JPS60164230A - Force converter - Google Patents

Force converter

Info

Publication number
JPS60164230A
JPS60164230A JP2029484A JP2029484A JPS60164230A JP S60164230 A JPS60164230 A JP S60164230A JP 2029484 A JP2029484 A JP 2029484A JP 2029484 A JP2029484 A JP 2029484A JP S60164230 A JPS60164230 A JP S60164230A
Authority
JP
Japan
Prior art keywords
force
pressure
diaphragm
sensitive element
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2029484A
Other languages
Japanese (ja)
Other versions
JPH068760B2 (en
Inventor
Kenichiro Suzuki
健一郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59020294A priority Critical patent/JPH068760B2/en
Publication of JPS60164230A publication Critical patent/JPS60164230A/en
Publication of JPH068760B2 publication Critical patent/JPH068760B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/205Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using distributed sensing elements

Abstract

PURPOSE:To measure applying force in a broad range highly accurately, by using a transmitting body, which converts the applied force into the second force in nonlinear relation and transmits the force to a pressure sensitive element, and arranging a plurality of force converters in an array pattern. CONSTITUTION:When a first force 1 to be measured is applied to a diaphragm 71, the diaphragm 71 is deformed, and the second force is applied to a pressure sensitive element 6 through fluids 30 and 36. When the force 1 is small, the force 1 is proportional to the second force. When the force 1 is increased, the diaphragm 71 is contacted with a diaphragm 92. Thereafter, the relationship between the two forces becomes the difference obtained by subtracting the force yielded by the diaphragm 92 from the relationship before the contact of the diaphragms 71 and 92.

Description

【発明の詳細な説明】 (M業上の利用分野2 本発明は力変換器に関し、さらに詳しくは広い力範囲に
わたって動作する力変換器の構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Application 2 The present invention relates to force transducers, and more particularly to configurations of force transducers that operate over a wide force range.

(従来技術とその問題点) 近来、産業用ロポ、トの分野における急速な発展に伴っ
て、触覚等のロボット知覚技術の著しい進歩が見られる
。これはシリコン等の半導体をはじめ、無機、有機材料
を用いたセンサデバイス技術の急速な発展に支えられて
いるものでsb、当該技術を用いた触覚センサへの応用
も試みられている。以下、圧覚、力覚の検出に用いられ
る力変換器の従来例を図と共に説明する。
(Prior Art and its Problems) Recently, with the rapid development in the field of industrial robots, remarkable progress has been made in robot perception technology such as tactile sense. This is supported by the rapid development of sensor device technology using semiconductors such as silicon, as well as inorganic and organic materials, and attempts are being made to apply this technology to tactile sensors. Hereinafter, a conventional example of a force transducer used for detecting pressure sensation and force sensation will be explained with reference to the drawings.

第1図に従来の力変換器の構成を示す。当該力変換器は
、導電性ゴム3を挿んでその両面に電極2を接着あるい
は蒸着等で形成し、これを台座4に接着して構成する。
FIG. 1 shows the configuration of a conventional force transducer. The force transducer is constructed by inserting a conductive rubber 3, forming electrodes 2 on both sides thereof by adhesion or vapor deposition, and adhering this to a pedestal 4.

当該力変換器に力(あるいは、圧力)1が作用する時、
導電性ゴムに圧力が供給され、その結果、当該導電性ゴ
ムの両端の抵抗値が変化する。従って、当該抵抗値を電
極2を介して外部に取シ出し、周知の検出手段を用いて
測定することによシ、当該力変換器に印加された力(あ
るいは、圧力)を検出することができる。
When force (or pressure) 1 acts on the force transducer,
Pressure is applied to the conductive rubber, and as a result, the resistance value at both ends of the conductive rubber changes. Therefore, the force (or pressure) applied to the force transducer can be detected by extracting the resistance value to the outside via the electrode 2 and measuring it using a well-known detection means. can.

