JPS60165506A - Optical detecting method - Google Patents

Optical detecting method

Info

Publication number
JPS60165506A
JPS60165506A JP2251484A JP2251484A JPS60165506A JP S60165506 A JPS60165506 A JP S60165506A JP 2251484 A JP2251484 A JP 2251484A JP 2251484 A JP2251484 A JP 2251484A JP S60165506 A JPS60165506 A JP S60165506A
Authority
JP
Japan
Prior art keywords
detected
state
laser beam
light
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2251484A
Other languages
Japanese (ja)
Inventor
Junichi Igarashi
五十嵐 順一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meinan Machinery Works Inc
Meinan Seisakusho KK
Original Assignee
Meinan Machinery Works Inc
Meinan Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meinan Machinery Works Inc, Meinan Seisakusho KK filed Critical Meinan Machinery Works Inc
Priority to JP2251484A priority Critical patent/JPS60165506A/en
Publication of JPS60165506A publication Critical patent/JPS60165506A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To detect the shape, etc., of a body to be detected by a simple means securely by irradiating the body to be detected with laser light almost linearly at right angles to the relative movement and detecting its reflection or irradiation state, and detecting the shape of the body, etc., from mutual transition to a linear and a nonlinear state. CONSTITUTION:The body 2 to be detected which is wide perpendicularly to the conveyance direction is mounted on a carrying device 1, a reflecting roll 3 is fitted to the detection position for the objective body 2 so that the roll can rotate synchronizing with the conveying speed of the device 1, and the bode 2 to be detected is irradiated with the laser light LB from an irradiating device 4 almost linearly at a spread angle corresponding to the width at right angles to the conveyance direction. A photodetecting device 8 is arranged on the path of reflected light of the light LB from the roll 3, and numbers of its photodetecting elements 9 are arrayed in the axial direction; and an electrical signal having a voltage level corresponding to the quantity of reflected light of the light LB is outputted to a comparing circuit 10 and the binary-coded signal based upon a specific threshold value is supplied to an electronic controller 20 to detect an irregular part (not shown in figure), etc., of the objective body 2.

Description

【発明の詳細な説明】 技術分野 この発明は被検出体上に対し略直線状に照射さ検出する
光学的検出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD The present invention relates to an optical detection method in which an object to be detected is irradiated and detected in a substantially straight line.

従来技術 従来、光源と相対移動する被検出体に光を照射的検出方
法にあっては、特に輪郭部分或いは欠点部分に対する明
瞭なコントラストを得る必要上、被検出体に対し略均−
な光量の光を開射しなければならなかった。そして相対
移動直交方向幅が長尺状の被検出体に対しては少なくと
も被検出体の相対移動方向幅以上からなる長尺状の蛍光
管等の光源を使用しなければならないが、相対移動直交
方向幅が光源幅以上の被検出体にあっては検出精度が著
しく悪くなる問題を有していた。また、高出力からなる
単一の光源を使用した場合、照射される光の波長帯域が
広いため、外乱光に影響され易いと共に1に射された光
が挾等により拡散し易く被検出体上における照射直下箇
所と端部と【;おいてはコントラストに差が生じる欠点
を有していた。
BACKGROUND ART Conventionally, in the detection method of irradiating light onto an object to be detected that moves relative to a light source, it is necessary to obtain clear contrast especially for outlines or defective areas, so that the object to be detected is approximately evenly spaced.
A certain amount of light had to be emitted. For a detected object whose width in the direction perpendicular to the relative movement is long, a light source such as a long fluorescent tube whose width in the direction perpendicular to the relative movement must be at least greater than the width in the direction of relative movement of the object must be used. For objects to be detected whose directional width is greater than the width of the light source, there is a problem in that the detection accuracy deteriorates significantly. In addition, when a single high-output light source is used, the wavelength band of the emitted light is wide, so it is easily affected by ambient light, and the emitted light is easily diffused by a clamp etc. The problem was that there was a difference in contrast between the area directly under the irradiation and the edge of the area.

これらの欠点は被検出体上からの反射状態或いは照射状
態に応じて受光素子から出力される各電気18号を光源
から夫々の照射位置までの距離に応じて補正することに
より回避し得るか、電気信号補正回路の複雑化により装
置が高コスト化する問題をも有していた。
Can these drawbacks be avoided by correcting each electricity number 18 output from the light receiving element according to the distance from the light source to each irradiation position according to the reflection state or irradiation state from the object to be detected? There is also the problem that the cost of the device increases due to the complexity of the electrical signal correction circuit.

発明の目的 この発明の目的は上記した従来の欠点に鑑み、簡易な手
段により相対移動する被検出体上に略直線状のレーザ光
を照射し、このレーザ光の反射状的検出方法を提供する
ことにある。
Purpose of the Invention In view of the above-mentioned conventional drawbacks, an object of the present invention is to provide a method for irradiating a relatively linear laser beam onto an object to be detected that moves relatively by simple means and detecting the laser beam in a reflective manner. There is a particular thing.

実施ず列 以下、図面に従って実施例を説明する。Not implemented Hereinafter, embodiments will be described according to the drawings.

