JPS60164368A - Photoelectric conversion element and manufacture thereof - Google Patents

Photoelectric conversion element and manufacture thereof

Info

Publication number
JPS60164368A
JPS60164368A JP59020378A JP2037884A JPS60164368A JP S60164368 A JPS60164368 A JP S60164368A JP 59020378 A JP59020378 A JP 59020378A JP 2037884 A JP2037884 A JP 2037884A JP S60164368 A JPS60164368 A JP S60164368A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion element
protective film
sputtering
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59020378A
Other languages
Japanese (ja)
Inventor
Osamu Takigawa
修 滝川
Shigeki Uno
宇野 茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59020378A priority Critical patent/JPS60164368A/en
Publication of JPS60164368A publication Critical patent/JPS60164368A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/095Devices sensitive to infrared, visible or ultraviolet radiation comprising amorphous semiconductors

Abstract

PURPOSE:To make the element characteristics excellent improving moisture resistance by a method wherein a main body of photoelectric conversion element formed on a substrate is covered with transparent fluorine resin as well as a protecting film by means of sputtering process utilizing fluorine resin as target. CONSTITUTION:The first electrode 22 is selectively formed on an insulating glass substrate 21 by CVD process of Cr etc. while an amorphous Si thin film 23 containing hydrogen is formed on the electrode 22. This thin film 23 is formed by e.g. plasma CVD process. The second transparent electrode 24 made of In2O3 ITO etc. is formed on the amorphous Si thin film 23. Such a constitution is similar to any conventional photosensor with the exception that a protecting film made of fluorine resin is formed. In other words, the main body of photosensor composed of the amorphous Si thin film 23, electrodes 22, 24 is coated with a protecting film 25 made of fluorine resin by means of high frequency sputtering process.

Description

【発明の詳細な説明】 (発明の技術的背景とその問題点〕 近年、光半導体素子、特に光電変換素子では、空気中の
水分による素子特性の劣化が重要な問題となっている。
DETAILED DESCRIPTION OF THE INVENTION (Technical background of the invention and its problems) In recent years, deterioration of device characteristics due to moisture in the air has become an important problem in optical semiconductor devices, especially photoelectric conversion devices.

光電変換素子の代表的なものとしては、非晶質半導体を
用いる大面積のイメージセンサがある。
A typical photoelectric conversion element is a large-area image sensor using an amorphous semiconductor.

この素子は、電気絶縁性基板上に111、その上に例え
ば水素が添加された3iからなる非晶質半導体膜、さら
にその上に光透過性透明電極を設けたいわゆるザンドイ
ッチ構造をとり、例えば両電極問に流れる電流の変化か
ら光の有無を知るものである(日経エレクトロニクス1
983.10.10号、特開特開昭58−84457号
公報)。また、上記と同様な構成によりいわゆる太陽電
池の如く光入射により電圧を発生する素子等がある。そ
して、これらの素子はそのままで用いる際には、大気中
の水分の吸着等により信頼性が低下覆るという欠点を有
していた。
This element has a so-called Zandwich structure in which 111 is placed on an electrically insulating substrate, an amorphous semiconductor film made of 3i to which hydrogen is added, for example, and a light-transmitting transparent electrode further on top of the amorphous semiconductor film 111. The presence or absence of light can be determined from changes in the current flowing between the electrodes (Nikkei Electronics 1)
No. 983.10.10, JP-A-58-84457). Furthermore, there are elements, such as so-called solar cells, which generate a voltage upon incidence of light, and have a structure similar to that described above. When these elements are used as they are, they have the disadvantage that their reliability decreases due to adsorption of moisture in the atmosphere.

以下、この問題を光センυを例にとり説明する。This problem will be explained below using the optical sensor υ as an example.