第2図に、印加力を横軸K、抵抗値の変化量の絶対値を
縦軸にとった時の前記力変換器の特性を示す。同図に示
されるように、印加力と抵抗値の変化量は比例の関係が
あシ、周知の検出手段を用いて、当該抵抗値よシ当該印
加力を検出することが可能となる。
FIG. 2 shows the characteristics of the force transducer when the horizontal axis K represents the applied force and the vertical axis represents the absolute value of the change in resistance value. As shown in the figure, there is a proportional relationship between the applied force and the amount of change in the resistance value, and it is possible to detect the applied force in relation to the resistance value using a well-known detection means.

しかしながら、従来の構成をもつ力変換器においては、
検出可能な印加力が狭い範囲に厳しく制限されていて、
このため応用範囲が限られていた。
However, in a force transducer with a conventional configuration,
The detectable applied force is strictly limited to a narrow range,
For this reason, the range of application was limited.

このため、複数個の力変換器の中から、前もって検出す
る力の大きさに応じたものを選択して検出箇所に取り付
けたシ、複数個の力変換器を該検出する力に応じて順次
切換える複雑な検出手段を用いる等の工夫を必要とした
。この結果、従来の力変換器はコストの増大と操作性の
悪さといった欠点を有していた。
For this purpose, a force transducer that corresponds to the magnitude of the force to be detected is selected in advance from among multiple force transducers and attached to the detection location, and multiple force transducers are sequentially installed according to the force to be detected. This necessitated the use of complex switching detection means. As a result, conventional force transducers have disadvantages such as increased cost and poor operability.

(発明の目的) 本発明の目的は、かかる従来の欠点を除去せしめて広い
範囲にわたる印加力を検出することを可能とする力変換
器の構成を提供することにある。
(Objective of the Invention) An object of the present invention is to provide a configuration of a force transducer that eliminates such conventional drawbacks and makes it possible to detect applied forces over a wide range.

(発明の構成) 本発明によれば、第一の力を受ける受圧部と。(Structure of the invention) According to the invention, a pressure receiving part receives a first force.

当該第一の力を第二の力に加工して感圧素、子に媒介す
る伝達体と、当該第二の力を電気信号に変換する前記感
圧素子とを備え、前記第二の力が前記第一の力と非線型
の関係になることを特徴とする力変換器、および、第一
の力を受ける受圧部と、当該第一の力を第二の力に加工
して感圧素子に媒介する゛伝達体と、当該第二の力を電
気信号に変換する前記感圧素子とを備え、前記第二の力
が前記第一の力と非線型の関係になることを特徴とする
力変換器において、複数個の該力変換器をアレイ状に配
置したことを特徴とする前記力変換器が得られる。
The second force is provided with a transmitter that processes the first force into a second force and transmits it to the pressure sensitive element and the second force, and the pressure sensitive element that converts the second force into an electrical signal. has a non-linear relationship with the first force, a pressure receiving part that receives the first force, and a pressure sensing unit that processes the first force into a second force It is characterized by comprising a transmitter that mediates the element, and the pressure-sensitive element that converts the second force into an electrical signal, and the second force has a nonlinear relationship with the first force. The force transducer is characterized in that a plurality of the force transducers are arranged in an array.

(実施例) 以下本発明について実施例を示す図面を参照して説明す
る。
(Example) The present invention will be described below with reference to drawings showing examples.

