JPS60165469A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS60165469A
JPS60165469A JP59023206A JP2320684A JPS60165469A JP S60165469 A JPS60165469 A JP S60165469A JP 59023206 A JP59023206 A JP 59023206A JP 2320684 A JP2320684 A JP 2320684A JP S60165469 A JPS60165469 A JP S60165469A
Authority
JP
Japan
Prior art keywords
pressure
valve
valve device
low pressure
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59023206A
Other languages
Japanese (ja)
Inventor
均 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP59023206A priority Critical patent/JPS60165469A/en
Publication of JPS60165469A publication Critical patent/JPS60165469A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は冷蔵庫等の小型冷凍装置の改良に関する。[Detailed description of the invention] Industrial applications The present invention relates to improvements in small-sized refrigeration devices such as refrigerators.

従来例の構成とその問題点 この種の冷凍装置として第1図に示す冷凍装置がある。Conventional configuration and its problems As this type of refrigeration system, there is a refrigeration system shown in FIG.

1はコンプレッサ、2はコンデンサ、3はキャピラリチ
ューブ、4はエバポレータ、5はザクジョンラインであ
シ、順次環状に接続して構成している。この種の冷凍装
置で室温安定状態から冷却」(転を開始すると第2図に
示す圧力変化を示す。起動初期(第2図A部)は冷凍装
置内の冷媒の大部分はコンプレッサ1内の冷凍機油内に
溶解しているため、極端な冷媒不足を運転を生じる。
1 is a compressor, 2 is a condenser, 3 is a capillary tube, 4 is an evaporator, and 5 is a suction line, which are successively connected in a ring shape. When this kind of refrigeration equipment starts cooling from a stable state at room temperature, the pressure changes as shown in Figure 2. Because it is dissolved in the refrigerant oil, it causes extreme refrigerant shortage during operation.

従って、キャピラリチューブ3の下流側圧力(以下低圧
JJE力と称す)Pgは0 、1−0 、2Ky/cd
 absとなる。次いでコンプレッサ1の運転の継続に
より冷凍機油6温度は上昇し、次第に溶解している冷媒
が分解析出し、冷凍装置内を循環する冷媒量が増加し、
低圧圧力Ps も上昇する(第2図B)。
Therefore, the downstream pressure of the capillary tube 3 (hereinafter referred to as low pressure JJE force) Pg is 0, 1-0, 2Ky/cd.
It becomes abs. Next, as the compressor 1 continues to operate, the temperature of the refrigerating machine oil 6 rises, and the dissolved refrigerant gradually separates and separates, increasing the amount of refrigerant circulating within the refrigeration system.
The low pressure Ps also increases (Fig. 2B).

