JPS60164247A - Rotary flaw detecting apparatus - Google Patents

Rotary flaw detecting apparatus

Info

Publication number
JPS60164247A
JPS60164247A JP59020179A JP2017984A JPS60164247A JP S60164247 A JPS60164247 A JP S60164247A JP 59020179 A JP59020179 A JP 59020179A JP 2017984 A JP2017984 A JP 2017984A JP S60164247 A JPS60164247 A JP S60164247A
Authority
JP
Japan
Prior art keywords
ultrasonic
signal
flaw detection
flaw
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59020179A
Other languages
Japanese (ja)
Inventor
Tetsuo Endo
遠藤 哲男
Hiroshi Matsuyama
宏 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59020179A priority Critical patent/JPS60164247A/en
Publication of JPS60164247A publication Critical patent/JPS60164247A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To examine internal flaws and surface flaws with a probe being rotated, by detecting the internal flaws by an ultrasonic wave flaw detecting method through a rotary transformer, converting a part of the internal-flaw detecting ultrasonic waves into an electric signal, performing magnetic flaw detection at the same time, and taking out both signals as the ultrasonic waves. CONSTITUTION:Internal flaws are detected by an ultrasonic wave flaw detecting method through a rotary transformer 8. At the same time, a part of the internal-flaw detecting ultrasonic waves is converted into an electric signal, and a magnetic probe 15 is operated. The magnetic detected-flaw signal is shifted by a time period for the ultrasonic wave flaw detection and converted into ultrasonic waves, which are in turn received by an ultrasonic-wave receiving probe 23 that is used in the ultrasonic flaw detecting method. The received ultrasonic-wave detected-flaw signal and the magnetic detected-flaw signal are modulated by a high frequency signal. The results are taken out through the rotary transformer 8 and demodulated. Then, they are separated into the ultrasonic-wave detected-flaw signal and the magnetic detected-flaw signal by time division, and each flaw is judged. Thus the examination of the inside and the surface of steel pipe and the like can be performed by one operation. The examination can be performed only by passing the material to be examined through the center of a rotary drum. Thus the efficiency of the production line can be enhanced.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は例えは鉄鋼バイブなどの内部傷1表面傷全探
触子を回転しながら検査を行う探傷装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a flaw detection device that inspects internal flaws and all surface flaws in a steel vibrator while rotating the probe.

〔従来の技術〕[Conventional technology]

従来において鉄鋼バイブ、鋼棒素材など全生産する過程
で、その品質全保証下るため非破壊検査が行われている
が、その方法は、超音波探傷法と磁気探傷法が独立して
生mlライン上で行われていた。この理由は超音波探傷
法は超音波の被検材の傷での反射を利用しているため内
部の傷は検出できるが超音波が入射する表面や入射点近
傍では超音波の大きな反射波が生ずるため、傷がおって
も反射波が大きいため検出不可能である。そのため超音
波探傷法は被検材の内質部分を検査するのKもちいられ
ていた。薫た超音波探傷法は探触子の駆動及び受信に%
気パルスがもちいられるため回転トランスが使用可能で
あり、鉄鋼パイプや、鋼棒素材など全長さ方向に走らせ
るだけで回転探傷ドラムの回転によって検査が行われて
いた。第1図は従来の回転探傷ドラム全周いたバイブ探
傷の構造を示す。(1)は被検材、(2)は探傷ドラム
、(3)は超音波送信用探触子、(41は超音波受信用
探触子。
Conventionally, non-destructive testing has been carried out during the entire production process of steel vibrators, steel bar materials, etc. in order to fully guarantee the quality of the products. It was being done above. The reason for this is that the ultrasonic flaw detection method uses the reflection of ultrasonic waves from flaws in the test material, so internal flaws can be detected, but large reflected waves of ultrasonic waves are generated on the surface where the ultrasonic waves are incident or near the point of incidence. Therefore, even if there is a scratch, the reflected wave is so large that it cannot be detected. For this reason, ultrasonic flaw detection has been used to inspect the internal parts of materials to be tested. The scented ultrasonic flaw detection method is effective in driving and receiving the probe.
Since air pulses are used, a rotary transformer can be used, and inspections were performed by simply running the test along the entire length of steel pipes or steel rods by rotating a rotary flaw detection drum. Fig. 1 shows the structure of a conventional vibrator flaw detection system that uses a rotating flaw detection drum all around it. (1) is the material to be tested, (2) is the flaw detection drum, (3) is the ultrasonic transmitting probe, and (41 is the ultrasonic receiving probe).

