JPS60164285A - Water bottom observing apparatus for dredging work - Google Patents

Water bottom observing apparatus for dredging work

Info

Publication number
JPS60164285A
JPS60164285A JP59021449A JP2144984A JPS60164285A JP S60164285 A JPS60164285 A JP S60164285A JP 59021449 A JP59021449 A JP 59021449A JP 2144984 A JP2144984 A JP 2144984A JP S60164285 A JPS60164285 A JP S60164285A
Authority
JP
Japan
Prior art keywords
water
circuit
dredging
water bottom
directional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59021449A
Other languages
Japanese (ja)
Inventor
Kiyomi Minohara
箕原 喜代美
Yukiyoshi Nakamura
中村 幸義
Toyoo Hashimoto
橋本 豊雄
Norimasa Usui
臼井 則正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP59021449A priority Critical patent/JPS60164285A/en
Publication of JPS60164285A publication Critical patent/JPS60164285A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To forecast the amount of soil to be dredged as well as undulation of the water bottom immediately before the start of dredging by scanning in a sector plane including the vertical way below the water surface using a directional ultrasonic wave transmitter/receiver. CONSTITUTION:As a directional ultrasonic wave transmitter/receiver 1 scans in a certain sector plane S, the water bottom line B is shown on a plane position display 3 while transmission and reception information is inputted into an arithmetic circuit 4 via a sea bottom detection circuit 10, a gate wave generation circuit 14 and a counter 15 and information on the angle theta of direction is inputted into the circuit 4. Consequently, the bottom height difference H between the water bottoms B1 and B2 before and after the end of dredging is expressed by H=D0-Dthetacostheta when the water depth after the dredging is represented by D0 and the distance to the water bottom B2 at an angle theta of scanning Dtheta. This value is integrated with a circuit 5 at each transmission of an ultrasonic wave. If so, the area of a space between the water depth D0 and the water bottom B2 is shown on a display 6 as value proportional to the amount of soil to be dredged.

Description

【発明の詳細な説明】 この発明は浚渫作業用水底観測装置に関する。[Detailed description of the invention] The present invention relates to an underwater observation device for dredging work.

浚渫船による浚渫作業の効率を良くするには、浚渫すべ
き水底の土量と単位時間当りの浚渫能力とを勘案し、浚
渫船を過不足なく移動させていく必要がある。
In order to improve the efficiency of dredging work by a dredger, it is necessary to take into consideration the amount of soil on the water bottom to be dredged and the dredging capacity per unit time, and move the dredger just the right amount.

しかし、浚渫水域の土量は海図などにより概略的には知
り得ても、現実の、しかも浚渫直前における土量を具体
的に知る適当な手段がなく、このため、浚渫能力に応じ
た浚渫船の移動が適切に行なえず、効率の向上には限度
があるといった欠点があった。
However, although the amount of soil in the dredged area can be roughly known from nautical charts, there is no appropriate means to specifically know the actual amount of soil immediately before dredging. The disadvantage was that movement could not be carried out properly, and there was a limit to the improvement in efficiency.

この発明は上記問題に鑑み、浚渫直前における水底の起
伏状況のみならず、浚渫すべき土量についても正確に予
知可能とし、もって非常に効率の良い浚渫作業を行なう
ことに資する浚渫作業用水底観測装置を提供することを
目的としてなされたものであって、水面下において垂直
下方を含む扇状面内を走査する指向性超音波送受波器と
、該送受波器の指向角を検出する指向角検出装置と、指
向角及びその方向での超音波送受信時間差をもとに水底
線を表示する平面位置表示装置と、前記指向角と超音波
送受信時間差よシ得られる方向距離情報の垂直下方成分
を算出し、これを一定設定値から減する演算を超音波発
信パルス毎に行なう演算回路と、この演算結果を積算す
る積算回路と、この積算結果の表示器とから構成された
ことを特徴とするものである。
In view of the above problems, this invention enables accurate prediction of not only the ups and downs of the water bottom immediately before dredging, but also the amount of soil to be dredged, thereby contributing to highly efficient dredging work. This device was developed for the purpose of providing a directional ultrasonic transducer that scans in a fan-shaped plane including vertically downward under water, and a directivity angle detection device that detects the directivity angle of the transducer. A plane position display device that displays the water bottom line based on the directivity angle and the ultrasound transmission/reception time difference in that direction, and a vertical downward component of the directional distance information obtained from the directivity angle and the ultrasound transmission/reception time difference. and an arithmetic circuit that subtracts this value from a fixed set value for each ultrasonic transmission pulse, an integrating circuit that integrates the results of this calculation, and a display for the integrated results. It is.