この時ギヤピラリチューブ上流側圧力(以下高圧圧力と
称す)Pd も上昇し、その圧力比P d/P sはl
tlτ一定である。その後、冷凍機油6内に溶解してい
る冷媒量は温度の上昇、低圧圧力P8の止子1に伴ない
11ぼ一定に達しく第2図C)低圧圧力Psは最大値”
ma!から徐々に低下する。また起励時からの電流値の
変化は第3図に示す通シがあり、起動瞬時の突入電流1
0 以外は低圧圧力P8の変化と11ぼ同一傾向を示し
、低圧圧力Psの最大値2848時に最大電流iユニが
流れる。冷凍装置に於いてはコンプレッサ1が同一でも
コンデンサ2.キャピラリチューブ3.エバポレータ4
等が僅かに異なる仕様である場合、及び、冷却負荷の相
異により低圧圧力Psの最大値”ma! が大きく異な
るため、最大電流’ma工も異なる。周知のように、コ
ンプレッサ1には過電流保護装置が必要であシ、冷凍装
置の構成に於いては必要冷却能力の算出からコンプレッ
サ1.コンデンサ2゜エバポレータ4は容易に仕様決定
できるが、キャピラリチューブ3の選定及び、コンプレ
・ノサ1の運転コンデンサ及び、過電流保護装置の選定
等については非常に難しく、また、実使用に於いて予想
外の低圧圧力Psの上昇等を生じ、冷却不良等の問題を
生じることがある。
At this time, the gear pillar tube upstream pressure (hereinafter referred to as high pressure) Pd also increases, and the pressure ratio Pd/Ps is l
tlτ is constant. After that, the amount of refrigerant dissolved in the refrigerating machine oil 6 reaches a constant value of 11 as the temperature rises and the low pressure P8 reaches the stop 1.C) The low pressure Ps reaches its maximum value.
Ma! It gradually decreases from In addition, the change in current value from the time of activation is shown in Figure 3, and the inrush current 1 at the instant of activation
The values other than 0 show the same tendency as the change in the low pressure P8, and the maximum current iuni flows when the low pressure Ps reaches its maximum value of 2848. In a refrigeration system, even if the compressor 1 is the same, the condenser 2. Capillary tube 3. Evaporator 4
etc. have slightly different specifications, and the maximum value of the low pressure Ps differs greatly due to differences in cooling load, so the maximum current 'ma' also differs.As is well known, the compressor 1 has an overload capacity. A current protection device is required, and in the configuration of the refrigeration system, the specifications of the compressor 1, capacitor 2, and evaporator 4 can be easily determined by calculating the required cooling capacity, but the specifications of the compressor 1, capacitor 2, and evaporator 4 can be easily determined, but the selection of the capillary tube 3 and the compressor nosa 1 It is very difficult to select an operating capacitor and an overcurrent protection device, and in actual use, an unexpected rise in the low pressure Ps may occur, resulting in problems such as poor cooling.

発明の目的 かかる問題に鑑み、本発明による冷凍装置は低圧圧力が
コンプレッサの許容圧力以上に上昇すると弁装置により
冷媒循環量を減少することにより低圧圧力を低減し、常
にコンプレッサの許容圧力以下で運転するよう制御し、
冷凍装置でのキャピラリチューブの選定を容易にすると
共に、コンプレッサの運転コンデンサを最適容量のまま
全ての冷凍装置に適用可能とし、通常運転にて最高効率
での運転をTjJ能とすることを目的としている。
Purpose of the Invention In view of this problem, the refrigeration system according to the present invention reduces the low pressure by reducing the amount of refrigerant circulation using a valve device when the low pressure rises above the allowable pressure of the compressor, and operates at always below the allowable pressure of the compressor. control to
The purpose of this design is to facilitate the selection of capillary tubes for refrigeration equipment, to enable the compressor operation capacitor to be applied to all refrigeration equipment with the optimum capacity, and to achieve maximum efficiency during normal operation. There is.

発明の構成 −F記目的を達成するため、本発明による冷凍装置は感
圧部と弁装置にて構成する冷媒制御弁を有し、感圧部に
低圧圧力と大気圧とを作用せしめ、低圧圧力が大気圧よ
り所定値高いときに前記弁装置を閉路すると共に、弁装
置をコンデンサとエバポレータに介在したものである。
Structure of the Invention - In order to achieve the object described in F, the refrigeration system according to the present invention has a refrigerant control valve constituted by a pressure sensing part and a valve device, and causes low pressure and atmospheric pressure to act on the pressure sensing part, and lowers the low pressure. The valve device is closed when the pressure is higher than atmospheric pressure by a predetermined value, and the valve device is interposed between the condenser and the evaporator.

実施例の説明 以下に本発明の一実施例について添付図面に従い説明す
る。図に於いて11はコンプレッサ、12はコンデンサ
、13は冷媒制御弁、14はキャピラリチューブ、16
はエバポレータ、16はサクションラインである。冷媒
制御弁13は感圧部17と弁装置18により構成し、0
リング19にて略気密に保たれたピストン20にて連結
されている。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings. In the figure, 11 is a compressor, 12 is a condenser, 13 is a refrigerant control valve, 14 is a capillary tube, 16
is an evaporator, and 16 is a suction line. The refrigerant control valve 13 is composed of a pressure sensitive part 17 and a valve device 18,
They are connected by a piston 20 which is kept substantially airtight by a ring 19.