(5)は駆動モータ、(6)は駆動モータ(5)のギヤ
ー、(7)は回転探傷ドラムのギヤー、(8)は回転ト
ランス。
(5) is the drive motor, (6) is the gear of the drive motor (5), (7) is the gear of the rotating flaw detection drum, and (8) is the rotating transformer.

(9)は回転トランス(8)のロータ、aGは回転トラ
ンス(8)のステータータである。次Km造について説
明する。被検材口)は探傷ドラム(2)の中心全矢印A
の方向に通過していく。回転探傷ドラム(2)Kは超音
波送信用探触子(3)と超音波受信用探触子(4;が埋
め込まれている。回転探傷ドラム+21は駆動モータ(
5)によりギヤー(6)及び回転探傷ドラム(2)のキ
ャー(7)を介して矢印Bの方向に回転する構造になっ
ている。また回転ドラム(2)の他端には回転トランス
(8)のロータ(9)が取付けられ1回転トランス(8
)のロータ(91ニ対向してステータ帥が設けられてい
る。
(9) is the rotor of the rotating transformer (8), and aG is the stator of the rotating transformer (8). Next, Km construction will be explained. The opening of the material to be inspected is at the center of the flaw detection drum (2) at full arrow A.
passing in the direction of The rotating flaw detection drum (2) K is embedded with an ultrasonic transmitting probe (3) and an ultrasonic receiving probe (4).
5) rotates in the direction of arrow B via the gear (6) and the carrier (7) of the rotary flaw detection drum (2). Furthermore, the rotor (9) of the rotary transformer (8) is attached to the other end of the rotary drum (2).
) A stator shaft is provided opposite the rotor (91).

次に動作妊ついて第2図のブロック図を用いて説明する
。(2)〜(IIKついては上記第1図と全(同一のも
のである。αBは超音波励振器、α2は増巾回路、 a
Sは処理回路、 (14は制#回路である。超音波励振
器(Illにより発生したパルス信号は回転トランス(
8)のステータuOの励振1次コイル(10−1)を通
して(ロ)転探傷ドラム(2)の回転トランス(81の
ロータ(9)の励振2次コイル(9−1)に送られ超音
波送信用探触子(3)全励振する。超音波送信用探触子
(3)より発生した超音波は被検材(11を検査し、超
音波受信用探傷子(41に至り、電気パルス信号に変換
され回転トランス(8)のロータ(9)の受信1次コイ
ル(9−2)全通して受信2次コイル(10−2)に至
り外部に取り出され増巾回路α2で増巾され処理回路a
jで判定される。制御回路Iは超音波励振器aυ及び処
理回路組3の動作タイミングを制御している。
Next, the operation will be explained using the block diagram shown in FIG. 2. (2) to (IIK are all the same as in Fig. 1 above. αB is an ultrasonic exciter, α2 is an amplification circuit, a
S is a processing circuit, (14 is a control circuit. The pulse signal generated by the ultrasonic exciter (Ill)
The ultrasonic waves are sent through the excitation primary coil (10-1) of the stator uO (8) to the excitation secondary coil (9-1) of the rotor (9) of the rotary transformer (81) of the rotating flaw detection drum (2). The transmitting probe (3) is fully excited.The ultrasonic wave generated by the ultrasonic transmitting probe (3) inspects the material to be tested (11), reaches the ultrasonic receiving flaw probe (41), and generates an electric pulse. The signal is converted into a signal, passes through the primary receiving coil (9-2) of the rotor (9) of the rotating transformer (8), reaches the secondary receiving coil (10-2), is taken out to the outside, and is amplified by the amplifying circuit α2. Processing circuit a
It is determined by j. The control circuit I controls the operation timing of the ultrasonic exciter aυ and the processing circuit group 3.