第1実施例 第1図において、ローラ形式の搬送装置1」二には搬送
直交方向幅が長尺状の例えば合板或いはベニヤ単板等の
被検出体2が載置され、図中実線矢印方向へ搬送される
。また搬送装置lにおける被検出体2の検出位置には軸
線方向幅が少なくとも前記被検出体2の搬送直交方向幅
からなる反射ロール3が前記搬送装置1の搬送速度と同
期回転可能に取付けられている。尚、反射ロール3の外
周には必要に応してその軸長全体に亘ってブラシC図示
せず〕が接触可能に取付け、反射ロール3外周面に付着
した埃等を剥離除去することにより反射ロール3の反射
状態を略一定に保つことが出来る。
1st Embodiment In FIG. 1, an object 2 to be detected, such as plywood or veneer veneer, whose width in the direction perpendicular to the direction of conveyance is elongated, is placed on a roller-type conveying device 1. transported to. Further, a reflection roll 3 whose axial width is at least as wide as the width of the detected object 2 in the direction perpendicular to the conveyance direction is attached to the detection position of the detected object 2 in the conveyance device 1 so as to be rotatable in synchronization with the conveyance speed of the conveyance device 1. There is. A brush C (not shown) is attached to the outer periphery of the reflecting roll 3 so as to be able to touch the entire axial length of the reflecting roll 3, if necessary, to peel off and remove dust attached to the outer periphery of the reflecting roll 3. The reflection state of the roll 3 can be kept substantially constant.

111j記搬送装置1の上方には前記反射ロール3に対
し適宜の照射角度でレーザ光LBを照射するレーザjl
lJ射装置4が固定的に配置されている。このレーザ!
(α射装置4は光学的レンズ(図示せず)によりHe−
Ncレーザ発撮器或いは半導体レーザ素子等から発振さ
れたレーザ光LBを1til記被検出体2に対しその搬
送直交方向幅に応じた開き角で、かつ略1a線状に収束
した状態で照射する。レーザ光LBを所望の開き角で直
線状に照射する方法としては1に射されたレーザ光LB
を曲面ミラーに照射して所望の開き角で直線状にする方
法或いは円筒形レンズを透過させることにより所望の開
き角で直線状に照射する方法等の阿れであっても実施し
得る。
111j Above the conveying device 1 is a laser jl that irradiates the reflective roll 3 with a laser beam LB at an appropriate irradiation angle.
The lJ injection device 4 is fixedly arranged. This laser!
(The α irradiation device 4 uses an optical lens (not shown) to
A laser beam LB oscillated from an Nc laser oscillator or a semiconductor laser element, etc. is irradiated onto the detected object 2 at an opening angle corresponding to the width in the direction perpendicular to the conveyance direction, and in a state where it is converged in a substantially linear shape. . As a method of irradiating the laser beam LB in a straight line at a desired opening angle, the laser beam LB irradiated at 1.
It is also possible to carry out a method such as a method of irradiating the light onto a curved mirror to form a straight line at a desired aperture angle, or a method of transmitting the light through a cylindrical lens and irradiating the light in a straight line at a desired aperture angle.

そしてこれらの具体例としてはル−ザーマIキンクシス
テム」 (カンタムエレクトロニクス株式会社販売)、
ル−ザーマーキンクプ口ジエクター] 〔竹中オプトニ
ック株式会社販売〕、1−レーザーマーキンクJ 〔日
本科学エンジニアリング株式会社販売〕等が列挙される
。このレーザ光LBはその発振波長が780 nm以下
の可視光であり、その発振出力は後述する各受光素子9
の光検出特性に応じて適宜設定される。またこのレーザ
光LBはコヒーレントな光線であり、反射ロール3の外
周上に対し略均−光撤で照射される。
Specific examples of these include the Luzama I Kink System (sold by Quantum Electronics Co., Ltd.);
1-Laser Markink J [sold by Nippon Kagaku Engineering Co., Ltd.] and the like are listed. This laser beam LB is a visible light whose oscillation wavelength is 780 nm or less, and its oscillation output is transmitted to each light receiving element 9, which will be described later.
It is set appropriately according to the photodetection characteristics of. Moreover, this laser beam LB is a coherent beam, and is irradiated onto the outer periphery of the reflection roll 3 with a substantially uniform beam intensity.

一方、1+iI記反射ロール3から略直線状に反射され
たレーザ光LBの反射光路上には線形の受光装置a8が
配置されている。この受光装置8は反射ロール3の軸線
方向へ多数の受光素子9が配列された例えばCCD形式
のイメージセンサから構成されている。そして受光素子
9の配列数及び相互間の配列ピッチは分解能に応じて適
宜設定される。そして各受光素子9は走査時間毎に検出
位置aを通過する被検出体2の位置、形状、或いは欠点
等より変化するレーザ光LBの反射光量に応じた電圧レ
ベルの電気信号KSを比較回路10に出力する。
On the other hand, a linear light-receiving device a8 is disposed on the reflected optical path of the laser beam LB reflected in a substantially straight line from the 1+iI reflection roll 3. The light receiving device 8 is composed of, for example, a CCD type image sensor in which a large number of light receiving elements 9 are arranged in the axial direction of the reflecting roll 3. The number of arrays of the light receiving elements 9 and the pitch between the arrays are appropriately set according to the resolution. Each light-receiving element 9 receives an electric signal KS at a voltage level corresponding to the amount of reflected light of the laser beam LB, which changes due to the position, shape, defect, etc. of the detected object 2 passing through the detection position a every scanning time, to a comparison circuit 10. Output to.