前記感圧部17は上ケーシング21.下ケーシング22
.圧力応動素子23.調整ネジ24.バイアスバネ26
等より構成している。そして、圧力応動素子23は上ケ
ーシング21と下ケーシング22に外周を溶接している
。また、バイアスバネ26は圧力応動素子23と上ケー
シング21との間に介在され、一端に調整ネジ24に、
他端をスペーサ26を介して圧力応動素子23の上1h
jにそれぞれ当接している。27はハウジングであり、
中央下部に弁座28とボート29.中央上部に上面30
と弁座28とを連通ずるシリンダ31を形成し、上面3
0の外周を前記下ケーシング22中央下部に気密にロー
接けされている。前記シリンダ31下部には側面よシ出
ロ孔32が形成され、出口孔32には出口バイブ33.
ポート29には入口バイブ34がそれぞれ設けられてい
る。ピストン20の下端には弁体35.上端には当金3
6がそれぞれ備えられ、略中夫に形成された凹溝に0リ
ング19を設け、シリンダ31の内壁とにより、ピスト
ン2oの上下を略気密に保っている。
The pressure sensitive section 17 is connected to the upper casing 21. Lower casing 22
.. Pressure responsive element 23. Adjustment screw 24. bias spring 26
It is composed of etc. The outer periphery of the pressure responsive element 23 is welded to the upper casing 21 and the lower casing 22. Further, the bias spring 26 is interposed between the pressure responsive element 23 and the upper casing 21, and has one end attached to the adjustment screw 24.
The other end is placed 1h above the pressure responsive element 23 via the spacer 26.
Each is in contact with j. 27 is a housing;
Valve seat 28 and boat 29 at the bottom center. Top surface 30 at the top center
A cylinder 31 that communicates with the valve seat 28 is formed, and the upper surface 3
The outer periphery of the lower casing 22 is hermetically welded to the lower central portion of the lower casing 22 by soldering. A side exit hole 32 is formed at the bottom of the cylinder 31, and an exit vibrator 33 is formed in the exit hole 32.
Each port 29 is provided with an inlet vibrator 34 . A valve body 35 is attached to the lower end of the piston 20. There is a deposit 3 at the top
6, an O-ring 19 is provided in a concave groove formed substantially in the center shaft, and the upper and lower sides of the piston 2o are kept substantially airtight by the inner wall of the cylinder 31.