一方、磁気探傷法は被検材の表面から外部磁界を加え、
被検材に欠陥があれは、欠陥の個所から漏洩磁束が発生
するため、その漏洩磁束を磁気探触子で検出する検出法
で、外部磁界は被検材中全通過するのは被検材の表面及
び表面近傍にかぎられるため、被検材の欠陥検出も表面
及び六回近傍の欠陥の検出に限定される。また磁気探傷
法は漏洩磁束全検出するため磁気探触子の受信信号も微
狗で超音波探傷法のように回転トランス會利用して受信
信号を外部に取りm1”ことは不可能である。
On the other hand, magnetic flaw detection applies an external magnetic field from the surface of the material being tested.
If there is a defect in the material to be inspected, leakage magnetic flux is generated from the defective location, so this detection method uses a magnetic probe to detect the leakage magnetic flux, and the external magnetic field passes through the entirety of the material to be inspected. Since the detection is limited to the surface and the vicinity of the surface, the detection of defects in the material to be inspected is also limited to the detection of defects on the surface and in the vicinity of the six times. Furthermore, since the magnetic flaw detection method detects all of the leakage magnetic flux, the received signal of the magnetic probe is also weak, and it is impossible to take the received signal to the outside using a rotating transformer as in the ultrasonic flaw detection method.

そのため、被検材の内i=1検査する超音波探傷法と、
被検材の表面及び表面近傍を検査する磁気探傷法は別ラ
インで独立に行われていた。そこで。
Therefore, the ultrasonic flaw detection method that inspects i=1 of the test materials,
Magnetic flaw detection, which inspects the surface and the vicinity of the surface of the test material, was performed independently on a separate line. Therefore.

磁気探傷法が超音波探傷法と同様に回転探傷ドラム上で
検出し、その信号を回転トランスを介して外部に取りm
1ことができるようになれは、内部欠陥と同時に表面欠
陥も1つの装置で実現でき検査ラインの簡素化、検査の
として強い要求があつた。
Similar to the ultrasonic flaw detection method, the magnetic flaw detection method detects flaws on a rotating drum, and the signal is taken externally via a rotating transformer.
1, it was possible to detect both internal defects and surface defects with a single device, and there was a strong demand for simplifying the inspection line and for inspection.

〔発明の概要〕[Summary of the invention]

この発明はか\る要求全改善する目的でなされたもので
回転トランス経由により超音波探傷法で内部探傷すると
同時に内部探傷超音波の1部全電気信号に変換し磁気探
触子を動作させ9m気探傷信号を超音波探傷時間だけ時
間をすらして超音波になおし超音波探傷法で用いた超音
波受4N用振動子で受信し、受信した超音波探傷信号及
び磁気探傷信号を高周波信号で変調を行い回転トランス
を介して外部にとり出し、復調の後1時分割により超音
波探傷信号と磁気探傷信号に分離し、各々の傷の判別を
行うようにした1装置による被検材の内部及び表面の傷
を検査できる探傷装置を提案するものである。
This invention was made with the aim of completely improving these requirements. At the same time, internal flaw detection is carried out using ultrasonic flaw detection method via a rotating transformer. At the same time, a part of the internal flaw detection ultrasonic waves is converted into electric signals to operate a magnetic probe. The air flaw detection signal is converted into ultrasonic waves after an interval of ultrasonic flaw detection time, and is received by the ultrasonic receiver 4N transducer used in the ultrasonic flaw detection method, and the received ultrasonic flaw detection signals and magnetic flaw detection signals are converted into high frequency signals. The inside of the material to be inspected and This paper proposes a flaw detection device that can inspect for surface flaws.

