なうことが可能となるの
である。なお図中白矢印は回転テーブルおよびコンベア
の送りの方向を示し、黒矢印は圧力気体の供給される方
向を示している。つぎに第2図はこの発明の実施例を示
すロータリバルブ式加圧装置を利用した漏れ試験装置の
平面図である。図中使用した番号はすべて第1図に準ず
るが開閉弁3は連結器4を一体化してロータリバルブ3
として表わしてある。実施例ではコンベア6上に被試験
物5は1の間隔で取付けられる。コンベアの送りは1分
間につき1肌づつ送られる。コンベア6は図のようにだ
円形軌道を送られるがポジションNo.1のA点で被試
験物5とロータリバルブ3は連結され、所定圧気体源P
oより15k9/流の一定圧が封入され密閉された後、
ポジションNo.2に送られる。この場合対応するロー
タリバルブ3は閉じられるが、両者はナイロン11で作
られた可操性のコイルホースによって連結されたまま順
送りされる。このようにして15分経過後A点で定圧気
体を封入された被試験物は図でポジションNo.16の
C点に到達して5′となり、また隣接して後続する被試
験物はポジションNo.15のB点にあって5″となっ
ている。ここで差圧計G2を含む導通路1 1と被試験
物5′および5″とをそれぞれ導入口8および9を介し
て連結し、おのおのに対応する開閉弁を開いて両被試験
物内の内圧の差圧を差圧計G2によって検出する。この
際の差圧計の表示値が大きい時は一方の被試験物の漏れ
が大きいことが予検され、その値は引続いて行なわれる
内圧検出の際の予測的参考値として利用することができ
、また表示値が小さい時は両者とも漏れは少なく、従っ
て単に温度変化等の環境の影響のみを後の内圧検出に加
味すればよいことになる。この後一旦、両者それぞれの
開閉弁を閉じることにより差圧検出の工程を終る。
The conduction path 2, the on-off valve 3, and the coupler 4 are integrally connected and correspond to the rotation of the rotary table 1. It constitutes a primary valve. Next, 5 is a test object, and 6 is a conveyor. The test objects 5 are mounted on a conveyor 6 at equal intervals and are connected to a rotary valve at point A. P
o is a predetermined pressure gas source, and 7 is an inlet. At point A, the test object 5 is supplied with gas at a predetermined pressure via the inlet 7 and the rotary valve, and then the on-off valve 3 is closed and sealed at a constant pressure. Thereafter, the conveyor is gradually conveyed a certain distance within a certain period of time, and after a certain period of time, the internal pressure of the test object 5' is finally measured at point C using the detection pressure gauge G. The conduction path 10 including the detection pressure gauge G, with the corresponding on-off valve kept closed immediately before.
After adjusting the internal conduit space (dead space) to the specified pressure by replenishing pressure gas from the supply pressure gas source P to the specified pressure at our office, open the on-off valve to detect the internal pressure of the test object. However, prior to this final internal pressure detection, a conduction path 11 containing a differential pressure G2 is connected to the inlet 8 and 9, respectively, between the test object 5'' that has reached point B and the next test object 5''. , and an operation is inserted to detect the rhombic pressure of the internal pressure between both test objects 5' and 5''. By performing this differential pressure measurement, when the detected value of the differential pressure gauge between the test objects 5' and 5'' is small, there is little leakage from both, and both are affected only by background factors such as temperature changes. It is possible to eliminate the influence of background fluctuations.Also, when the detection value of the differential pressure gauge is large, it is predicted that there is a large leakage of one of the test objects.
By incorporating these results into the internal pressure detection that will be performed later, it becomes possible to perform accurate detection measurements. Note that the white arrows in the figure indicate the direction in which the rotary table and the conveyor are fed, and the black arrows indicate the direction in which the pressurized gas is supplied. Next, FIG. 2 is a plan view of a leak test apparatus using a rotary valve type pressurizing device showing an embodiment of the present invention. All the numbers used in the figure are the same as in Figure 1, but the on-off valve 3 is integrated with the coupler 4, and the rotary valve 3
It is expressed as In the embodiment, the test objects 5 are mounted on the conveyor 6 at intervals of 1. The conveyor feeds one skin per minute. The conveyor 6 is sent along an elliptical orbit as shown in the figure, but at position no. The test object 5 and the rotary valve 3 are connected at point A of 1, and a predetermined pressure gas source P
After the constant pressure of 15k9/flow is sealed from o,
Position No. Sent to 2. In this case, the corresponding rotary valve 3 is closed, but the two are fed sequentially while being connected by a flexible coiled hose made of nylon 11. After 15 minutes have elapsed in this way, the test object sealed with constant pressure gas at point A is placed at position No. in the figure. The point C of 16 is reached and becomes 5', and the adjacent and succeeding test object is at position No. 5'. 5'' at point B of 15.Here, the conductive path 11 containing the differential pressure gauge G2 and the test objects 5' and 5'' are connected through the inlets 8 and 9, respectively, and The corresponding on-off valves are opened and the differential pressure between the internal pressures within both test objects is detected by the differential pressure gauge G2. At this time, when the displayed value of the differential pressure gauge is large, it is predicted that there is a large leakage of one of the test objects, and this value can be used as a predictive reference value for the subsequent internal pressure detection. , and when the displayed value is small, there is little leakage in both cases, so it is only necessary to take into account the influence of the environment, such as temperature change, in the subsequent internal pressure detection. After this, the differential pressure detection step is completed by once closing the respective on-off valves.