また、ピストン20下部は径を細く形成し、シリンダ3
1との間に空隙を設けである。弁体36下面にはイリ勢
バネ37を設け、固定板38にて閉弁方向に伺勢してい
る。ハウジング27には更に側面から土面3oへと連通
ずる感圧孔39が形成され導圧管40を備えている。つ
まり、弁体36は圧力応動素子23と一体に応動して弁
装置18を開閉する。また、前調整ネジ24とバイアス
バネ26については導圧管40圧力が大気圧より所定値
以上高いときに圧力応動素子23を上方へ変位せしめ、
弁装置18を付勢バネ37にて、閉弁される。当然では
あるが、弁装置18が閉弁すると弁体360前後の圧力
差にて弁座28に押付けられるためイ;」勢バネ37と
バイアスバネ26との力関係及び、弁体36と弁座28
との接触面積との関係に於いては閉弁状態にて入口バイ
ブ34と出に1バイブ33との圧力差略10 KV/c
dにて弁装置18が閉弁するときの導圧管4oと大気圧
との圧力差P2(以下閉弁圧力差と称す)と、弁装置1
8が開弁するときの導圧管4Qと大気圧との圧力1P1
(以下開弁圧力差と称す)に於いて、開弁圧力差P、が
閉弁圧力差P2 より略0.2Kg/cd低くなるよう
設定している。また、本実施例に於いては調整ネジ24
にて閉弁圧力差P2が2 Kr/讐aba となるよう
調整している。前記入1」バイブ34をコンデンサ12
出口に、出口バイブ33をキ・ヤピラリチューブ130
入口に、導圧管40をサクションライン16にそれぞれ
接続している。尚、本冷凍装置のコンプレッサ11は最
高効率運転を行なえるコンデンサでは低圧圧力Ps が
2 、2Kv/cdabsまでであシ、それ以上ではい
わゆる過負荷運転を生じ、モータの焼損を招く。従って
、低圧圧力2 、5に910Ilabs程度まで運転を
行なうためには運転コンデンサを変更し、通常では効率
の低い運転を強いられるものである。
In addition, the lower part of the piston 20 is formed with a narrow diameter, and the cylinder 3
A gap is provided between 1 and 1. A biasing spring 37 is provided on the lower surface of the valve body 36, and biased in the valve closing direction by a fixed plate 38. The housing 27 is further formed with a pressure sensitive hole 39 communicating from the side surface to the soil surface 3o, and is provided with a pressure guiding pipe 40. That is, the valve body 36 opens and closes the valve device 18 in response to the pressure responsive element 23 in unison. Further, the pre-adjustment screw 24 and the bias spring 26 displace the pressure-responsive element 23 upward when the pressure in the impulse pipe 40 is higher than atmospheric pressure by a predetermined value or more.
The valve device 18 is closed by the biasing spring 37. Of course, when the valve device 18 closes, it is pressed against the valve seat 28 due to the pressure difference between the front and rear of the valve body 360. 28
In relation to the contact area with the valve, the pressure difference between the inlet vibrator 34 and the outlet vibrator 33 is approximately 10 KV/c when the valve is closed.
The pressure difference P2 (hereinafter referred to as valve closing pressure difference) between the pressure guide pipe 4o and the atmospheric pressure when the valve device 18 closes at point d, and the valve device 1
Pressure 1P1 between impulse pipe 4Q and atmospheric pressure when valve 8 opens
(hereinafter referred to as valve opening pressure difference) is set so that the valve opening pressure difference P is approximately 0.2 kg/cd lower than the valve closing pressure difference P2. In addition, in this embodiment, the adjustment screw 24
The valve closing pressure difference P2 is adjusted to be 2 Kr/bar. The above entry 1" vibrator 34 and capacitor 12
Connect the exit vibrator 33 to the exit tube 130.
At the inlets, impulse lines 40 are connected to the suction lines 16, respectively. It should be noted that the compressor 11 of the present refrigeration system has a condenser that can operate at maximum efficiency only when the low pressure Ps is up to 2.2 Kv/cdabs, and if the compressor 11 exceeds that level, so-called overload operation will occur, leading to burnout of the motor. Therefore, in order to operate at low pressures 2 and 5 up to about 910 Ilabs, the operating capacitor must be changed, and normally, low efficiency operation is forced.

次に上記構成による動作について説明する。Next, the operation of the above configuration will be explained.

室温安定状態からの起動に於いては第6図に示すように
初期(第6図D)の冷媒不足及び冷媒循環N増加期(第
6図E)については従来例(第2図A、B)と全く同一
である。しかし、低圧圧力がピークに達−ノーる(第6
図F)期間に於いては低圧圧力P8が2.0にμ讐ab
sまで上昇すると導圧管4゜圧力がバイアスバネ26付
勢力に打勝ち、圧力応動素子23を」二方へ変位せしめ
ると共に弁装置18を閉弁し、キャピラリチューブ14
への冷媒循環を停止する。しかし、エバポレータ16で
は冷媒不足を生じるが冷却運転は行なわれる。従って、
低圧圧力Pgは降下しはじめる。低圧圧力P8が1 、
81(f/讐absまで降下すると導圧管4o圧力より
バイアスバネ26付勢力が打勝ち、圧力応動素子23を
1;方へ変位せしめ、弁装置18を開路する。このとき
、コンデンサ12及び入口バイブ34内には充分な液冷
媒が滞留しているため、開弁と共にエバポレータ16で
の正常冷却運転が行なわれ、低圧圧力P8も上昇する。
When starting from a stable room temperature state, as shown in Figure 6, the initial stage (Figure 6 D) of refrigerant shortage and the period of increased refrigerant circulation N (Figure 6 E) are compared to the conventional example (Figure 2 A, B). ) is exactly the same as However, the low pressure reaches its peak (6th
Figure F) In the period, the low pressure P8 becomes 2.0 μmab
When the pressure rises to s, the pressure in the impulse tube 4° overcomes the biasing force of the bias spring 26, displacing the pressure responsive element 23 in both directions, and closing the valve device 18, so that the capillary tube 14
Stop refrigerant circulation to. However, cooling operation is performed in the evaporator 16 although there is a shortage of refrigerant. Therefore,
The low pressure Pg begins to drop. Low pressure P8 is 1,
81 (f/abs), the biasing force of the bias spring 26 overcomes the pressure of the impulse pipe 4o, displacing the pressure responsive element 23 in the 1 direction, and opening the valve device 18. At this time, the capacitor 12 and the inlet vibrator Since sufficient liquid refrigerant remains in the evaporator 34, normal cooling operation is performed in the evaporator 16 when the valve is opened, and the low pressure P8 also rises.