第1図は従来の光センサの概略構成を示づ一断面図であ
る。絶縁性の基板11上に金属電極12が形成され、そ
の上に非晶質Si膜13が形成され、さらにSi膜13
上には透明電極14が形成されている。光は図のように
透明電極14側から侵入し非晶’JtSi膜13に達す
る。この特電W112゜14間に一定電圧を印加してお
き電極12.14間の電流を測定する。光がある場合と
そうでない場合に大きな電流変化が生じ、これから光の
検出が可能となる。かかる素子は光を受ける必要がある
ため、一般に大気中に晒して用いることが多い。
FIG. 1 is a sectional view showing the schematic structure of a conventional optical sensor. A metal electrode 12 is formed on an insulating substrate 11, an amorphous Si film 13 is formed on the metal electrode 12, and an amorphous Si film 13 is formed on the metal electrode 12.
A transparent electrode 14 is formed thereon. As shown in the figure, light enters from the transparent electrode 14 side and reaches the amorphous JtSi film 13. A constant voltage is applied between the special electric currents W112 and 14, and the current between the electrodes 12 and 14 is measured. A large current change occurs when there is light and when there is no light, and from this it becomes possible to detect light. Since such elements need to receive light, they are generally used while being exposed to the atmosphere.

このため、大気中の湿気等の影響により信頼性の劣化が
大きく、特に光のない状態での電流1直(以下暗電流値
と略記する)が増大し、初期の光のある時の電流値をも
オーバするという重大な欠点を有していた。
For this reason, reliability deteriorates significantly due to the influence of atmospheric humidity, etc. In particular, the current value in the absence of light (hereinafter abbreviated as dark current value) increases, and the current value when there is initial light increases. It had the serious drawback of exceeding the .

一方、かかる問題点を解消するため例えばスパッタリン
グによる無機質膜、例えばAl2O3等の膜を保護膜と
して形成している例があるが、この場合保護膜の着膜に
より暗電流が増加し、まlこ耐湿性も十分ではないとい
う欠点がある。また、アクリルやポリイミド樹脂でコー
1〜?lる例がある。
On the other hand, in order to solve this problem, there are examples in which an inorganic film, such as a film of Al2O3, etc., is formed as a protective film by sputtering, but in this case, the dark current increases due to the deposition of the protective film, and It also has the disadvantage of not being sufficiently moisture resistant. Also, is it possible to use acrylic or polyimide resin? There are some examples.

しかしながら、アクリル樹脂でコー1〜した場合には暗
電流が2桁以上も増加し、光照射下にお()る電流(以
下明電流と称する)と差がばと/υどなくなるという欠
点を有していた。さらに、ポリイミド樹脂をコートする
例があるが、ポリイミドは黄色に着色づるので光センサ
としては好ましくない。
However, when coated with acrylic resin, the dark current increases by more than two orders of magnitude, and the difference from the current under light irradiation (hereinafter referred to as bright current) suddenly disappears. had. Furthermore, there are examples of coating with polyimide resin, but polyimide is not preferred as an optical sensor because it is colored yellow.

また、ポリイミド等の有憬買膜を保護膜としてスビンコ
ー1〜する方法もあるが、このようなウェット処理では
光センサのメタル−シリコン界面に不純物が混入し素子
特性を劣化させる等の問題があった。
There is also a method of using a protective film such as polyimide as a protective film, but such wet processing has problems such as impurities entering the metal-silicon interface of the optical sensor and deteriorating the device characteristics. Ta.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、空気中の水分による素子特性の劣化を
防止することができ、且つ保護膜着膜に起因する光セン
サの暗電流変化等を極めて少な(し得る光電変換素子及
びその製造方法を提供することにある。
An object of the present invention is to provide a photoelectric conversion element and method for manufacturing the same that can prevent deterioration of element characteristics due to moisture in the air and extremely reduce changes in dark current of an optical sensor caused by the deposition of a protective film. Our goal is to provide the following.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、保護膜として弗素系樹脂の薄膜を用い
ることにあり、さらに保護膜の着膜法としてスパッタ法
を用いることにある。
The gist of the present invention is to use a thin film of fluorine-based resin as a protective film, and to use sputtering as a method for depositing the protective film.