〔発明の実施例〕[Embodiments of the invention]

第3図はこの発明の1実施例を示す構造図であり(!)
〜帥は上記従来装置と全く同一のものである。
Figure 3 is a structural diagram showing one embodiment of this invention (!)
. . . are exactly the same as the above-mentioned conventional device.

aeは探傷ドラム(2)上の磁気探触子、aeは磁気探
触子の周辺回路群、aηは回転トランス(8)を経由し
て探傷ドラム上の周辺回路群に電源を供給Tる直流変換
回路である。
ae is the magnetic probe on the flaw detection drum (2), ae is the peripheral circuit group of the magnetic probe, and aη is the DC power supply T that supplies power to the peripheral circuit group on the flaw detection drum via the rotary transformer (8). It is a conversion circuit.

8A4図はこの発明に用いる超音波送信用探触子(3)
及び超音波受信用探触子(41の細部構造について示し
たもので、 C16は超音波送信用振動子、 +11は
超音波送信用振動子0秒を保持し超音波全被検材fil
に伝達するホルダ、(2)は超音波送信用振動子08よ
り発する超音波の1部全反射する反射板、 C1l+は
反射板によって反射された超音波’11−m気信号とし
てとった1副超音波受信用振動子、(2)は磁気探触子
αjから得られる探傷信号を超音波に変換する超音波受
信用探触子(4)に付加された副送信用超音波振動子、
(ハ)は超音波受信用4辰動子、(財)は超音波受信用
振動子(ハ)及び副送信用超音波振動子Q2ヲ保持し。
Figure 8A4 shows the ultrasonic transmission probe (3) used in this invention.
The detailed structure of the ultrasonic receiving probe (41) is shown.
(2) is a reflector that totally reflects a part of the ultrasonic wave emitted from the ultrasonic transmitting transducer 08, and C1l+ is the 1st part of the ultrasonic wave reflected by the reflector as a '11-m air signal. an ultrasonic receiving transducer; (2) is a sub-transmitting ultrasonic transducer attached to the ultrasonic receiving probe (4) that converts the flaw detection signal obtained from the magnetic probe αj into ultrasonic waves;
(C) holds a 4-channel transducer for ultrasonic reception, and (Foundation) holds a transducer (C) for ultrasonic reception and an ultrasonic transducer Q2 for sub-transmission.

探・傷超廿波信号全超音波受信振動子に伝達するホルダ
である。
This is a holder that transmits the ultrasonic signal for detection and flaws to the entire ultrasonic reception transducer.

第5図はこの発明の詳細な説明するためのブロック図で
ある。(2)〜αJは上記第2図、 (141〜αSは
第3図、08〜(2)は上記第4図と全く同一のもので
ある。こ\で上記周辺回路群QBは次の回路より構成さ
れている。(ハ)は検波器、(ハ)は高周波フィルター
(ハ)は遅延回路、(至)は高周波変調回路、翰は復調
回路である。(2)は分離回路、C(υは高周波電源で
ある。
FIG. 5 is a block diagram for explaining the invention in detail. (2) to αJ are the same as those shown in Fig. 2 above, (141 to αS are the same as shown in Fig. 3, and 08 to (2) are exactly the same as those shown in Fig. 4 above. Here, the peripheral circuit group QB is the following circuit. (c) is a detector, (c) is a high frequency filter, (c) is a delay circuit, (to) is a high frequency modulation circuit, and the wire is a demodulation circuit. (2) is a separation circuit, and C ( υ is a high frequency power supply.