ついで被試験物5′の内圧を検出する工程に入るが、そ
の直前に検出用圧力計G,を含む導通路10のデッドス
ペースに対し、補給用圧力気体源P,より圧力気体を導
入し、15k9/地の一定圧になるまで補給する。この
圧力補給を了えた後、被試験物5′のロータリバルブを
開いて検出用圧力計○,により内圧を検出し、前述の差
圧計の検出結果を照合加味して漏れ状態を検知するので
ある。このC点における内圧検出の後、コンベァの送り
で3ピッチ(3肌)移動したポジションNo.19の所
で導出路12を介して減圧源(真空ポンプ)P2に被試
験物を連結し、内圧を大気圧まで降下させてから、ロー
タリバルブとの結合を外すことにより漏れ試験は終了す
る。
Next, the process of detecting the internal pressure of the test object 5' is started, but just before that, pressure gas is introduced from the replenishment pressure gas source P into the dead space of the conduction path 10 including the detection pressure gauge G. Replenish until a constant pressure of 15k9/ground is reached. After this pressure replenishment is completed, the rotary valve of the test object 5' is opened, the internal pressure is detected by the detection pressure gauge ○, and the leakage state is detected by checking the detection result of the differential pressure gauge mentioned above. . After detecting the internal pressure at point C, the position No. moved 3 pitches (3 skins) by the conveyor. At point 19, the test object is connected to a reduced pressure source (vacuum pump) P2 via the lead-out path 12, the internal pressure is lowered to atmospheric pressure, and the leakage test is completed by disconnecting the rotary valve.

以上述べたとおり、この装置では第一段階として加圧密
閉した被試験物の温度変化等の環境による誤差の介入を
把握して、それらの影響を消去するように第二段階の圧
力変動を検出する内圧測定値に加味することにより、精
度の高い漏れ試験を連続的な流れ作業として極めて効率
よく遂行することが可能となるのである。
As mentioned above, in the first step, this device detects the intervention of errors caused by the environment, such as temperature changes in the pressurized and sealed test object, and in the second step, detects pressure fluctuations to eliminate these effects. By taking into account the measured internal pressure values, it becomes possible to carry out highly accurate leak tests extremely efficiently as a continuous process.