次に、この発明を実施例によシ説明する。Next, the present invention will be explained using examples.

第1図は、この発明の実施例の設置状態説明図 !!;
2図は、実施例の構成ブロック図である。
Figure 1 is an explanatory diagram of the installed state of the embodiment of this invention! ! ;
FIG. 2 is a block diagram of the configuration of the embodiment.

この発明の浚渫作業用水底観測装置Aは、水面WL下に
おいて垂直下方Pを含む扇状面S内を走査可能に、チル
ト機構IAを介して浚渫船Vの船底に取付けられた指向
性超音波送受波器lと、この送受波器lの指向角を検出
する指向角検出装置2と、指向角θ及びその方向での一
超音波送受信時間差をもとに水底線Bを表示する平面位
置表示装置(以下「PPI」と言う)3と、指向角θと
超音波送受信時間差より得られる方向距離情報Dθの垂
直下方成分h (図においてDθcosθ)を算出し、
これを一定設定値Doから減する演算(即ち、図におい
て、Do Dθcowθ)を超音波発信パルス毎に行な
う演算回路4と、この演算結果を積算する積算回路5と
この積算結果の表示器6とから構成されている。
The underwater bottom observation device A for dredging work of the present invention is a directional ultrasonic wave transmitting/receiving device attached to the bottom of a dredging vessel V via a tilt mechanism IA so as to be able to scan within a fan-shaped surface S including a vertically downward direction P below the water surface WL. a directivity angle detection device 2 that detects the directivity angle of the transducer L, and a plane position display device ( (hereinafter referred to as "PPI") 3, and the vertical downward component h (Dθ cos θ in the figure) of the direction distance information Dθ obtained from the directivity angle θ and the ultrasound transmission/reception time difference,
An arithmetic circuit 4 that performs an operation to subtract this from a fixed set value Do (that is, Do Dθcowθ in the figure) for each ultrasonic transmission pulse, an integration circuit 5 that integrates the results of this operation, and a display 6 that displays the integration results. It consists of

上記実施例において、超音波送受波器1には、超音波発
信回路11、受信回路12及び、送受信切換装置10が
設けられ、まだ、超音波発信回路11の発信出力に基づ
き作動する」11)川波生成回路31、及び指向角同期
回路32がPPl3に設けられている。これらは、従来
周知のソナー装置と同様である。
In the above embodiment, the ultrasonic transducer 1 is provided with an ultrasonic transmitting circuit 11, a receiving circuit 12, and a transmitting/receiving switching device 10, and still operates based on the transmission output of the ultrasonic transmitting circuit 11. A river wave generation circuit 31 and a directivity angle synchronization circuit 32 are provided in PPl3. These are similar to conventionally known sonar devices.

また、第2図において、13は、水底検出回路であって
、水底反則波のうち、最もレベルの高い反射波をクリッ
プし、多重反則による残響雑音をカットするものである
。寸だ、14は、ゲート波生成回路、15は、カウンタ
ーを示し、このカウンターは、ゲート波生成回路14で
生成したゲート波の持続時間をクロックパルス回路16
よりのパルスに基づき計測し、数値化するために設けら
れる。
Further, in FIG. 2, 13 is a water bottom detection circuit, which clips the reflected wave with the highest level among the water bottom fault waves and cuts reverberation noise caused by multiple faults. 14 is a gate wave generation circuit, 15 is a counter, and this counter calculates the duration of the gate wave generated by the gate wave generation circuit 14 by the clock pulse circuit 16.
It is provided to measure and quantify based on the pulses.