第3図は本発明の一実施例の断面を概念的に示した図で
ある。図において第1図と同一番号は同一構成要素を示
している。受圧部31に印加された第一〇力1は、以下
に述べる構成をとる伝達体5を介して第二の力に加工さ
れ、導電憔ゴム等の感圧素子6に力を与える。当該伝達
体5は、円形等の断面形状を持つ押え板38.38と前
記受圧部31を連結して該31に加えられる前記第一の
力を当該38に伝える連結軸39.当該38に接して置
かれるばね定数の異なるばねA32および833、該3
3の一端に接するように設けられ、かつ、通路穴35を
有する止め板34、および前記38と内壁が接するキャ
ップ37で44成されている。また、内室30.36に
は、気体、液体等の流体が満されている。なお、前記通
路穴35は、一つあるいは腹数個設けられていて、当該
内室30と36を結んでいれば良く、個数及びその位置
は何ら限定されない。
FIG. 3 is a diagram conceptually showing a cross section of an embodiment of the present invention. In the figure, the same numbers as in FIG. 1 indicate the same components. The first force 1 applied to the pressure receiving part 31 is processed into a second force via a transmitting body 5 having the configuration described below, and applies force to a pressure sensitive element 6 such as conductive rubber. The transmitting body 5 includes a connecting shaft 39.38 that connects the presser plate 38, 38 having a circular cross-sectional shape or the like and the pressure receiving portion 31, and transmits the first force applied to the pressure receiving portion 31 to the 38. Spring A32 and 833 with different spring constants placed in contact with said 38, said 3
3 and a stop plate 34 having a passage hole 35, and a cap 37 whose inner wall contacts said 38. Further, the inner chamber 30.36 is filled with a fluid such as gas or liquid. It should be noted that the passage hole 35 may be provided one or several times, as long as it connects the inner chambers 30 and 36, and the number and position thereof are not limited at all.

例えば、当該キャップの側壁に設けられていても良い。For example, it may be provided on the side wall of the cap.

前記ばね定数の異なるばねは、材料・線径・外径・巻き
密度等を変えることによシ突現できる。一方、当該感圧
素子の両面には電極2が取シ付けられておシ、外部の手
段を介して、当該6が応答する電気信号を処理して前記
印加力を検出する(図示せず)。4は台座で前記37と
共に本発明の力変換器を密封する。かかる構成の力変換
器では、以下の次第を経て、受圧部に加えられた第一の
力が伝達体によって第二の力に加工され、当該第二の力
が感圧素子に働く。すなわち、第一の力lが当該受圧部
31に加えられ、該39.38を介して当該32.33
に働き、これを変形(すなわち、縮小あるいは伸長)さ
せて、当該32.33に内方を発生させる。同時に、当
該伝達体の系には。
Springs with different spring constants can be created by changing the material, wire diameter, outer diameter, winding density, etc. On the other hand, electrodes 2 are attached to both sides of the pressure-sensitive element, and the applied force is detected by processing the electric signal responded by the electrode 6 via external means (not shown). . 4 is a pedestal which, together with the above-mentioned 37, seals the force transducer of the present invention. In the force transducer having such a configuration, the first force applied to the pressure-receiving section is processed into a second force by the transmitter through the following steps, and the second force acts on the pressure-sensitive element. That is, the first force l is applied to the pressure receiving part 31, and the force 32.33 is applied via the pressure receiving part 39.38.
, and deforms it (that is, shrinks or expands it) to generate an inner part at the corresponding 32.33. At the same time, in the system of the transmitter.

当該内室30を満す流体の容積の変化、該6の変形等に
より新たに力を発生させるが、核力(第二〇力)の大き
さは、前記第一の力と該32あるいは33に発生した該
内力との差にI′!ぼ等しい。該30の流体中に発生し
た当該第二の力は該35を介して該36の流体全体に伝
わシ、結局、当該感圧素子を該第二の力の大きさで加圧
する(当該力は前記6の変形の力と釣ル合う)。この時
、前記32.33に発生する内方の大きさが(本発明の
構成において)当該第一の力と非線型の関係をとるので
、前記第二の力も同様に該第−の力と非#il型の関係
となる。以上のことを第4図に図示する。
A new force is generated due to changes in the volume of the fluid filling the inner chamber 30, deformation of the 6, etc., but the magnitude of the nuclear force (force 20) is the same as the first force and the 32 or 33. The difference between the internal force and the internal force generated at is I'! Almost equal. The second force generated in the fluid 30 is transmitted to the entire fluid 36 via the fluid 35, and eventually pressurizes the pressure sensitive element with the magnitude of the second force (the force is (balanced with the force of deformation in 6 above). At this time, since the inward magnitude generated at 32.33 has a nonlinear relationship with the first force (in the configuration of the present invention), the second force also has a nonlinear relationship with the -th force. This is a non-#il type relationship. The above is illustrated in FIG.