本発明者等は、前述した保護膜の着膜による光センサの
暗電流変化の少ない保護膜材料を選択すべく種々実験を
重ねた。その結果、弗素系樹脂を用いれば良いのが判明
した。さらに本発明者等の鋭意研究によれば、保護膜形
成にドライプロセス、特に高周波スパッタ法を用いるの
が最も良好であるのが判明した。
The inventors of the present invention conducted various experiments in order to select a protective film material that causes less change in the dark current of the optical sensor due to the deposition of the aforementioned protective film. As a result, it was found that a fluorine-based resin should be used. Further, according to the intensive research conducted by the present inventors, it has been found that it is best to use a dry process, particularly a high frequency sputtering method, for forming the protective film.

スパッタ法に用いられる弗素系樹脂ターゲットとしでは
、例えばポリテトラフルオルエブレン、また弗化ビニル
、三弗化エチレン。六弗化プロピレン、CF、l−1か
らなる化合物笠の爪合体、これらの混合物の共重合体が
適用できる。さらに、高周波スパッタ法においては通常
13.56[Ml−(2]の周波数を持った高周波電源
によりターゲットに電力が印加されてスパッタされるが
、周波数はこれに限らない。また、いわゆる高周波マグ
ネトロンスパッタと称されるスパッタ法やバイアススパ
ッタ法、三極または四極スパッタど称される方法が適用
できることは云うまでもない。ターゲットに対−する印
加電力は広範囲が適用できるが、5[W/cIj](タ
ーゲット単位面積当り)以上ではターゲラ1−の変質が
激しいのでこれ以下が望ましい。また、着膜の前にいわ
ゆる逆スパツタと称される方法により素子表面に吸着し
ている02゜H2O等を除去し、さらに着力を向上させ
ることも可能である。
Examples of fluorine-based resin targets used in sputtering include polytetrafluoroethylene, vinyl fluoride, and trifluoroethylene. Compounds made of propylene hexafluoride, CF, l-1, and copolymers of mixtures thereof can be used. Furthermore, in the high-frequency sputtering method, power is normally applied to the target by a high-frequency power supply having a frequency of 13.56 [Ml-(2], and sputtering is performed, but the frequency is not limited to this. Also, so-called high-frequency magnetron sputtering It goes without saying that sputtering methods, bias sputtering methods, and methods called triode or quadrupole sputtering can be applied.A wide range of power can be applied to the target, but 5 [W/cIj] (per unit area of the target) If it is more than this, the deterioration of the Targetera 1- will be severe, so it is desirable to make it less than this.Also, before film deposition, remove the 02°H2O etc. adsorbed on the element surface by a method called reverse sputtering. However, it is also possible to further improve the wearing strength.

弗素系樹脂薄膜を得る他の方法に例えばCF4や02 
F4等のいわゆるモノマーガスを減圧下て高周波により
重合させる方法いわゆるプラズマ重合法がある。本発明
者らの研究によれば、かがる方法により着膜した場合に
もその前後おける暗電流変化がなく、特性上は上記スパ
ッタリング法と同様なもので効果があった。しかしなが
ら、プラズマ重合法の場合はスパッタリング法と比較し
、作業中において発生する、例えば弗素イオンあるいは
ラジカルにより非晶質半導体がエツチングされ薄くなる
という欠点を有している。これの特性上への影響を防ぐ
には充分な厚さの非晶質を用いれば良いが、この点を考
慮するとスパッタ法の法がより好ましい。
Other methods for obtaining fluorine-based resin thin films include, for example, CF4 and 02.
There is a so-called plasma polymerization method in which a so-called monomer gas such as F4 is polymerized by high frequency under reduced pressure. According to the research conducted by the present inventors, there was no change in dark current before and after deposition even when the film was deposited by the darning method, and the film was similar in characteristics to the sputtering method and was effective. However, compared to the sputtering method, the plasma polymerization method has the disadvantage that the amorphous semiconductor is etched and thinned by, for example, fluorine ions or radicals generated during the process. In order to prevent this effect on the properties, it is sufficient to use an amorphous material having a sufficient thickness, but in consideration of this point, the sputtering method is more preferable.