次に、この発明の作用について説明する。Next, the operation of this invention will be explained.

第2図において、チルト機構1Aによシ、指向性超音波
送受波器lを一定の扇状面Sの範囲内を走査させると、
これら入力情報によシ水底線BがPPI 3上に表示さ
れる。
In FIG. 2, when the tilt mechanism 1A scans the directional ultrasonic transducer l within a certain fan-shaped plane S,
The bottom line B is displayed on the PPI 3 based on these input information.

同時に超音波送信パルスごとの送受信情報が、海底検出
回路13、ゲート波生成回路14、カウンター15を経
て演算回路4へ入力され、また、指向角検出装置2より
の指向角θについての情報も演幻1回路4へ入力される
At the same time, transmission and reception information for each ultrasonic transmission pulse is input to the arithmetic circuit 4 via the seabed detection circuit 13, gate wave generation circuit 14, and counter 15, and information about the directivity angle θ from the directivity angle detection device 2 is also calculated. It is input to the phantom 1 circuit 4.

水底Bの起伏状態は、浚渫終了後の水底B1と浚渫前の
水底B2とにより高低差Hがあるが、浚渫後の水深をD
o −iだ指向角θについての水底B2までの距離をD
θとすると、 1(=[1o−1)θωSθ(θは、垂直下方線Pを基
準とした角) て表わせる。
Regarding the undulating state of water bottom B, there is a height difference H between water bottom B1 after dredging and water bottom B2 before dredging, but the water depth after dredging is D.
The distance to the water bottom B2 for the directivity angle θ of o −i is D
When θ is assumed, it can be expressed as 1(=[1o−1)θωSθ (θ is the angle with respect to the vertical downward line P).

演算回路4では、上記Hについての演算が超音波送信パ
ルスごとについて行なわれ、積算回路5へ入力されてい
く。
In the arithmetic circuit 4, the arithmetic operation regarding H is performed for each ultrasonic transmission pulse, and the result is input to the integration circuit 5.

積算回路5では、入力値が順次積算され、走査の終了時
点で積算結果が表示器6へ表示される。
In the integration circuit 5, the input values are integrated in sequence, and the integration results are displayed on the display 6 at the end of the scan.

この表示器6の表示値は設定値DOと、それより上方に
位置する水底線B2間に挾まれる空間の面積を表わすか
ら、浚渫土量に比例した値となシ、従って、この表示値
を基にすれば現在進行中の浚渫すべき直前の土量が正確
に予知出来るのである。
The displayed value on this display 6 represents the area of the space between the set value DO and the water bottom line B2 located above it, so it is a value proportional to the amount of dredged soil. Therefore, this displayed value Based on this, it is possible to accurately predict the amount of soil immediately before the dredging that is currently in progress.

なお、上記実施例として、角θを、超音波送受波器lを
通る垂直軸線Pを基準とした場合を示したが、水平線Q
を基準として角θを検出する方式としても良いことは言
うまでもない。この場合、高低差Hは H= Do−117sinθ で表わされる。
In the above embodiment, the angle θ is based on the vertical axis P passing through the ultrasonic transducer l, but the horizontal line Q
It goes without saying that it is also possible to use a method of detecting the angle θ using the angle θ as a reference. In this case, the height difference H is expressed as H=Do-117 sin θ.

かくして、表示された浚渫予定の土量に基づき浚渫船の
移動速度、浚渫用バクット何コンベヤなどの稼動速度を
判断し、調整していくのである。
In this way, the moving speed of the dredger and the operating speed of the dredging conveyor are determined and adjusted based on the displayed amount of soil scheduled to be dredged.