同図は、前記第一〇力(図中では印加力と記されている
)を横軸に、前記第二〇力(図中では実効力と記されて
いる)を縦軸にとって、第3図の該33がない時(すな
わち、該32だけでばねが構成される時)の第一の力と
第二の力の関係を0)に、また、同図の該32のない(
該33だけがある)時の当該関係を←)に、本発明の構
成をとる(該32と33の相方がある)時の当該関係を
(ハ)に示す。なお、第3図の構成では、当該32のば
ね定数は該33のばね定数よりも大きい例が示されてい
るが、該32.33の上下の順序は逆でも良い。第4図
の(イ)に見られるように、大きなばね定数を持つばね
のみを使用する時には、第一の力の大半は当該ばねの内
力によシ費やされ、感圧素子に働く第二の力は当該第一
の力に比較して小さなものとなる。
In the figure, the 10th force (indicated as applied force in the figure) is taken as the horizontal axis, the 20th force (indicated as effective force in the figure) is taken as the vertical axis, and the 3rd force is taken as the vertical axis. The relationship between the first force and the second force when 33 in the figure is not present (that is, when the spring is composed of only 32) is 0), and when 32 in the figure is not present (
←) shows the relationship when only 33 exists), and (c) shows the relationship when the configuration of the present invention is adopted (there is a partner of 32 and 33). In the configuration of FIG. 3, an example is shown in which the spring constant of 32 is larger than the spring constant of 33, but the order of the 32 and 33 may be reversed. As shown in Figure 4 (a), when only springs with a large spring constant are used, most of the first force is spent on the internal force of the spring, and the second force acting on the pressure-sensitive element is The force is small compared to the first force.

一方、同図の←)の場合には、小さなばね定数を持つば
ねのみが用いられているので、当該第一〇力の大部分が
当該4二の力と約9合う大きさとなる。
On the other hand, in the case ←) in the same figure, only springs with small spring constants are used, so most of the 10th force has a magnitude that matches the 42nd force by about 9.

また、同図において、領域Iは当該(ロ)のばねがフッ
クの法則に従い、領域■で、当該ばねは該フックの法則
からはずれ、領域■において当該ばねが飽和に達する次
第に対応している。以上のように。
Further, in the figure, in region I, the spring in (b) follows Hooke's law, in region (2), the spring deviates from Hooke's law, and in region (2), the spring reaches saturation. As above.

(イ)の場合には、該印加力の広い範囲にわたって。In the case of (a), the applied force is applied over a wide range.

当該力変換器を使用することが可能であるが、印加力の
分解能に劣シ、特に当該印加力が小さい時には出力が小
さいという欠点がある。一方、(ロ)の場合には、該印
加力が小さい時にも充分な出力を得ることが可能、印加
力の分解能が優れている等の利点がある反面、大きな印
加力に対して当該力変換器を使用できないという欠点が
ある。前記0)。
Although it is possible to use such a force transducer, the disadvantage is that the resolution of the applied force is poor and the output is small, especially when the applied force is small. On the other hand, in case (b), it is possible to obtain sufficient output even when the applied force is small, and the resolution of the applied force is excellent, etc., but on the other hand, the force conversion for large applied forces is The disadvantage is that you cannot use the equipment. 0) above.