・ 本発明はこのような事情に看目し、基板上に形成さ
れた光電変換素子本体と、この素子本体を被覆するよう
形成された保護膜とを備えた光電変換素子において、上
記保護膜どして透光性を有する弗素系樹脂を用いるよう
にしたちのである。。
- In view of these circumstances, the present invention provides a photoelectric conversion element that includes a photoelectric conversion element body formed on a substrate and a protective film formed to cover this element body. This led to the use of a fluorine-based resin that is translucent. .

また本発明は、上記構成の光電変換素子を製造するに際
し、基板上に光電変換素子本体を形成し、次いで透光性
を有する弗素系樹脂からなる保護膜をドライブOセス、
例えばスパッタ法により上記光電変換素子本体を被覆す
るよう被着形成するようにした方法である。
Further, in manufacturing the photoelectric conversion element having the above-mentioned structure, the present invention includes forming a photoelectric conversion element main body on a substrate, and then applying a protective film made of a fluorine-based resin having translucency through a drive O process.
For example, this method uses a sputtering method to coat the photoelectric conversion element body.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、光電変換素子本体を弗素系樹脂からな
る保護膜で被覆するようにしているので、空気中の水分
による素子特性の劣化を未然に防止することができる。
According to the present invention, since the main body of the photoelectric conversion element is covered with a protective film made of a fluorine-based resin, deterioration of the element characteristics due to moisture in the air can be prevented.

つまり、耐湿性の向上をはかり得る。また、保護膜の着
膜による光センサの暗電流の変化も極めて少なく良好な
素子特性を実現することができる。
In other words, it is possible to improve moisture resistance. Further, the change in the dark current of the optical sensor due to the deposition of the protective film is extremely small, and good device characteristics can be achieved.

(発明の実施例〕 以下本発明の詳細を図示の実施例によって説明する。(Example of the invention) The details of the present invention will be explained below with reference to illustrated embodiments.

第2図は本発明の一実施例に係わる光センサの概略構成
を示す断面図である。図中21は絶縁性のガラス基板で
あり、この基板21上にはCr等を蒸着してなる第1の
電極22が選択形成されている。電極22上には水素を
含んだ非晶質Si薄膜23が形成されている。このl 
fiiI23は、例えばプラズマCVD法により形成さ
れたものである。
FIG. 2 is a sectional view showing a schematic configuration of an optical sensor according to an embodiment of the present invention. In the figure, reference numeral 21 denotes an insulating glass substrate, and a first electrode 22 made of vapor-deposited Cr or the like is selectively formed on this substrate 21. An amorphous Si thin film 23 containing hydrogen is formed on the electrode 22 . This l
The fiiI 23 is formed by, for example, a plasma CVD method.

非晶質Sin膜2膜上3上1n203.ITO等からな
る透明な第2のN極24が形成されている。
Amorphous Sin film 2 on film 3 on 1n203. A transparent second N-pole 24 made of ITO or the like is formed.