二の比較回路10は例えば浮動型しきい値回路かIう構
成され、近傍電気信号KSの電圧レベルの平均(1ムに
基づいてしきい値を浮動させると共にこのしきい値に基
づいて電気信号KSに応じた2 rm化16号に変換す
る。即ち、電気信号KSの電圧レベルがしきい(fJ以
上の場合には’1”、反対に電気14号KSの電圧レベ
ルがしきい値以下の場合には” o ”の2値化信号り
している。尚、外乱光の影響を受け易い作業条件にあっ
ては各受光素子9に対しレーザ光LBの発振波長に応じ
たフィルタ(図示せず)を取付けることによりS/N比
を向上させることが出来る。
The second comparator circuit 10 is configured, for example, as a floating type threshold circuit, which floats the threshold value based on the average voltage level of the nearby electrical signal KS (1 m), and also floats the threshold value based on the average voltage level of the nearby electrical signal KS. Converts to 2rm No. 16 according to KS. That is, '1' when the voltage level of the electrical signal KS is above the threshold (fJ, and conversely, when the voltage level of the electrical signal KS is below the threshold In this case, a binary signal of "o" is used.In addition, under working conditions that are susceptible to disturbance light, a filter (not shown in the figure) corresponding to the oscillation wavelength of the laser beam LB is installed for each light receiving element 9. The S/N ratio can be improved by attaching the following.

電子制御4Ii置20は走査時間毎にシリアルに人力さ
れる11’ll記2仙化信号を−Hシフトレジスタ21
に記憶させた後、このシフトレジスタ21からする。
The electronic control 4Ii 20 transfers the 11'll 2 signal inputted serially every scanning time to the -H shift register 21.
After the data is stored in the shift register 21, the data is stored in the shift register 21.

例えば第2図から第4図に示すように被検出体2の搬送
方向ljJ後端における不揃部分を切断除去するための
位置検出動作を説明する。
For example, as shown in FIGS. 2 to 4, a position detection operation for cutting and removing an uneven portion at the rear end of the detected object 2 in the transport direction ljJ will be described.

第1図に示すように検出位置aに被検出体2が搬送され
ていない状態においては、反射ロール3の軸線方向へ直
線状に照射されたレーザ光LBはこの反射ロール3によ
り略直線状に反射された後、夫々の受光素子9に受光さ
れる。これにより各受光素子9から高電圧レベルの電気
信号KSが出ノ〕されるため、各比較回路lOは全てが
“1′°の2値化信号を出ツノし、シフトレジスタ21
に記憶させる。この状態において電子制御装置20はシ
フトレジスタ21からアクセスされた2値化信号に基づ
いて被検出体2の非検出状態にあることを判断する。
As shown in FIG. 1, when the detected object 2 is not being conveyed to the detection position a, the laser beam LB linearly irradiated in the axial direction of the reflecting roll 3 is directed approximately linearly by the reflecting roll 3. After being reflected, the light is received by each light receiving element 9. As a result, each light-receiving element 9 outputs an electrical signal KS at a high voltage level, so that each comparator circuit 10 outputs a binary signal of "1'°," and the shift register 21
to be memorized. In this state, the electronic control device 20 determines that the detected object 2 is in a non-detection state based on the binarized signal accessed from the shift register 21.

第2図に示すように、搬送装置1の搬送に伴って上記状
態から被検出体2の搬送方向liJ端側が検出位iaに
位置されると、レーザ照射装置4から照射されたレーザ
光LBの一部は被検出体2411端1111の不揃部分
2aに吸収されると共に他のレーザ光LBは反射ロール
3により反射され対応する受光素子9に受光される。こ
れにより反射ロール3によるレーザ光LBの反射状態が
略直線状態から非直線状態に遷移し、この非直線状態に
応じて少なくとも1つが“0″に変化した2値化信号が
出力される。この状態において電子制御装置20は被検
出体2における搬送方向曲端側の不揃部分2aを検出す
る。
As shown in FIG. 2, when the end side of the object to be detected 2 in the transport direction liJ is positioned at the detection position ia from the above state as the transport device 1 transports, the laser beam LB irradiated from the laser irradiation device 4 A part of the laser beam LB is absorbed by the irregular portion 2a of the end 1111 of the object to be detected 2411, and the other laser beam LB is reflected by the reflection roll 3 and received by the corresponding light receiving element 9. As a result, the state of reflection of the laser beam LB by the reflection roll 3 changes from a substantially linear state to a non-linear state, and in accordance with this non-linear state, a binary signal in which at least one signal changes to "0" is output. In this state, the electronic control device 20 detects the irregular portion 2a of the detected object 2 on the curved end side in the transport direction.

第3図に示すように、上記状態から搬送方向及び搬送直
交方向へ連続する被検出体2が検出位置aに位置される
と、照射された全てのレーザ光LBは被検出体2に吸収
され、各受光素子9への反射が規制される。これにより
全ての受光素子9から出力される電気信号KSは低電圧
レベルに変化し、2値化IS号が全て0′°に変化する
。この状態において制御装置20は被検出体2Jtlf
i側の不揃部分2aを切断除去するための切断位置すを
検出し、搬送方向下手側に配置された切断装置により切
断動作を実行させる。
As shown in FIG. 3, when the object 2 to be detected that continues in the transport direction and the direction perpendicular to the transport is positioned at the detection position a from the above state, all of the irradiated laser beam LB is absorbed by the object 2 to be detected. , reflection to each light receiving element 9 is regulated. As a result, the electric signals KS output from all the light receiving elements 9 change to a low voltage level, and all the binary IS signals change to 0'°. In this state, the control device 20 controls the detected object 2Jtlf.
A cutting position for cutting and removing the irregular portion 2a on the i side is detected, and a cutting operation is performed by a cutting device disposed on the downstream side in the conveyance direction.