←)に対して、本発明の(ハ)の場合には、前記(イ)
および←)の長所があい合さって、当該印加力が小さい
場合および大きい場合の広い範囲にわたって当該力変換
器を使用することが可能であるという利点を持つ。なお
、第4図の■の領域では、肖該第−の力と該第二の力と
は比例しないので、信号の処理手段で適当な近似等の処
理を行うか、あるいは、IIの領域で該力変換器の使用
を禁止するか、等の方策が必要とされるが、それにも関
わらず、本発明の有効性は以前として大きなものである
←), in the case of (c) of the present invention, the above (a)
The advantages of ← and ←) are combined to have the advantage that the force transducer can be used over a wide range of cases where the applied force is small and large. In addition, in the area of ■ in Figure 4, the first force and the second force are not proportional, so either appropriate approximation or other processing is performed using a signal processing means, or in the area of II. Although measures such as prohibiting the use of the force transducer are required, the effectiveness of the present invention is still as great as before.

第5図に前記ばねの形状と異なる他の実施列を示す。5
1は単位長当シの巻き数を連続的に変化させて形成した
ばねである。当該ばねを前ii己!1iJ3図の当該3
2.33のばねに替えて用いた場合の前記第一の力と第
二の力の関係を第6図に示す。同図の縦・横の軸は第4
図と同じである。このように、第5図の構成をとるばね
を前記伝達体の一部に用いる場合には、当該第一の力と
該第二の力の関係を示す図形が滑らかな曲線となるオリ
点がある。なお、当該曲線の形状は前記510巻き密度
を変化させることによシ自由に設定できる。
FIG. 5 shows another embodiment different from the shape of the spring described above. 5
1 is a spring formed by continuously changing the number of turns per unit length. The spring in question is the previous one! 1iJ3 figure 3
FIG. 6 shows the relationship between the first force and the second force when the spring of 2.33 is used instead. The vertical and horizontal axes in the same figure are the 4th axis.
Same as the figure. In this way, when a spring having the configuration shown in FIG. 5 is used as a part of the transmitting body, there is an origin point at which the figure showing the relationship between the first force and the second force is a smooth curve. be. Note that the shape of the curve can be freely set by changing the 510 winding density.

第7.8.および9図は本発明の他の一実施例を示す図
である。図において、第3図と同一番号は同一構成要素
を示している。第7図において、71は薄い金属板9弾
性ゴム等から成るダイアフラムで受圧部f、構成し、第
一の力1に従って、弾性体72.73を変形(圧縮およ
び膨張)させる。弾性体72+73はそれぞれ異なった
圧縮率を有しておシ、前記第3図の異ったばね定数を持
つ該32゜33と同様の役割をしている。また、側壁7
4は、止め板34と一体で構成されていても良く、内室
36を満す流体が外界に漏れることを防いでいる。
Section 7.8. and FIG. 9 are diagrams showing another embodiment of the present invention. In the figure, the same numbers as in FIG. 3 indicate the same components. In FIG. 7, reference numeral 71 constitutes a pressure receiving part f, which is a thin metal plate 9 and a diaphragm made of elastic rubber or the like, and deforms (compresses and expands) elastic bodies 72 and 73 in accordance with the first force 1. The elastic bodies 72 and 73 have different compression ratios and play the same role as the elastic bodies 32 and 33 having different spring constants in FIG. 3, respectively. Also, the side wall 7
4 may be configured integrally with the stop plate 34 to prevent the fluid filling the inner chamber 36 from leaking to the outside world.

第8図は、前記第3図の該32.33に替って、肉厚が
滑らかに変化する弾性体81を用いたことを特徴とする
本発明の力変換器である。この場合においても、前記第
5図の当該ばね51金用いた場合と同様の特性を与える
ことが可能である。
FIG. 8 shows a force transducer of the present invention characterized in that an elastic body 81 whose wall thickness changes smoothly is used in place of the parts 32 and 33 in FIG. Even in this case, it is possible to provide the same characteristics as in the case where the spring 51 gold shown in FIG. 5 is used.