しかし、冷却運転が継続されているため、低圧圧力Ps
の上昇スピードは次第に緩くなる。つまシ、冷媒制御弁
13の弁装置18の開閉により低圧圧力Psは次第に低
下し、低圧圧力Psが2.0にμdabsまで上昇する
ことはなくなり、安定状態(第6図G)へと移行してい
く。
However, since the cooling operation continues, the low pressure Ps
The rate of increase will gradually slow down. By opening and closing the valve device 18 of the refrigerant control valve 13, the low pressure Ps gradually decreases, and the low pressure Ps no longer rises to 2.0 μdabs, and shifts to a stable state (Fig. 6G). To go.

上記冷凍装置を他の冷却装置に転用すると轟然ではある
が、低圧圧力P8上昇のスピード、低圧圧力のPsのピ
ーク値は異なるが、低圧圧力Psが2 、0Kg/di
 a b s以上まで上昇して過電流保護装置が動作し
て冷却運転が停止したり、モータの焼損を招く等の問題
は全く発生せず、容易に転用することができる。
If the above-mentioned refrigeration system is used as another cooling system, it will be amazing, but the speed of rise of low pressure P8 and the peak value of low pressure Ps will be different, but the low pressure Ps will be 2.0Kg/di.
Problems such as the current rising above a b s and causing the overcurrent protection device to operate and stopping the cooling operation or causing burnout of the motor do not occur, and can be easily repurposed.

発明の効果 以上の説明からも明らかなように本発明による冷凍装置
は低圧圧力が大気圧より所定圧力高いときにコンデンサ
とエバポレータ間に介在した弁装置を閉路するものであ
るため、低圧圧力が所定値以上で運転されることはなく
、また、通常運転rpはコンプレッサの最高効率運転が
可能であるため、あらゆる冷却装置に容易に適用できる
ものである。
Effects of the Invention As is clear from the above explanation, the refrigeration system according to the present invention closes the valve device interposed between the condenser and the evaporator when the low pressure is higher than the atmospheric pressure by a predetermined value. Since the compressor is never operated above the RP value and the normal operation RP allows the compressor to operate at the highest efficiency, it can be easily applied to any cooling device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来冷凍装置のシステム図、第2図は第1図冷
凍装置の圧力変化図、第3図は第1図冷凍装置の電流変
化図、第4図は本発明一実施例の冷凍装置のシステム図
と要部断面図、第6図は第4図冷凍装置の低圧圧力変化
図をそれぞれ示す。 11・・・・・・コンプレッサ、12・・・・・・コン
デンサ、13・・・・・・冷媒制御弁、14・・・・・
・キャピラリチューブ、16・・・・・・エバポレータ
、18・・・・・・感圧部、19・・・・・・弁装置、
23・・・・・・圧力応動素子。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名O 第2図 蒋閘− 第3図 Q閘□ 第4図 5
Fig. 1 is a system diagram of a conventional refrigeration system, Fig. 2 is a pressure change diagram of the refrigeration system shown in Fig. 1, Fig. 3 is a current change diagram of the refrigeration system shown in Fig. 1, and Fig. 4 is a refrigeration system according to an embodiment of the present invention. A system diagram and a cross-sectional view of the main parts of the device, and FIG. 6 shows a low-pressure pressure change diagram of the refrigeration device shown in FIG. 4, respectively. 11...Compressor, 12...Condenser, 13...Refrigerant control valve, 14...
・Capillary tube, 16... Evaporator, 18... Pressure sensitive part, 19... Valve device,
23...Pressure responsive element. Name of agent: Patent attorney Toshio Nakao and 1 other person O Figure 2 Chiang Jia - Figure 3 Q Jia □ Figure 4 5