第4図に示すように、上記状態から被検出体2における
後端側の不揃部分2bが検出位置aに位置されると、不
揃部分2bに照射された一部のレーザ光LBはこの不揃
部分2bに吸収されると共に不揃部分以外に照射された
他のレーザ光LBは反射ロール3により反射され、対応
する受光素子9に受光される。これにより反射ロール3
によるレーザ光LBの反射状態が非直線状態に遷移し、
電気信号KSの一部は低電圧レベルから高電圧レベルへ
変化してz値化信号が°0″からl″゛に変化する。こ
の状態において制御装置20は被検出体2における後t
4I側の不揃部分2bを切断除去するための切断位置C
を検出し、搬送方向下手側に配置されたl3IJ11i
装置により切断動作を実行させる。
As shown in FIG. 4, when the uneven portion 2b on the rear end side of the detected object 2 is located at the detection position a from the above state, a part of the laser beam LB irradiated to the uneven portion 2b is emitted from this position. Other laser beams LB that are absorbed by the irregular portion 2b and irradiated to areas other than the irregular portion are reflected by the reflection roll 3 and received by the corresponding light receiving elements 9. As a result, the reflective roll 3
The reflection state of the laser beam LB transitions to a non-linear state,
A portion of the electrical signal KS changes from a low voltage level to a high voltage level, and the z-valued signal changes from 0'' to 1''. In this state, the control device 20 controls the rear t of the detected object 2.
Cutting position C for cutting and removing the uneven portion 2b on the 4I side
13IJ11i located on the downstream side in the transport direction.
The device performs the cutting operation.

次に第5図に従って孔等の欠点を検出する場合について
説明する。
Next, the case of detecting defects such as holes will be explained according to FIG.

…1述したように被検出体2の検出状態において被検出
体2に照射されたレーザ光LBが吸収されるため、各受
光素子9から出力される電気1B@KSは全て低電圧レ
ベルである。この状態において被検出体2に形成された
孔2cが検出位置aに位置されると、レーザ光LBはこ
の孔2Cを介して−反射ロール3により反射され、対応
する受光素子9に受光される。これにより電気信号KS
の一部が低電圧レベルから高電圧レベルに変化するため
、その2値化信号の一部は0′′から1”′に変化する
。この状態において電子制御装置20は°゛0″から1
゛に変化した連続する2値化信号数に応じてカウンタ2
2をインクリメントさせ、孔2Cの搬送直交方向幅を検
出する。また制御装置120は最初に0″から°°1°
′に変化した2値化信号に基づいてタイマ23を起動さ
せ、搬送方向幅を検出する。そして制御装M20は前記
カウンタ及びタイマの計数値が予め設定されたデータ以
上の場合に欠点となる孔2Cを検出する。
...As described in 1, since the laser beam LB irradiated to the detected object 2 is absorbed in the detected state of the detected object 2, all the electricity 1B@KS output from each light receiving element 9 is at a low voltage level. . In this state, when the hole 2c formed in the detected object 2 is located at the detection position a, the laser beam LB is reflected by the reflection roll 3 through this hole 2C and is received by the corresponding light receiving element 9. . As a result, the electrical signal KS
Since a part of the voltage changes from a low voltage level to a high voltage level, a part of the binary signal changes from 0'' to 1''. In this state, the electronic control unit 20 changes from 0'' to 1''.
Counter 2
2 is incremented to detect the width of the hole 2C in the direction perpendicular to the transport direction. Also, the control device 120 initially moves from 0″ to °°1°.
The timer 23 is activated based on the binary signal changed to ', and the width in the transport direction is detected. Then, the control device M20 detects the defective hole 2C when the counted values of the counter and timer exceed preset data.

徒って本実施例は反射ロール3にレーザ光LBを搬送直
交方向へ略直線状に陥射し、検出位置aに対する被検出
体2の通過に伴ってレーザ光LBの反射状態が直線状態
から非直線状態或いは非直することが出来る。
Therefore, in this embodiment, the laser beam LB is reflected onto the reflection roll 3 in a substantially straight line in the direction perpendicular to the conveyance direction, and the reflected state of the laser beam LB changes from the linear state as the detected object 2 passes through the detection position a. It can be in a non-linear state or non-straight.

第2実施例 第6図において、前述したレーザ照射装置4は所定の検
出位置aにおいて被検出体2の搬送直交方向幅全体に亘
ってレーザ光LBを搬送直交方向へ略直線状で、かつ適
宜の照射角度で照射するように固定的に設置されている
。また…■記検出位置aの上方には被検出体z上に照射
されたレーザ光LBの照射状態を検出するカメラ装置3
oが配置されている。このカメラ装置30は分解能に応
じた多数の受光素子がマトリクス状に配列された例えば
CCD形式のイメージセンサと、夫々の受光素子から出
力される映像16号を映像パターンデータVDに変換す
る比較回路(1d1れも図示せず)とから構成され、被
検出体2に対するレーザ光LBの照射状態を検出する。
In FIG. 6 of the second embodiment, the laser irradiation device 4 described above irradiates the laser beam LB in a substantially straight line in the direction perpendicular to the conveyance over the entire width of the object to be detected 2 in the direction perpendicular to the conveyance at a predetermined detection position a, and as appropriate. It is fixedly installed so that it irradiates at an irradiation angle of . Moreover, above the detection position a described in ■■, there is a camera device 3 that detects the irradiation state of the laser beam LB irradiated onto the detected object z.
o is placed. This camera device 30 includes, for example, a CCD type image sensor in which a large number of light receiving elements according to the resolution are arranged in a matrix, and a comparison circuit ( 1d1 (both not shown), and detects the irradiation state of the laser beam LB to the detected object 2.