第9図は、二個のダイアフラム71.および92を用い
て構成したことを特徴とする本発明の力変換器である。
FIG. 9 shows two diaphragms 71. The force transducer of the present invention is characterized in that it is constructed using the following elements.

91は側壁で、当該ダイアフラム71.92を分離して
いる。同図の力変換器に第一〇力1が加わる場合、当該
ダイアフラム71が変形し、該30.36を満す流体を
介して当該感圧素子6に第2の力を生ずる。当該第一の
力が小さい時には、該第2の力と該第−の力は比例して
いる。
91 is a side wall separating the diaphragms 71 and 92. When a force 1 is applied to the force transducer in the figure, the diaphragm 71 deforms and generates a second force on the pressure sensitive element 6 via the fluid filling the 30.36. When the first force is small, the second force and the -th force are proportional.

しかし、該第−の力が増大すると、該71の大きな変形
を促し、該71がついに該92と接触し、以後、該71
と92が一体となって変形を始める。かかる場合には、
前記第一の力と前記第2の力の関係は、当該92に生ず
る力の大きさの分だけを先の関係(正比例)より差し引
いたものである。第10図に、当該特性を示す。同図の
縦・横軸は前記第4図と同じである。図中の(イ)は、
前記71のみで4i’を成(すなわち、Njtl記92
が削除された)した場合の力変換器の特性で、←)は本
発明の構成(U39図)をとる力変換器の特性を示す。
However, when the -th force increases, it promotes a large deformation of the 71, and the 71 finally comes into contact with the 92, and from then on, the 71
and 92 begin to transform as one. In such a case,
The relationship between the first force and the second force is obtained by subtracting the magnitude of the force generated at 92 from the previous relationship (direct proportionality). FIG. 10 shows the characteristics. The vertical and horizontal axes in this figure are the same as in FIG. 4 above. (a) in the diagram is
71 above alone constitutes 4i' (i.e. Njtl 92
←) shows the characteristics of the force transducer having the configuration of the present invention (Fig. U39).

また、図中の1の領域では当該71のみが、■の領域で
は当該7】と92の双方が変形する次第に対応している
Further, in the area 1 in the figure, only the corresponding 71 corresponds to the corresponding one, and in the area 2, both the corresponding 7] and 92 gradually correspond to each other as they deform.

本実施例においては、当該ダイアフラムの面積。In this example, the area of the diaphragm.

厚さ、材質9等、あるいは、二個のダイアフラムの距離
等を変化させることにより、第10図の1の領域の大き
さ、←)の傾き等を変化させることが可能である。また
、前記第4図のi(の領域を削除することも可能である
という利点もある。
By changing the thickness, material 9, etc., or the distance between the two diaphragms, etc., it is possible to change the size of the area 1 in FIG. 10, the slope of ←), etc. Another advantage is that it is also possible to delete the area i (in FIG. 4).

第11図は本発明の他の一実施例を示した図である。図
中で第9図と同一番号は同一構成要素を示している。本
発明の力変換器は、第9図に示した実施例を一次元、あ
るいは二次元的にアレイ状に配置したことf:特徴とす
るものである。同図では。
FIG. 11 is a diagram showing another embodiment of the present invention. In the figure, the same numbers as in FIG. 9 indicate the same components. The force transducer of the present invention is characterized in that the embodiment shown in FIG. 9 is arranged one-dimensionally or two-dimensionally in an array. In the same figure.

前記第9図の実施例の力変換器を基本として構成したが
、これに限るものではなく、一般に第1の力である印加
力lと感圧素子6に働く第2の力の関係を非線型にする
伝達体を備えた構成をとる力変換器を必要に応じて多種
類あるいは複数個、配列すれば良い。本実施例において
は、広い範囲に分布した力(あるいは圧力)、すべり党
1等の検出が可能であり、尚い軸度でもって圧覚センサ
が実現できる。
Although the force transducer according to the embodiment shown in FIG. If necessary, a plurality or types of force transducers each having a configuration including a linear transmitting body may be arranged. In this embodiment, it is possible to detect force (or pressure) distributed over a wide range, slippage 1, etc., and a pressure sensor can be realized with axial accuracy.