上記実施例の説明において、残存出量の算出時に浚渫後
の水深Doを基準値とした場合を示したが、第3図に示
すように水底Bに起伏B3があり、浚渫すべきレベルB
′が中間位置となる場合にけ、基準値をり、として演算
回路4に前述のり。
In the explanation of the above embodiment, the case where the water depth Do after dredging was used as the reference value was shown when calculating the residual discharge amount, but as shown in Fig. 3, there is an undulation B3 on the water bottom B, and the level
When ' is at an intermediate position, the reference value is set as .

1こ代えてDlを入力設定し、もって、残存出量を算出
することも可能である。
It is also possible to input and set Dl instead of 1 and calculate the remaining output amount.

さらに、積算回路5に航程針7を設け、航程針7より入
力される浚渫船Vの移動量と、第2図における土量高さ
Hを一定の短時間毎に剰じ、これを積算させて表示する
こともできる。
Furthermore, a travel needle 7 is provided in the integration circuit 5, and the amount of movement of the dredger V inputted from the travel needle 7 is multiplied by the earth volume height H in Fig. 2 at regular short intervals, and the sum is integrated. It can also be displayed.

この場合、浚渫し終った水底の除去土量が知ることが出
来る。
In this case, the amount of soil removed from the bottom of the water after dredging can be known.

なお、十記航程割9としては、一般的には、ドツプラー
ログ、ドツプラーソナーなどがあるが、浚渫船の場合、
移動がきわめて緩慢であるから例えば、浚渫船Vの対地
固定に用いられる錨鎖、ホーサーなどの巻き込み繰り出
しウィンチの作動回転数などから移動量を検出する装置
が用いられる。
Generally, Doppler logs, Doppler sonar, etc. are used as Juki route classification9, but in the case of a dredger,
Since the movement is extremely slow, for example, a device is used that detects the amount of movement from the operating rotational speed of a winding winch used for fixing the dredger V to the ground, such as an anchor chain or a hawser.

この発明は以上のように、浚渫すべき水底の状態をPP
Iにより具体視出来ると同時に浚渫作業中における直前
の浚渫土量の算出も行なわれるから、これらの表示値に
より浚渫船の移動速度、作業予定等をきわめて簡単にか
つ迅速に制御可能となシ、経験者、熟練者でなくとも、
浚渫作業、計画立案が容易となるのである。
As described above, this invention improves the condition of the water bottom to be dredged.
At the same time, the amount of dredged soil immediately before the dredging operation is calculated using I, so the moving speed of the dredger, work schedule, etc. can be controlled extremely easily and quickly using these displayed values. Even if you are not a professional or an expert,
This will make dredging work and planning easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例の設置状態説明図、第2図は
実施例の構成ブロック図、第3図は他の使用状態を示す
説明図である。 A・・・浚渫作業用水底観測装置、1・・・指向性超音
波送受波器、2・・・指向用検出装置、3・・・平面位
置表示装置(PPI)、4・・・演算回路、5・・・積
算回路、6・・・表示器、P・・・垂直下方線、S・・
・扇状面、θ・・・走査角。
FIG. 1 is an explanatory diagram of an installation state of an embodiment of the present invention, FIG. 2 is a block diagram of the configuration of the embodiment, and FIG. 3 is an explanatory diagram showing another usage state. A... Underwater observation device for dredging work, 1... Directional ultrasonic transducer, 2... Directional detection device, 3... Planar position indicator (PPI), 4... Arithmetic circuit , 5... Integration circuit, 6... Display, P... Vertical downward line, S...
- Fan-shaped surface, θ...scanning angle.