この比較回路は例えば浮動型しきいr出回路により構成
され、近傍映像信号の平均値に応じてしきい1市を変動
させ、このしきい仙より高電圧レベルの映f!i!信号
を“1″゛、また低電圧レベルの映像18号を” o 
”とする映像パターンデータVDに変換して電子制御装
置31に出力する。そして電子制御装置31はこの映像
パターンデータVDをシフトレジスタ32に一旦記憶さ
せた後、走査時間毎にシフトレジスタ32から映像パタ
ーンデータVDをアクセスする。この電子制御装置31
は映像パターンデータVDとROM33に予め記憶され
た基準映像パターンデータとを比較する。この基準映像
パターンデータは被検出体2上にレーザ光LBが搬送直
交方向全体に亘って略直線状に照射された際の映像パタ
ーンデータVDである。そして1liJ記電子制御装置
31は映像パターンデータVDと基準映像パターンデー
タと先ず、第7図から第9図に示すように前述した被検
出体2の搬送方向diJ後#il側における不揃部分を
切断除去するための位置検出方法について説明する。
This comparator circuit is composed of, for example, a floating threshold output circuit, which changes the threshold value according to the average value of the nearby video signals, and compares the image f with a voltage level higher than this threshold value. i! Signal "1", and low voltage level video No. 18" o
” and outputs it to the electronic control device 31.The electronic control device 31 once stores this video pattern data VD in the shift register 32, and then outputs the video pattern data VD from the shift register 32 at each scanning time. Access the pattern data VD.This electronic control device 31
compares the video pattern data VD with reference video pattern data stored in the ROM 33 in advance. This reference image pattern data is image pattern data VD obtained when the laser beam LB is irradiated onto the object 2 in a substantially straight line over the entire direction orthogonal to the conveyance direction. Then, the electronic control device 31 uses the video pattern data VD and the reference video pattern data to first detect the uneven portion on the #il side after the conveyance direction diJ of the detected object 2, as shown in FIGS. 7 to 9. A position detection method for cutting and removing will be explained.

第6図に示すように、被検出体2の搬送方向lr+1端
儂jが検出位置aに搬送されていない状態にあっては、
レーザ照射装置4から照射されたレーザ光LBは上記検
出位Ba以外の箇所に適宜の状態で照射される。このた
めカメラ装置30から背景に応じた映像パターンデータ
VDが出力されるため、電子制御−装置31はこの映像
パターンデータVDと基準映像パターンデータとを比較
し、両者が一致しないため被検出体2の非検出状態と判
断する。
As shown in FIG. 6, when the detection object 2 is not transported to the detection position a in the transport direction lr+1 end j,
The laser beam LB irradiated from the laser irradiation device 4 is irradiated to a location other than the detection position Ba in an appropriate state. For this reason, since the camera device 30 outputs video pattern data VD according to the background, the electronic control device 31 compares this video pattern data VD with the reference video pattern data, and since they do not match, the detected object is judged to be in a non-detection state.

次に第7図に示すように、上記状態から被検出体2の搬
送方向11’+J@側の不揃部分2aが検出位置aに位
置されると、不揃部分2aにレーザ光LBが吸収される
ため、被検出体2に対するレーザ光LBの照射状態は不
連続状態にJi!移する。このためカメラ装置30から
手連続状に照射されたレーザ光LBの映像パターンデー
タVDが出力されると、電子制御装置31はこの映像パ
ターンデータVDとROM33に書込まれた基!ll映
像パターンデータとを比較する。この場合、両者のデー
タが一致しないため、電子制御装fi31は切断位置の
非検出状態と判断する。
Next, as shown in FIG. 7, when the uneven portion 2a on the conveyance direction 11'+J@ side of the detected object 2 is positioned at the detection position a from the above state, the laser beam LB is absorbed by the uneven portion 2a. Therefore, the irradiation state of the laser beam LB to the detected object 2 becomes discontinuous. move. Therefore, when the video pattern data VD of the laser beam LB continuously irradiated from the camera device 30 is output, the electronic control device 31 outputs the video pattern data VD and the image data written in the ROM 33! ll video pattern data. In this case, since the two data do not match, the electronic control unit fi31 determines that the cutting position is not detected.

第8図に示すように、上記状態から搬送方向及び搬送直
交方向へ連続する被検出体2が検出位置aに位置される
と、被検出体23上に対しレーザLBは搬送直交方向へ
連続した略直線状に照射される。そしてカメラ装置30
から被検出体2に略直線状に照射されたレーザ光LBの
映像パターンデータVDが出力されると、電子制御装置
31は1111述動作と同様にこの映像パターンデータ
VDと基準映像パターンデータとを比較する。この場合
、電子制御装#f31は両者が一致することにより被検
出体2の搬送方向前端側における不揃部分2aの切断位
置すを検出し、搬送方向下手面に配置された切断装置に
より切断動作を実行させる。
As shown in FIG. 8, when the object 2 to be detected that continues in the transport direction and the direction perpendicular to the transport from the above state is positioned at the detection position a, the laser LB continues on the object 23 to be detected in the direction perpendicular to the transport. It is irradiated in a substantially straight line. and camera device 30
When the image pattern data VD of the laser beam LB which is irradiated onto the detected object 2 in a substantially straight line is outputted, the electronic control device 31 converts this image pattern data VD and the reference image pattern data in the same manner as in the operation described in 1111. compare. In this case, the electronic control unit #f31 detects the cutting position of the irregular portion 2a on the front end side of the object to be detected 2 in the conveyance direction when the two match, and performs cutting by the cutting device disposed on the lower side in the conveyance direction. Execute.

第9図に示すように、被検出体2上にレーザ光LBが略
直線状に照射された状態で被検出体2の搬送方向後端側
の不揃部分2bが検出位置aに位置された際、被検出体
2上におけるレーザ光LBの照射状態は直線状態から非
直線状態に屯移する。
As shown in FIG. 9, the irregular portion 2b on the rear end side in the transport direction of the detected object 2 is positioned at the detection position a with the laser beam LB being irradiated onto the detected object 2 in a substantially straight line. At this time, the irradiation state of the laser beam LB on the detected object 2 changes from a linear state to a non-linear state.