ここまでの構成は従来の光センサと同様であり、本実施
例が従来素子と異なる点は弗素系樹脂からなる保護膜を
形成することにある。即ち、非晶質3i薄膜23及び電
極22.24からなる光センサ本体上には、高周波スパ
ッタ法により弗素系樹脂からなる保護膜25が被着形成
されている。ここで、スパッタ法には13’、56 [
M)lz ]の高周波電源を用い、スパッタガスとして
はAr、圧力は2 [mm torr]、印加電力はタ
ーゲットに対し1[W/ci]で行った。保護膜25の
膜厚は500[人コとした。保護膜25として種々の材
料を用いた場合の暗電流変化等の結果を第1表に示す。
The configuration up to this point is the same as that of a conventional optical sensor, and the difference between this embodiment and the conventional element lies in the formation of a protective film made of fluorine-based resin. That is, a protective film 25 made of a fluorine-based resin is deposited on the optical sensor body made of the amorphous 3i thin film 23 and the electrodes 22, 24 by high-frequency sputtering. Here, 13', 56 [
The sputtering was performed using a high-frequency power source of [M)lz], Ar as the sputtering gas, a pressure of 2 [mm torr], and an applied power of 1 [W/ci] to the target. The thickness of the protective film 25 was 500 mm. Table 1 shows the results of changes in dark current, etc. when various materials were used as the protective film 25.

第1表 なお、第1表においてA、Bは比較のための従来例で、
Aは保護膜のない場合、Bは保護膜としてスパッタによ
るAl2O’3(厚さ1000人)を用いた場合、D〜
■は本実施例の保護膜つまり弗素系樹脂を用いた例であ
る。ただし、Iは保護膜着膜の前に逆スパツタを行った
もので、その条件は0.1 [W/cd]の高周波電力
によりArガスをスパッタガスとして圧力10 L+m
torr]で5分間逆スパツタを行ったものである。初
期値及び耐圧試験後の暗電流は暗箱(照度O)中で温度
60[℃1、相対湿度30[%]で測定したものである
。耐湿試験は素子に1.5[v]を印加し、温度60 
[℃]相対湿度90[%]の暗箱中に500時間放置し
た後の値である。
Table 1 In Table 1, A and B are conventional examples for comparison.
A is when there is no protective film, B is when sputtered Al2O'3 (thickness: 1000 mm) is used as the protective film, D~
(2) is an example in which a protective film of this embodiment, that is, a fluorine-based resin is used. However, in I, reverse sputtering was performed before the protective film was deposited, and the conditions were 0.1 [W/cd] high frequency power, Ar gas as sputtering gas, and a pressure of 10 L+m.
torr] for 5 minutes. The initial value and the dark current after the withstand voltage test were measured in a dark box (illuminance O) at a temperature of 60[° C.1] and a relative humidity of 30%. In the humidity test, 1.5 [V] was applied to the element, and the temperature was 60
[°C] This is the value after being left in a dark box at a relative humidity of 90% for 500 hours.

第1表から判るように着膜後の暗電流増加は従来の素子
B、Cと比較し実施例素子D−■は殆ど無視できるもの
である。そして、保護膜のない素子Aと比べ耐湿試験後
の暗電流増加が極端に小さく、高い信頼性を有するもの
である。また、逆スパツタを行った素子Hの耐湿性はさ
らに良いものである。
As can be seen from Table 1, the increase in dark current after film deposition is almost negligible in Example Device D-2 compared to conventional Devices B and C. Moreover, compared to element A without a protective film, the increase in dark current after the moisture resistance test is extremely small, and the element has high reliability. Moreover, the moisture resistance of the element H subjected to reverse sputtering is even better.

なお、光センサとしては暗電流の他に明電流も重要な要
素である。従来素子Aの明電流(明度1QQ l x、
キセノンランプ使用)は75 [nA]であり、実施例
素子りでは着膜v&70 [nへ]に僅かに減少するが
、素子E以下は着脱後でも殆ど変化しなかった。また、
耐湿試験後の明電流は元の値と殆ど同じであった。
Note that, in addition to dark current, bright current is also an important element for optical sensors. Bright current of conventional element A (brightness 1QQ l x,
(using a xenon lamp) is 75 [nA], which slightly decreases to v & 70 [n] in the example element, but there is almost no change in element E and below even after attachment and detachment. Also,
The bright current after the humidity test was almost the same as the original value.