次に動作について説明する。超音波励振器αBからのパ
ルス信号は回転トランス(8)全弁して探傷ドラム(2
)の超音波送信用探触子(3)の超音波送信用振動子0
秒・全励振させ内部探傷用超音波音発生し被検材(1)
の内部を探傷し超音波探傷信号として超音波受信用振動
子(41の超音波受信用探触子(4)の超音波受信用振
動子(ハ)で受信される。一方、超音波受信用4動子錦
により発住した超音波の一部は副超音波受イご用振動子
QDによって電気信号として取り出され磁気探触子の周
辺回路群(【61の検波器(ハ)によって整流され直流
電源となり磁気探触子tts+2動作させる。磁気探傷
信号α9は被検材(11の表面欠陥による漏洩磁束を検
知し磁気探傷を含む信号となり磁気探触子の回路群ue
の高周波フィルタ(ホ)に加えられる。高周波フィルタ
(至)では信号の中から高周波信号を作りだし遅延回路
@に加えられる。遅延回路勾の遅延時間檎翔音波送信用
振動子0梯より発せられた超音波が被検材(1)の底面
に達し超音波受信用振動子@に達する超音波探傷時間よ
り長く設定し7ておく。遅延回路(5)の出力信号は副
超音波送信用振動子t2a’i励振し超音波信号となっ
て上記超音波探傷信号に続いて超音波受信用振動子(ハ
)に到達する。超音波受信用振動子(ハ)に到達した探
傷信号は電気信号に変換きれ高周波変調回路(ハ)で高
周波変調され回1転トランス(8)ヲ介して外部にとり
出され増巾器03に加えられ信号増巾され復調回路−に
加えられ変調前の探傷信号に復えされ分離回路(至)に
加えられる。分離回路では制御回路のタイミング指命に
より超音波探傷信号と磁気探傷信号に分離され処理回路
Q31VC加えられ被検材の内部傷及び表面傷の有無の
判断処理を行う。
Next, the operation will be explained. The pulse signal from the ultrasonic exciter αB is transmitted through all valves of the rotating transformer (8) to the flaw detection drum (2).
)'s ultrasonic transmitting probe (3)'s ultrasonic transmitting transducer 0
Test material (1) that generates ultrasonic sound for internal flaw detection with full excitation for seconds
The inside of the probe is detected for flaws and received as an ultrasonic flaw detection signal by the ultrasonic receiving transducer (c) of the ultrasonic receiving transducer (41). A part of the ultrasonic wave emitted by the four-element Nishiki is extracted as an electrical signal by the sub-ultrasonic receiving transducer QD and rectified by the detector (c) in the peripheral circuit group of the magnetic probe (61). It becomes a DC power supply and operates the magnetic probe tts+2.The magnetic flaw detection signal α9 detects the leakage magnetic flux due to the surface defect of the material to be inspected (11), and becomes a signal including magnetic flaw detection, and the circuit group ue of the magnetic probe
is added to the high frequency filter (e). The high frequency filter (to) creates a high frequency signal from the signal and adds it to the delay circuit @. The delay time of the delay circuit is set to be longer than the ultrasonic flaw detection time during which the ultrasonic waves emitted from the sonic wave transmitting transducer 0 ladder reach the bottom of the test material (1) and reach the ultrasonic receiving transducer. I'll keep it. The output signal of the delay circuit (5) excites the sub-ultrasonic transmitting transducer t2a'i, becomes an ultrasonic signal, and reaches the ultrasonic receiving transducer (c) following the ultrasonic flaw detection signal. The flaw detection signal that reaches the ultrasonic receiving transducer (c) is converted into an electric signal, modulated at high frequency by the high frequency modulation circuit (c), and taken out to the outside via the single rotation transformer (8) and added to the amplifier 03. The signal is amplified and applied to the demodulation circuit, where it is restored to the flaw detection signal before modulation and applied to the separation circuit. In the separation circuit, the signal is separated into an ultrasonic flaw detection signal and a magnetic flaw detection signal according to a timing instruction from the control circuit, and the signals are sent to a processing circuit Q31VC to determine the presence or absence of internal flaws and surface flaws in the material to be inspected.

なお、この発明では探傷ドラムの駆動には駆動モータよ
りキャーを介して行っているが、プーリ葡取付け、ベル
トt−用いて行ってもよい。
In the present invention, the flaw detection drum is driven by a drive motor via a carrier, but it may also be driven by a pulley attached or by a belt.

〔発明の効果〕〔Effect of the invention〕

この発明によれは、従来鉄鋼バイブや鋼棒材料などの検
査が内部と表面にわけて別々に行っていたものが、この
発明を用いることにより1本化でき、また回転探傷ドラ
ム全使用することがら被検材全回転ドラムの中心に通丁
だけで検査が行え。
According to this invention, conventional inspections of steel vibrators and steel bar materials, etc., which were conducted separately for the inside and surface, can be integrated into one inspection by using this invention, and the entire rotating flaw detection drum can be used. Inspection can be carried out by simply placing the material to be inspected in the center of the rotating drum.