Claims (1)

【特許請求の範囲】[Claims] (1) 水面下において、垂直下方を含む扇状面内を走
査する指向性超音波送受波器と、該送受波器の指向角を
検出する指向角検出装置と、指向角及びその方向での超
音波送受信時間差をもとに水底線を表示する平面位置表
示装置と、前記指向角と超音波送受信時間差より得られ
る方向距離情報の垂直下方成分を算出し、これを一定設
定値から減する演算を超音波発信パルス毎に行なう演算
回路と、この演算結果を積算する積算回路と、この積算
結果の表示器とから構成されたことを特徴とする浚渫作
業用水底観測装置。
(1) A directional ultrasonic transducer that scans in a fan-shaped plane including vertically downward under water; a directional angle detection device that detects the directional angle of the transducer; A planar position display device that displays the water bottom line based on the ultrasound transmission and reception time difference, and an operation that calculates the vertical downward component of directional distance information obtained from the directional angle and the ultrasound transmission and reception time difference, and subtracts this from a fixed set value. An underwater observation device for dredging work, comprising: an arithmetic circuit that performs operations for each ultrasonic transmission pulse; an integration circuit that integrates the results of this calculation; and a display that displays the results of the integration.
JP59021449A 1984-02-06 1984-02-06 Water bottom observing apparatus for dredging work Pending JPS60164285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59021449A JPS60164285A (en) 1984-02-06 1984-02-06 Water bottom observing apparatus for dredging work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59021449A JPS60164285A (en) 1984-02-06 1984-02-06 Water bottom observing apparatus for dredging work

Publications (1)

Publication Number Publication Date
JPS60164285A true JPS60164285A (en) 1985-08-27

Family

ID=12055271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59021449A Pending JPS60164285A (en) 1984-02-06 1984-02-06 Water bottom observing apparatus for dredging work

Country Status (1)

Country Link
JP (1) JPS60164285A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533028A (en) * 1978-08-30 1980-03-08 Oki Electric Ind Co Ltd Light-emitting semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533028A (en) * 1978-08-30 1980-03-08 Oki Electric Ind Co Ltd Light-emitting semiconductor device

Similar Documents

Publication Publication Date Title
Grant et al. Modern swathe sounding and sub-bottom profiling technology for research applications: the Atlas Hydrosweep and Parasound systems
JPS5855477B2 (en) sonar device
NL2004442C2 (en) Cutter suction dredger for dredging ground and method for dredging using this cutter suction dredger.
JPH07218254A (en) Oceanographic meter
KR20040092508A (en) System for investigation of river bottom topography and fluctuation using GPS and GPR
KR20120096690A (en) Apparatus for measuring position of underwater robot
JPS60164285A (en) Water bottom observing apparatus for dredging work
JP2679192B2 (en) Undersea terrain display
JPH10299020A (en) Installation and sinking method for underwater structure and its equipment
Saxena A review of shallow-water mapping systems
JPH0385476A (en) Sea bottom searching apparatus
JPH0511084U (en) Water bottom observation equipment for dredging work
JPH04372812A (en) Method for preparing topographic map of bottom of water such as swamp and dam and depth measuring body therefor
JPH10206153A (en) Depth-of-water measuring apparatus
RU2799974C1 (en) Correlation method for measuring the parameters of the aquatic environment fine structure
JPH01216288A (en) Method for surveying submarine terrain
JPH10332825A (en) Method and system for surveying topography of seabed
RU53455U1 (en) UNDERWATER DEPTH METER
RU2801053C1 (en) Acoustic method for measuring motion parameters of the layered marine environment
RU191059U1 (en) UNDERWATER DEPTH METER
EP4254009A1 (en) Doppler device, depression angle estimation method, and program
JP2632942B2 (en) Dredger construction support system
Van Craenenbroeck et al. Application of Modern Survey Techniques in Today's Dredging Practice
KR100691516B1 (en) Apparatus for Underwater Positioning using Ultrasonic Transmitting/Receiving
JP2001264437A (en) System device, and method for measuring distribution of tidal current, and underwater detection system