かくして本実施例によれば、弗素系樹脂をターゲットと
したスパッタ法により保!!!膜を形成しているので、
高い信頼性を有する光センサを実現づることができる。
Thus, according to this embodiment, the fluorine-based resin can be protected by sputtering as a target. ! ! Because it forms a membrane,
A highly reliable optical sensor can be realized.

また、保護膜形成のためのドライプロセスとしてはスパ
ッタ法の他にプラズマ重合等があるが、本発明者等の実
験によれば、特性はスパッタ法と同様であったが、前述
した観点からスパッタ法が最も良好な結果が得られた。
In addition to sputtering, plasma polymerization is a dry process for forming a protective film.According to the experiments conducted by the present inventors, the characteristics were similar to those of sputtering, but from the above-mentioned point of view, sputtering method gave the best results.

なお、不発゛明は上述した実施例に限定されるものでは
ない。例えば、前記光電変換素子は光センサに限定され
るものではなぐ、太陽電池その他、特に光導電膜を用い
る物に良好に適用することができる。また、保護膜とし
ての弗素系樹脂の膜厚や形成方法等は使用に応じて適宜
変更すればよい。
Incidentally, the failure to occur is not limited to the above-mentioned embodiments. For example, the photoelectric conversion element is not limited to optical sensors, but can be well applied to solar cells and other devices, particularly those using photoconductive films. Further, the thickness of the fluorine-based resin as the protective film, the method of forming the film, etc. may be changed as appropriate depending on the use.

さらに、保護膜形成プロセスは高周波スパッタ法に限ら
ず、高周波マグネトロンスパッタ、バイアススパッタ、
そのだ各種のスパッタ法を用いることができる。また、
スパッタ法に限らずドライプロセスで弗素系樹脂からな
る保護膜を着膜できる方法であれば用いることが可能で
ある。その他、本発明の要旨を逸脱しない範囲で、種々
変形して実施することができる。
Furthermore, the protective film formation process is not limited to high-frequency sputtering, but also includes high-frequency magnetron sputtering, bias sputtering,
However, various sputtering methods can be used. Also,
Not only the sputtering method but also any method that can deposit a protective film made of a fluorine-based resin by a dry process can be used. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】 第1図は従来の光センサの概略構成を示す断面図、第2
図は本発明の一実施例に係わる光センサの概略構成を示
す断面図である。 11.21・・・絶縁性基板、12.22・・・第1の
電極、13.23・・・非晶質Si膜、14.24・・
・第2の電極(透明電極)、25・・・保護膜。 出願人代理人 弁理士 鈴江武彦 第1図 第2図
[Brief Description of the Drawings] Figure 1 is a sectional view showing the schematic configuration of a conventional optical sensor;
The figure is a sectional view showing a schematic configuration of an optical sensor according to an embodiment of the present invention. 11.21... Insulating substrate, 12.22... First electrode, 13.23... Amorphous Si film, 14.24...
- Second electrode (transparent electrode), 25...protective film. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2

Claims (5)