以上1本発明について実施例を挙げ詳細な説明を行った
。なお、第3.5,7.および8図に示される実施例で
は、伝達体の構成要素であるばね。
The present invention has been described above in detail with reference to examples. In addition, Sections 3.5, 7. and, in the embodiment shown in Figure 8, a spring which is a component of the transmitter.

ゴム等の弾性体において、当該部分で生じる変位が荷重
の増大に対して飽和する結果、当該全体の弾性定数が増
加する現象を利用している。一方、第9−および11図
の來施例では、荷重の増大につれてダイアフラムが重な
シ合い、該ダイアフラムの剛性が増大することを利用し
ている。また、前記感圧素子として、前記導電性ゴムの
外に、感圧半電体、圧電素子、ストレンゲージ、貼付型
圧力センサ、感圧有機材料、シリコンダイアフラム型圧
力センサ、シリコン等の半導体から成る電界効果型トラ
ンジスタのゲート領域に無機、有機、ハイブリッド材料
から成る圧電体物質を設けてなる周知の構造のピエゾF
ET、等を用いた構成、ばね。
In an elastic body such as rubber, a phenomenon is utilized in which the displacement occurring in the relevant part saturates with respect to an increase in load, and as a result, the overall elastic constant increases. On the other hand, the previous embodiments shown in FIGS. 9-11 utilize the fact that as the load increases, the diaphragms overlap and the rigidity of the diaphragms increases. In addition to the conductive rubber, the pressure-sensitive element may include a pressure-sensitive semi-electric material, a piezoelectric element, a strain gauge, an adhesive type pressure sensor, a pressure-sensitive organic material, a silicon diaphragm type pressure sensor, and a semiconductor such as silicon. A piezo F having a well-known structure in which a piezoelectric material made of an inorganic, organic, or hybrid material is provided in the gate region of a field effect transistor.
Configuration using ET, etc., spring.

ダイアフラム、91性ゴム等の弾性体を複数層積み重ね
てなる伝達体の構成、前記弾性体以外に材料非線型の特
性を持つ材料よシなる伝達体の構成、前記感圧素子に力
を加える種々の構成、電気信号を処理する周知の技術、
等も本発明に含まれる範囲である。
A structure of a transmitting body formed by stacking multiple layers of elastic bodies such as a diaphragm and 91% rubber, a structure of a transmitting body made of a material other than the above-mentioned elastic body having non-linear characteristics, and various types that apply force to the pressure-sensitive element. configuration, well-known techniques for processing electrical signals,
etc. are also within the scope of the present invention.

さらに、上記実施例の力変換器の特性は、ばね定数、圧
縮率、ダイアフラムの剛性9等組み合わされfc+s成
要素の機械的物質定数に依存する。したがって、検出す
る力の範囲9分解能1等の仕様に応じて、上記構成、物
質定数9等を変化させて最適設計を行うと良い。また、
前記内室を満す流体等の熱膨張の効果を補償する周知の
技術の使用も本発明に含まれる。
Furthermore, the properties of the force transducer of the above embodiments depend on the mechanical material constants of the combined fc+s components, such as spring constant, compressibility, stiffness of the diaphragm, etc. Therefore, it is preferable to perform an optimal design by changing the above configuration, material constants 9, etc. according to specifications such as the range of force to be detected, resolution 1, etc. Also,
The invention also includes the use of well-known techniques to compensate for the effects of thermal expansion of fluids etc. filling the interior chamber.