ただ第二段階の内圧測定方法の実施例として、あらかじ
め内部導通路空間(デッドスペース)を当初の所定圧ま
で圧力気体を補給して前回の内圧測定時の影響を消去し
ておく方法を挙げたがこれは必須要件ではなく、これに
代る他の内圧測定方法を採用しても勿論差支えない。
However, as an example of the second-stage internal pressure measurement method, there is a method in which the internal conduit space (dead space) is replenished with pressurized gas to the initial predetermined pressure to eliminate the influence of the previous internal pressure measurement. However, this is not an essential requirement, and it is of course possible to adopt other internal pressure measurement methods instead.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の漏れ試験装置の原理図、第2図はこ
の発明の実施例のロータリバルブ式加圧装置を利用した
漏れ試験装置の平面図である。 1・・・・・・回転テーフル、2,10,11・・・・
・・導通路、3・・・・・・開閉弁またはロータリバル
ブ、4・・・・・・連結器、5,5′,5″・・・・・
・被試験物、6・・・・・・コンベア、7,8,9・・
・・・・導入口、12・・・・・・導出口、○.・・・
・・・検出用圧力計、G2・・・・・・差圧計、Po・
・…・所定圧気体源、P.・・・・・・補給用圧力気体
源、P2…・・・減圧源(真空ポンプ)。 第1図 第2図
FIG. 1 is a diagram showing the principle of a leak test device according to the present invention, and FIG. 2 is a plan view of a leak test device using a rotary valve type pressurizing device according to an embodiment of the present invention. 1...Rotating table, 2, 10, 11...
... Conduction path, 3 ... On-off valve or rotary valve, 4 ... Coupler, 5, 5', 5'' ...
・Test object, 6... Conveyor, 7, 8, 9...
...Inlet, 12... Outlet, ○. ...
...Detection pressure gauge, G2...Differential pressure gauge, Po・
...Predetermined pressure gas source, P. ...Replenishment pressure gas source, P2...Reduction source (vacuum pump). Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 被試験物が順次移送されるコンベアの折返し部の内
側領域に設置され、一定点を回転中心として回転駆動さ
れるとともに、半径方向の導通路が等配された環状の回
転テーブルと、この回転テーブルの前記導通路の外周開
口位置ごとに取り付けられ、連結器具を介して前記被試
験物がそれぞれ接続される複数個の開閉弁と、前記コン
ベアの流れの上流側に前記回転テーブルの前記導通路の
内周開口への第1の導入口を有するとともに、圧力計が
接続され、前記第1の導入口を介して所定圧力の圧縮気
体を前記被試験物にその移送動作に従つて順次導入して
ゆく圧縮気体導入管と、前記コンベアの流れの下流側に
、かつ第1の導入口とは所定角度間隔をもつた位置に前
記回転テーブルの前記導通路の内周開口への第2の導入
口を有し、検出用圧力計が接続された管路とを備えてな
るロータリバルブ式加圧装置を利用する漏れ試験装置に
おいて、前記回転テーブルの前記導通路の内周開口への
前記第2の導入口に対して、前記回転テーブルの回転方
向とは反対方向で、前記開閉弁の等配角度ピツチだけず
らせた位置に、前記回転テーブルの前記導通路の内周開
口への第3の導入口を設け、この第3の導入口と前記第
2の導入口とを互いに連絡する導通路を設けるとともに
、この導通路に差圧計を介在させたことを特徴とするロ
ータリバルブ式加圧装置を利用する漏れ試験装置。
1. An annular rotary table that is installed in the inner area of the folded part of the conveyor where the test objects are sequentially transferred, is driven to rotate around a fixed point, and has radial conduction paths evenly distributed; A plurality of on-off valves are attached to each opening position of the outer periphery of the conduction path of the table and each of the test objects is connected via a connecting device, and the conduction path of the rotary table is provided on the upstream side of the flow of the conveyor. A pressure gauge is connected to the test piece, and compressed gas at a predetermined pressure is sequentially introduced into the test object through the first introduction port according to the transfer operation. A compressed gas introduction pipe is arranged downstream of the flow of the conveyor, and at a position with a predetermined angular interval from the first introduction port. In the leakage testing device that utilizes a rotary valve type pressurizing device comprising a pipe line having an opening and a detection pressure gauge connected to the second A third inlet of the rotary table into the inner circumferential opening of the conduit passage is located at a position shifted by the equal angular pitch of the on-off valve in a direction opposite to the direction of rotation of the rotary table with respect to the inlet of the rotary table. A rotary valve pressurizing device is provided with a rotary valve type pressurizing device, characterized in that the third inlet port and the second inlet port are provided with a conduit passage that communicates with each other, and a differential pressure gauge is interposed in the conduit passage. Leak test equipment used.
JP8775877A 1977-07-20 1977-07-20 Leak test device using rotary valve type pressurization device Expired JPS6016565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8775877A JPS6016565B2 (en) 1977-07-20 1977-07-20 Leak test device using rotary valve type pressurization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8775877A JPS6016565B2 (en) 1977-07-20 1977-07-20 Leak test device using rotary valve type pressurization device

Publications (2)

Publication Number Publication Date
JPS5422888A JPS5422888A (en) 1979-02-21
JPS6016565B2 true JPS6016565B2 (en) 1985-04-26

Family

ID=13923836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8775877A Expired JPS6016565B2 (en) 1977-07-20 1977-07-20 Leak test device using rotary valve type pressurization device

Country Status (1)

Country Link
JP (1) JPS6016565B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8701397A (en) * 1987-06-16 1989-01-16 Product Suppliers Ag METHOD AND APPARATUS FOR DETERMINING A POSSIBLE LEAK IN A VACUUM PACK

Also Published As

Publication number Publication date
JPS5422888A (en) 1979-02-21

Similar Documents

Publication Publication Date Title
US3918291A (en) Method and apparatus for testing leakage rate
US6314794B1 (en) Method and apparatus for detecting leaks in heat exchangers for motor vehicles
US6348869B1 (en) Pipe leak detection
CN105651464B (en) For scaling method after the leak detection sensitivities of Large Spacecraft leak detection
US11300472B2 (en) Installation and method for detecting and locating a leak in a fluid transport circuit, notably of an aircraft
US5600996A (en) Method and apparatus for testing the tightness of housings
US2449556A (en) Differential leakage indicator
CN106525333A (en) Simple micro-pressure instrument calibration device
JPS6016565B2 (en) Leak test device using rotary valve type pressurization device
JP3201667B2 (en) Check valve test apparatus and check valve test method
CN108072499A (en) A kind of bilayer air-conditioner pipe air tightness detection system and method
CN114593366B (en) Monitoring system and monitoring method for hydrogen leakage of hydrogen station
CN107991033A (en) Total pressure minute leakage precision measurement system
KR102008889B1 (en) Gas Meter Performance Tester
CN110779667A (en) Leakage test device for detecting engine exhaust manifold
JP3454406B2 (en) Leakage and flow rate inspection device
JPS5920093B2 (en) Leakage measuring device
JP3317046B2 (en) Pump leak measuring device
JPS6016564B2 (en) Pressurized leak test device
JP2618952B2 (en) Calibration device for differential pressure transmitter
JP4281001B2 (en) Gas leak inspection device
US2329042A (en) Method of testing gas meters
CN214748329U (en) Flowmeter comparison device easy and simple to handle
US4059984A (en) Fluid leak detector
SU449271A1 (en) Capacity Testing Device