【特許請求の範囲】[Claims] (1)基板上に形成された光電変換素子本体と、透光性
を有する弗素系樹脂からなり上記光電変換素子本体を被
覆するよう形成された保護膜とを具備してなることを特
徴とする光電変換素子。
(1) It is characterized by comprising a photoelectric conversion element body formed on a substrate, and a protective film made of a light-transmitting fluorine-based resin and formed to cover the photoelectric conversion element body. Photoelectric conversion element.
(2)前記保護膜は、弗素系樹脂をターゲラl−とする
スパッタ法により被着形成されたものであることを特徴
とする特許請求の範囲第1項記、載の充電変換素子。
(2) The charge conversion element according to claim 1, wherein the protective film is formed by sputtering using a fluorine-based resin as a target layer.
(3)基板上に光電変換素子本体を形成する工程、と、
次いで透光性を有する弗素系樹脂からなる保護膜をドラ
イプロセスにより上記光電変換素子本体を被覆するよう
被着形成する工程とを含むことを特徴とする光電変換素
子の製造方法。
(3) forming a photoelectric conversion element body on the substrate;
A method for manufacturing a photoelectric conversion element, comprising the step of: next, forming a protective film made of a light-transmitting fluorine-based resin to cover the photoelectric conversion element main body by a dry process.
(4)前記保護膜を形成する工程として、弗素系樹脂を
ターゲットとするスパッタ法を用いることを特徴とする
特許請求の範囲第3項記載の光電変換素子の製造方法。
(4) The method for manufacturing a photoelectric conversion element according to claim 3, wherein the step of forming the protective film uses a sputtering method using a fluorine-based resin as a target.
(5)前記保!!膜を形成する■稈として、予め上記保
護膜形成面を逆スパツタにより表面処理し、その後弗素
系側゛脂をターゲットとするスパッタ法により上記保護
膜を形成するようにしたことを特徴とする特許請求の範
囲第3項記載の光電変換先を備えた光電変換素子及びそ
の製造方法に関する。
(5) Said protection! ! A patent characterized in that, as a culm for forming a film, the surface on which the protective film is to be formed is treated in advance by reverse sputtering, and then the protective film is formed by a sputtering method targeting the fluorine-based resin. The present invention relates to a photoelectric conversion element having a photoelectric conversion destination according to claim 3 and a method for manufacturing the same.
JP59020378A 1984-02-07 1984-02-07 Photoelectric conversion element and manufacture thereof Pending JPS60164368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59020378A JPS60164368A (en) 1984-02-07 1984-02-07 Photoelectric conversion element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59020378A JPS60164368A (en) 1984-02-07 1984-02-07 Photoelectric conversion element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS60164368A true JPS60164368A (en) 1985-08-27

Family

ID=12025380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59020378A Pending JPS60164368A (en) 1984-02-07 1984-02-07 Photoelectric conversion element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60164368A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1040815C (en) * 1993-08-31 1998-11-18 佳能株式会社 Photoelectric conversion device and photoelectric conversion module each having a protective member comprised of fluorine-containing polymer resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1040815C (en) * 1993-08-31 1998-11-18 佳能株式会社 Photoelectric conversion device and photoelectric conversion module each having a protective member comprised of fluorine-containing polymer resin

Similar Documents

Publication Publication Date Title
KR101385262B1 (en) Inorganic graded barrier film and methods for their manufacture
US3996067A (en) Silicon nitride coated, plastic covered solar cell
US20060006798A1 (en) Passivation layer
EP0115645B1 (en) Process for forming passivation film on photoelectric conversion device and the device produced thereby
CN109616529A (en) A kind of ultraviolet detector and preparation method thereof
JPS60164368A (en) Photoelectric conversion element and manufacture thereof
JP2015528402A (en) Barrier assembly manufacturing method
JPS62217506A (en) Transparent conductive film
JPS59101795A (en) Electroluminescence thin film display device
KR950020822A (en) Piezoelectric Digital Touch Panel
EP0326178B1 (en) Method of making a photosensor
Konshina A correlation between electrical and optical properties of aC: H films
JPS58111379A (en) Thin-film solar cell
JP2959085B2 (en) Humidity sensor
JPS613476A (en) Amorphous si photosensor
JPS5990966A (en) Optoelectric conversion element
US3526543A (en) Photoconductive film
JPS60220967A (en) Semiconductor device
JPH06213853A (en) Manufacture of gas detecting element
JPS62166530A (en) Manufacture of semiconductor device
JPS617669A (en) Manufacture of photoconductor
JPH11130473A (en) Quartz glass member for semiconductor production device
JPS61187380A (en) Amorphous silicon photosensor
JP2006004633A (en) Dampproof transparent conductive film
JPS622426B2 (en)