これに伴なってカメラ装置30から非直線状態の映像パ
ターンデータvDが出力されると、電子制御装fi31
はn「述動作と同様にこの映像パターンデータVDと基
準映像パターンデータを比較し、両者が一致しないため
被検出体2後端倒の不揃部分2bを切断除去するための
切断位置Cを検出し、搬送方向下手1111に配置され
た切断装置により切断動作を実行させる。
Accordingly, when non-linear video pattern data vD is output from the camera device 30, the electronic control device fi31
Similar to the operation described above, this video pattern data VD is compared with the reference video pattern data, and since they do not match, a cutting position C is detected for cutting and removing the irregular portion 2b of the tilted rear end of the detected object 2. Then, a cutting operation is performed by a cutting device disposed on the lower side 1111 in the conveyance direction.

次に被検出体2に形成された孔、或いは凹所の検出方法
を説明する。
Next, a method for detecting holes or recesses formed in the object to be detected 2 will be explained.

欠点のない被検出体2が検出位置aを通過する場合、こ
のレーザ光LBは前述したように被検出体2上に対し搬
送直交方向幅全体に亘って略直線状に照射される。第1
0図に示すように、この状態において例えば被検出体2
における孔2cが検出位置aを通過すると、被検出体2
に照射されたレーザ光LBは孔2cを通過するため、被
検出体2に対するレーザ光LBの照射状態は略直線状態
が非直線状態に遷移する。これによりカメラ装置30か
ら非直線状態に応じた映像パターンデータVDが出力さ
れると、電子制御装置31はこの映像パターンデータV
Dと基準映像パターンデータとを比較し、両者が一致し
ないことにより被検出体2に形成された孔2Cを検出す
る。その際、電子制御装置は不直線状態に応じてパ0#
に変化した映像パターンデータVDIに応じてカウンタ
34をインクリメントさせ、孔2Cの搬送直交方向幅を
判定する。そしてこのカウンタのカウント値がレジスタ
35に予め記憶された搬送直交方向幅に関するデータ以
上の場合にのみ、孔2Cを欠点として検出するように制
御しても良い。
When the detected object 2 with no defects passes through the detection position a, the laser beam LB is irradiated onto the detected object 2 in a substantially straight line over the entire width in the direction perpendicular to the transport direction, as described above. 1st
As shown in Figure 0, in this state, for example, the detected object 2
When the hole 2c passes through the detection position a, the detected object 2
Since the laser beam LB irradiated on the object 2 passes through the hole 2c, the state of irradiation of the laser beam LB on the detected object 2 changes from a substantially linear state to a non-linear state. As a result, when the camera device 30 outputs the video pattern data VD corresponding to the non-linear state, the electronic control device 31 outputs the video pattern data VD according to the non-linear state.
D and reference image pattern data are compared, and if the two do not match, a hole 2C formed in the object to be detected 2 is detected. At that time, the electronic control unit adjusts the
The counter 34 is incremented in accordance with the video pattern data VDI that has changed, and the width of the hole 2C in the direction perpendicular to the conveyance direction is determined. Control may be performed such that the hole 2C is detected as a defect only when the count value of this counter is greater than or equal to the data regarding the width in the transport orthogonal direction stored in the register 35 in advance.

次に被検出体2における凹所を検出する場合について説
明する。
Next, the case of detecting a recess in the detected object 2 will be described.

第11図及び第12図に示すように、被検出体2の凹所
2d或いは6所2cが検出位置aに搬送された際、被検
出体2上に照射されるレーザ光LBは他の正常箇所に照
射されたレーザ光LBと較べて湾曲状態となる。この湾
曲状態は凹所2d或いは6所2cの搬送直交方向幅及び
深さ或いは高さに応じて偏位する。これにより被検出体
2に対するレーザ光LBの照射状態は直線状態から非直
線状態に遷移する。そしてカメラ装置30から非直線状
態に応じた映像パターンデータVDが出力されると、電
子制御装置31は1rlJ述した動作と同様に遷移した
映像パターンデータVDと基準映像パターンデータとを
比較し、両者が一致しないことにより凹所2d或いは6
所2cを検出する。
As shown in FIGS. 11 and 12, when the recess 2d or 6 locations 2c of the detected object 2 is transported to the detection position a, the laser beam LB irradiated onto the detected object 2 is It is in a curved state compared to the laser beam LB irradiated to the spot. This curved state deviates depending on the width, depth, or height of the recess 2d or the six recesses 2c in the direction perpendicular to the conveyance direction. As a result, the state of irradiation of the laser beam LB onto the detected object 2 changes from a linear state to a non-linear state. Then, when the video pattern data VD corresponding to the non-linear state is output from the camera device 30, the electronic control device 31 compares the transitioned video pattern data VD and the reference video pattern data in the same manner as in the operation described in 1rlJ, and compares both the video pattern data VD and the reference video pattern data. The recess 2d or 6 does not match.
Detect location 2c.

従って本実施例は搬送される被検出体2上にその搬送直
交方向幅全体に亘りてレーザ光LBを搬送直交方向へ略
直線状に照射し、被検出体2に対するレーザ光LBの照
射状態が略直線状態であるすることが出来る。
Therefore, in this embodiment, the laser beam LB is irradiated substantially linearly in the direction perpendicular to the conveyance over the entire width of the detected object 2 being conveyed, and the state of irradiation of the laser beam LB to the detected object 2 is controlled. It can be in a substantially straight line state.