生産ラインの効率化を大きく高める利点がある。This has the advantage of greatly increasing the efficiency of the production line.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超音波探傷を示T構造図、第2図は従来
の動作?説明するブロック図、第3図はこの発明の一実
施例を示す構造図、第4図はこの発明の探触子−例を示
す細部構造図、第5図はこの発明の詳細な説明するフロ
ック1 図において(8)は回転トランス、o9は磁気探触子。 0梯は超音波発信用振動子、aうはホルダ、01は反射
板、 (2)6は副超音波送信用振動子、(ハ)は超音
波受信用振動子、QDは副超音波受信用撮動子、@は検
波器、弼は高周波フィルタ、@は遅延回路、弼は変調回
路、@は復調回路、Olは分離回路である。 なお1図中同一あるいは相当部分には同一符号を付して
示しておる。 代理人大岩増雄 第1図 1 第3図 vS4図 tt y
Figure 1 shows the conventional ultrasonic flaw detection structure, and Figure 2 shows the conventional operation. FIG. 3 is a structural diagram showing an embodiment of the present invention; FIG. 4 is a detailed structural diagram showing an example of the probe of the present invention; FIG. 5 is a block diagram showing a detailed explanation of the present invention. 1 In the figure, (8) is a rotating transformer, and o9 is a magnetic probe. 0 is a transducer for ultrasonic transmission, a is a holder, 01 is a reflector, (2) 6 is a transducer for sub-ultrasonic transmission, (c) is a transducer for ultrasonic reception, QD is a sub-ultrasonic reception For the camera, @ is a detector, \ is a high frequency filter, @ is a delay circuit, \ is a modulation circuit, @ is a demodulation circuit, and OL is a separation circuit. In addition, the same or equivalent parts in FIG. 1 are indicated by the same reference numerals. Agent Masuo Oiwa Figure 1 Figure 3 vs Figure S4 tt y

Claims (1)

【特許請求の範囲】 被検材の探傷を行う回転探傷装置において1回転探傷ド
ラム上で超音波を発信する超音波探傷用の超音波発信用
振動子と、この超音波発信用振動子の発信する超音波全
被検材に伝えるホルダと。 Cのホルダから発する超音波によって探傷した反射信号
を受信する超音波受信用振動子と、前記ホルダの1部に
設けられた超音波を反射する反射板と、この反射板によ
って反射された超廿波を電気信号として取り出丁副超背
波受信用撮動子と、この副超音波用振動子からの信号音
直流信号に変換する検波器と、この検波器によって作り
出された直流電源によって動作する磁気探触子と、この
磁気探触子より得られた信号から高周波信号全作り山王
高周波フィルタと、この高周波フィルタから得られた信
号を超音波探傷時間だけ遅らせる遅延回路と、この遅延
回路からの信号會超廿波に変換して前記超音波受信用振
動子に送る副超音波送信用振動子と、前記超音波受信用
振動子から得られる探1!信号に高周波変調を行う変調
回路と、この変調回路よりえられた高周波信号を外部へ
椴りだ下回転トランスと、この回転トランスより得られ
た上記高周波変調信号から探傷信号?とりだT復調゛回
路と、この復調回路より得られた探傷信号から超音波探
傷信号と磁気探傷信号とに分離する回路とからなること
全特徴とする回転捺vIj装置。
[Scope of Claims] An ultrasonic wave transmitting vibrator for ultrasonic flaw detection that transmits ultrasonic waves on a one-rotation flaw detection drum in a rotary flaw detection device that performs flaw detection on a test material, and a transmitter of this ultrasonic wave transmitting vibrator. With a holder that transmits ultrasonic waves to all the tested materials. an ultrasonic receiving transducer that receives reflected signals detected by ultrasonic waves emitted from the holder C; a reflecting plate provided in a part of the holder that reflects the ultrasonic waves; and an ultrasonic wave reflected by the reflecting plate. It is operated by a sub-super back wave receiving camera element which takes out waves as electrical signals, a detector which converts the signal sound from this sub-ultrasonic transducer into a DC signal, and a DC power source generated by this detector. A Sanno high frequency filter that generates a high frequency signal from the signal obtained from this magnetic probe, a delay circuit that delays the signal obtained from this high frequency filter by the ultrasonic flaw detection time, and a delay circuit that delays the signal obtained from this high frequency filter by the ultrasonic flaw detection time. A sub-ultrasonic transmitting transducer which converts the signal wave into an ultrasonic wave and sends it to the ultrasonic receiving transducer, and a probe obtained from the ultrasonic receiving transducer! A modulation circuit that performs high frequency modulation on the signal, a rotating transformer that outputs the high frequency signal obtained from this modulation circuit to the outside, and a flaw detection signal from the high frequency modulation signal obtained from this rotating transformer. A rotary marking machine characterized by comprising a T-demodulation circuit and a circuit for separating the flaw detection signal obtained from the demodulation circuit into an ultrasonic flaw detection signal and a magnetic flaw detection signal.
JP59020179A 1984-02-07 1984-02-07 Rotary flaw detecting apparatus Pending JPS60164247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59020179A JPS60164247A (en) 1984-02-07 1984-02-07 Rotary flaw detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59020179A JPS60164247A (en) 1984-02-07 1984-02-07 Rotary flaw detecting apparatus