Claims (1)

【特許請求の範囲】[Claims] コンプレンサ、コンデンサ、キャビラリチューイエバポ
レータ、冷媒制御弁等よシ構成し、前記冷媒制御弁は感
圧部と弁装置により構成すると共に、前記感圧部は圧力
応動素子の一面にギヤピラリチューブ下流側圧力を作用
せしめ、他面に大気圧を作用せしめると共に、該圧力応
動素子の変位に応じて前記弁装置を駆動し、該弁装置を
前記コンデンサと前記エバポレータの間に介在せしめ、
キャピラリチューブ下流側圧力が大気圧よ勺所定値以上
高い時に前記弁装置を閉路する冷凍装置。
It is composed of a compressor, a condenser, a cavity evaporator, a refrigerant control valve, etc., and the refrigerant control valve is composed of a pressure sensing part and a valve device, and the pressure sensing part is arranged on one side of the pressure responsive element on the downstream side of the gear pillar tube. applying pressure, applying atmospheric pressure to the other surface, driving the valve device according to the displacement of the pressure responsive element, and interposing the valve device between the capacitor and the evaporator;
A refrigeration system that closes the valve device when the downstream pressure of the capillary tube is higher than atmospheric pressure by a predetermined value or more.
JP59023206A 1984-02-09 1984-02-09 Refrigerator Pending JPS60165469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59023206A JPS60165469A (en) 1984-02-09 1984-02-09 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59023206A JPS60165469A (en) 1984-02-09 1984-02-09 Refrigerator

Publications (1)

Publication Number Publication Date
JPS60165469A true JPS60165469A (en) 1985-08-28

Family

ID=12104189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59023206A Pending JPS60165469A (en) 1984-02-09 1984-02-09 Refrigerator

Country Status (1)

Country Link
JP (1) JPS60165469A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0608545A1 (en) * 1992-12-28 1994-08-03 Mitsubishi Gas Chemical Company, Inc. Method for preparing aqueous quaternary ammonium hydroxide solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0608545A1 (en) * 1992-12-28 1994-08-03 Mitsubishi Gas Chemical Company, Inc. Method for preparing aqueous quaternary ammonium hydroxide solution

Similar Documents

Publication Publication Date Title
JP2865707B2 (en) Refrigeration equipment
CN1028892C (en) Pressure ratio responsive unloader
US5690475A (en) Scroll compressor with overload protection
US3698839A (en) Pressure equalizer for unloading a compressor during start-up
US4840038A (en) Control device for use in a refrigeration circuit
EP3708851A1 (en) Ejector and refrigerating system
JPS60165469A (en) Refrigerator
US3054273A (en) Thermal expansion valve
US3348764A (en) Pressure equalizing means for compressors and the like
US4712384A (en) Integrated evaporator and thermal expansion valve assembly
US3952535A (en) Automatic expansion valve for refrigerant
US2224377A (en) Refrigerating apparatus
JPS60165468A (en) Refrigerator
KR960002567B1 (en) Refrigeration circuit
WO1986007323A1 (en) Steering force control device for power steering gear for automobiles
JPH05196324A (en) Expansion valve for refrigerating cycle
JP2541659B2 (en) Temperature expansion valve
JP2582128B2 (en) Hermetic and semi-hermetic electric compressor unit for refrigeration
JP2518455B2 (en) Compressor for cryogenic refrigerator
JP2576309B2 (en) Screw refrigeration equipment
SU1028974A1 (en) Refrigerating plant
JPH0519712Y2 (en)
US6543241B2 (en) Refrigerant feed device
JP2001116398A (en) Refrigeration cycle
JPS5852958A (en) Refrigerator