尚、第1及び第2実施例は搬送装置lにより被検出体2
を移動させると共に、固定的に取付けられたレーザ照射
装置4により移動する被検出体2に対しその搬送直交方
向幅全体に亘ってレーザ光LBを搬送直交方向へ略直線
状に照射する方法としたか1本発明は固定的に配置され
た被検出体に対しレーザ照射装置及び受光装置を移動さ
せながら被検出体上にレーザ光を略直線状に照射し、レ
一方法であっても実施し得る。
In addition, in the first and second embodiments, the object to be detected 2 is transported by the transport device l.
At the same time, a fixedly attached laser irradiation device 4 is used to irradiate the moving object 2 with a laser beam LB substantially linearly in the direction perpendicular to the transport direction over the entire width of the object to be detected 2 in the direction perpendicular to the transport direction. (1) The present invention can be carried out even in a single method, in which a laser beam is irradiated onto the object to be detected in a substantially straight line while moving a laser irradiation device and a light receiving device to the object to be detected, which is fixedly arranged. obtain.

また第1実施例はレーザ照射装置4から照射されたレー
ザ光LBを反射ロール3により反射させ、被検出体2の
通過に伴って変化するレーザ光LBの照射光量に基づい
て検出を行う方法としたが、照射されたレーザ光を反射
し得る被検出体にあっては、被検出体が検出位置を通過
した際にレーザ光の反射光路上に配置された各受光素子
から出力であっても実施し得る。
Further, the first embodiment is a method in which the laser beam LB irradiated from the laser irradiation device 4 is reflected by the reflection roll 3, and detection is performed based on the irradiation light amount of the laser beam LB that changes as the detected object 2 passes. However, in the case of an object to be detected that can reflect the irradiated laser beam, even when the object to be detected passes through the detection position, the output from each light receiving element placed on the reflected optical path of the laser beam is It can be implemented.

更に第2実施例は搬送される被検出体2上に対し一方向
より適宜の角度でその搬送直交方向幅全体に亘ってレー
ザ光LBを搬送直交方向へ照射し、カメラ装置30によ
り被検出体2に対するレーザ光LBの照射状態を検出す
る構成としたが、本発明はこの実施例に限定されるもの
ではなく、第13図に泉°すように検出位置aを中心に
レーザ照射装置40・41を対向的に配置し、このレー
ザ蕪#J装置40・41により搬送される被検出体z上
にその搬送直交方向幅全体に亘ってレーザ光LBを搬送
直交方向へ略直線状に重複照射する構成であっても実施
し得る。この構成により例えば被検出体2の凹Pfi2
dを検出する場合、第14図に示すように凹所2dに対
するレーザ光LBの照射状態は欠点のない被検出体2に
対する略直線状の照射状態に較べ2重の照射状態となる
。そして電子制御−装置31はこの2重の映像パターン
データ■Dに基づいて熱射状態が略直線状態から非直線
状1ルに遷移したことを確実に判にすることが出来る。
Furthermore, in the second embodiment, a laser beam LB is irradiated from one direction onto the object to be detected 2 being conveyed at an appropriate angle over the entire width in the direction orthogonal to the conveyance, and a camera device 30 is used to detect the object to be detected. However, the present invention is not limited to this embodiment, and as shown in FIG. 13, the laser irradiation device 40 and 41 are arranged opposite to each other, and the laser beam LB is irradiated substantially linearly in a substantially straight line in the direction orthogonal to the conveyance over the entire width of the detected object z conveyed by the laser beam #J devices 40 and 41 over the entire width thereof in the direction orthogonal to the conveyance. It is also possible to implement a configuration in which: With this configuration, for example, the concave Pfi2 of the detected object 2
When detecting d, as shown in FIG. 14, the state of irradiation of the laser beam LB to the recess 2d becomes a double irradiation state compared to the state of substantially linear irradiation to the detected object 2 without defects. Then, the electronic control device 31 can reliably determine that the heat radiation state has transitioned from a substantially linear state to a non-linear state based on this double image pattern data (D).

更に第2実施例は単一のカメラ装置u30により被検出
体2の搬送直交方向幅全体のレーザ光LBの照射状態を
検出する4!4成としたが、本発明は被検出体の相対移
動直交方向幅に応じたI!数の受光装置6を配置し、夫
々の受光装置により検出されたる方法であっても実施し
得る。
Further, in the second embodiment, a 4!4 configuration is adopted in which a single camera device u30 detects the irradiation state of the laser beam LB over the entire width of the object to be detected 2 in the direction perpendicular to the conveyance direction. I according to the width in the orthogonal direction! It is also possible to implement a method in which a number of light receiving devices 6 are arranged and detection is performed by each of the light receiving devices.

発明の効果 以」:説明したように本発明は、レーザ光を光学的レン
ズ或いはミラー等により扇状にLBげて発するレーザ照
射装置を光源として使用し、例えば合板等のように相対
移動直交方向幅が長尺状からなる被検出体の相対移動直
交方向幅全体に亘って略均−な光量で略直線状に照射す
ると共に、被検出体に照射されたレーザ光の照射状態或
いは反射状態かa線状態から非i1!線状態へ、或いは
非直線状あるから、検出を確実に行い得る光学的検出方
法である。
Effects of the Invention: As explained, the present invention uses a laser irradiation device that emits laser light in a fan-shaped LB using an optical lens or mirror as a light source, and irradiates a long object to be detected in a substantially straight line with a substantially uniform amount of light over the entire width in the direction perpendicular to the relative movement of the object, and determines the irradiation state or reflection state of the laser beam irradiated to the object to be detected.a Non-i1 from line state! This is an optical detection method that can reliably perform detection because it is in a linear state or in a non-linear state.