Publications (1)

Publication Number Publication Date
JPS60164247A true JPS60164247A (en) 1985-08-27

Family

ID=12019948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59020179A Pending JPS60164247A (en) 1984-02-07 1984-02-07 Rotary flaw detecting apparatus

Country Status (1)

Country Link
JP (1) JPS60164247A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6014683A (en) * 1996-12-20 2000-01-11 Nec Corporation Arithmetic operation system for arithmetically operating a first operand having an actual point and a second operand having no actual point
CN103675093A (en) * 2013-11-22 2014-03-26 国核电站运行服务技术有限公司 Pipe detecting system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6014683A (en) * 1996-12-20 2000-01-11 Nec Corporation Arithmetic operation system for arithmetically operating a first operand having an actual point and a second operand having no actual point
CN103675093A (en) * 2013-11-22 2014-03-26 国核电站运行服务技术有限公司 Pipe detecting system

Similar Documents

Publication Publication Date Title
US6456066B1 (en) Eddy current pipeline inspection device and method
CA2169307A1 (en) Non-contact characterization and inspection of materials using wideband air coupled ultrasound
US5113697A (en) Process and apparatus for detecting discontinuities on long workpieces
US5216921A (en) Method and apparatus for detecting defects and different-hardness portions of an object with protrusions
JP2009075101A (en) Method and apparatus for detecting defect in tooth of generator rotor
US4760737A (en) Procedure for flaw detection in cast stainless steel
JPS60164247A (en) Rotary flaw detecting apparatus
JPH0354792B2 (en)
JP2001021541A (en) Inspection method of multilayer member
JP3769067B2 (en) Defect detection method and apparatus for stretched workpiece
CN1268922C (en) Electromagnetic guided wave detector and method for sea platform structure defect
JPS60135859A (en) Rotary flaw detection apparatus
JPS60164249A (en) Flaw detector
JPS594663B2 (en) Non-destructive material inspection method for fin tubes using ultrasound
JPS60149964A (en) Flaw detection apparatus
JPH05288723A (en) Pitch-catch type ultrasonic flaw examination
JPH04161848A (en) Automatic ultrasonic flaw detecting apparatus
JPS60149965A (en) Flaw detection apparatus
SU1138732A1 (en) Method of ultrasonic checking of article surface flaws
JP2018084461A (en) Ultrasonic flaw detector and ultrasonic flaw detection method
RU2213336C2 (en) Method of ultrasonic test of antifriction bearings
JPS62191758A (en) Flaw detector
JP2000221023A (en) Wall inspection method for liquid storing structure
KR200386725Y1 (en) Tire testing machine using in razer inducing supersonic wave
RU2085935C1 (en) Method for ultrasonic flaw inspection of revolving parts