〔図101の簡単な説明〕 第1図は第1実施例の概略を示す説明図、第2図から第
5図は検出動作を示す説明図、第6図は第2実施例の概
略を示す説明図、第7図から第12図は検出動作を示す
説明図、第13図及び第14図は本発明の変更実施例を
示す説明図である。
[Brief explanation of Fig. 101] Fig. 1 is an explanatory diagram showing the outline of the first embodiment, Figs. 2 to 5 are explanatory diagrams showing the detection operation, and Fig. 6 is an explanatory diagram showing the outline of the second embodiment. FIGS. 7 to 12 are explanatory diagrams showing the detection operation, and FIGS. 13 and 14 are explanatory diagrams showing modified embodiments of the present invention.

図中2は被検出体、4はレーザ照射装置、9は受光装置
、30は受光装置としてのカメラ装置、LBはレーザ光
である。
In the figure, 2 is an object to be detected, 4 is a laser irradiation device, 9 is a light receiving device, 30 is a camera device as a light receiving device, and LB is a laser beam.

第8図 第11図Figure 8 Figure 11

Claims (1)

【特許請求の範囲】[Claims] 1、被検出体と相対移動可能なレーザ照射装置から前記
被検出体に対しレーザ光を相対移動直交方向へ略直線状
に照射し、受光装置により被検出体上に照射されたレー
ザ光の反射状態或いは照射状態を検出し、Ill記レー
しザ光の反射状態或いは照射状態が略直線状態から非直
線状態へ、或いは非直特徴と゛する光学的検出方法。
1. A laser irradiation device that is movable relative to the object to be detected irradiates the object to be detected with laser light in a substantially straight line in a direction orthogonal to the relative movement, and a light receiving device reflects the laser light irradiated onto the object to be detected. An optical detection method that detects a state or an irradiation state, and changes the reflection state or irradiation state of a laser beam from a substantially linear state to a non-linear state, or has non-linear characteristics.
JP2251484A 1984-02-08 1984-02-08 Optical detecting method Pending JPS60165506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2251484A JPS60165506A (en) 1984-02-08 1984-02-08 Optical detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2251484A JPS60165506A (en) 1984-02-08 1984-02-08 Optical detecting method

Publications (1)

Publication Number Publication Date
JPS60165506A true JPS60165506A (en) 1985-08-28

Family

ID=12084868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2251484A Pending JPS60165506A (en) 1984-02-08 1984-02-08 Optical detecting method

Country Status (1)

Country Link
JP (1) JPS60165506A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63193045A (en) * 1987-02-06 1988-08-10 Toei Denshi Kogyo Kk Method for detecting flaw of paper
JPH0248857U (en) * 1988-09-30 1990-04-04
WO2001020253A1 (en) * 1999-09-12 2001-03-22 Alphatech Co., Ltd. Method and apparatus for searching for object with speckle pattern light

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115314A (en) * 1981-12-28 1983-07-09 Matsushita Electric Works Ltd Measuring device of flatness
JPS58115312A (en) * 1981-12-29 1983-07-09 Matsushita Electric Works Ltd Detector for surface defect
JPH0237462A (en) * 1988-07-28 1990-02-07 Oki Electric Ind Co Ltd Monitor device for automatic transaction device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115314A (en) * 1981-12-28 1983-07-09 Matsushita Electric Works Ltd Measuring device of flatness
JPS58115312A (en) * 1981-12-29 1983-07-09 Matsushita Electric Works Ltd Detector for surface defect
JPH0237462A (en) * 1988-07-28 1990-02-07 Oki Electric Ind Co Ltd Monitor device for automatic transaction device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63193045A (en) * 1987-02-06 1988-08-10 Toei Denshi Kogyo Kk Method for detecting flaw of paper
JPH0248857U (en) * 1988-09-30 1990-04-04
WO2001020253A1 (en) * 1999-09-12 2001-03-22 Alphatech Co., Ltd. Method and apparatus for searching for object with speckle pattern light

Similar Documents

Publication Publication Date Title
US4301373A (en) Scanning of workpieces such as lumber cants
US4600837A (en) Optical scanning apparatus with dynamic scan path control
US4799791A (en) Illuminance distribution measuring system
KR960703227A (en) A HIGH PRECISION COMPONENT ALIGNMENT SENSOR SYSTEM
US6392247B1 (en) Sensor and detection system having wide diverging beam optics
JP2003136260A (en) Laser marking device
US3675016A (en) Flying spot scanning
KR100632650B1 (en) Print-Soldering Inspection Apparatus
JPS60165506A (en) Optical detecting method
JP2001156425A (en) Printed board checker
JP3542359B2 (en) Pulse laser device and exposure apparatus using the same
US4311915A (en) Electro-optical presence detection scanner
JPH09155578A (en) Method and device for high output laser beam transmission
JP3076747B2 (en) High power laser transmission method and device
JPH10142350A (en) Article detector
JP3408389B2 (en) High power laser transmission method and apparatus
KR100529303B1 (en) Optical scanning device of printing machine
JP2552091Y2 (en) Bar detector
JP3311452B2 (en) Scanning laser mark device
JP3408393B2 (en) High power laser transmission method
EP0742553A2 (en) System and method for a laser feedback of an optical memory
JP2939766B2 (en) Laser scanning spot diameter measuring device
JP2638833B2 (en) Laser beam imaging system
JPS62114787A (en) Laser beam welding device with welding position corrector
JP2826763B2 (en) Thin plate detector