(発明の効果) 以上、本発明によれば、小さな力をけじめとして比較的
大きな力を含む広大な範囲にわたって。
(Effects of the Invention) As described above, according to the present invention, the power can be applied over a wide range including a relatively large force, with a small force as a starting point.

核力(あるいは圧力)を(炙出することが可能な力変換
器を提供することが可能となる。本発明による特性の飛
躍的向上は、触覚制御技術の発展に著しく寄与し、その
効果は大きいものである。
It becomes possible to provide a force transducer capable of emitting nuclear force (or pressure).The dramatic improvement in characteristics achieved by the present invention will significantly contribute to the development of tactile control technology, and its effects will be It's big.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の力変換器で、第2図はその特注を示す図
である。第3図に本発明の力変換器の構成を示し、その
特性を第4図に示す。第5図は本発明の変形例で、その
特性を第6図に示す。第7゜8.9図は本発明の他の実
施例で、第9図の実施例の特性を第10図に示す。また
、第11図は本発明の他の一実施例である。 図中の記号の説明 l・・・印加力、 2・・・電 極、 3・・・導電性
ゴム。 4・・・台 座、 5・・・伝達体、30・内 室。 31・・・受圧部、32・・・ばねA、 33・・ばね
B。 34・・止め板、35・・・通路穴、36・・内 室。 37・キャップ、38・・・押え板、39・・・連結軸
。 6・・・感圧素子、51・・・ば ね、71・・・ダイ
アフラム。 72 、73・・・弾性ゴム、74・・・側 室。 81・・・弾性体、91・・1lll’4.92・・・
ダイアフラム。 71−1 図 オ 2 図 印加力 オ 3図 5 オ 4 図 印加力(第1の力) 71−5 図 71−6 図 印加力(第1の力) オフ 図 71−8図 71−9 図 71−10 図 印加力(第1の力)
FIG. 1 shows a conventional force transducer, and FIG. 2 shows a custom-made version thereof. FIG. 3 shows the configuration of the force transducer of the present invention, and FIG. 4 shows its characteristics. FIG. 5 shows a modification of the present invention, and its characteristics are shown in FIG. 6. FIG. 7.8.9 shows another embodiment of the present invention, and FIG. 10 shows the characteristics of the embodiment of FIG. 9. Further, FIG. 11 shows another embodiment of the present invention. Explanation of symbols in the figure 1... Applied force, 2... Electrode, 3... Conductive rubber. 4...Pedestal, 5...Transmission body, 30.Inner chamber. 31...Pressure receiving part, 32...Spring A, 33...Spring B. 34... Stopping plate, 35... Passage hole, 36... Inner chamber. 37. Cap, 38.. Pressing plate, 39.. Connecting shaft. 6...Pressure sensitive element, 51...Spring, 71...Diaphragm. 72, 73...elastic rubber, 74...side chamber. 81...Elastic body, 91...1llll'4.92...
diaphragm. 71-1 Fig. O 2 Fig. Applied force O 3 Fig. 5 O 4 Fig. Applied force (first force) 71-5 Fig. 71-6 Fig. Applied force (first force) Off Fig. 71-8 Fig. 71-9 Fig. 71-10 Figure applied force (first force)

Claims (1)

【特許請求の範囲】 (り第一の力を受ける受圧部と、当該第一の力を第二の
力に加工して感圧素子に媒介する伝達体と、当該第二の
力を電気信号に変換する前記感圧素子とff、備え、前
記第二の力が前記第一の力と非線型の関係になることを
特徴とする力変換器。 り第一の力を受ける受圧部と、当該第一の力を第二の力
に加工して感圧素子に媒介する伝達体と、当該第二の力
を電気信号に変裸する前記感圧素子とを備え、前記第二
の力が前記第一の力と非線型の関係になることを特徴と
する力変換器において。 複数個の該力変換器を7レイ状に配置したことを特徴と
する力変換器。
[Scope of Claims] a force transducer comprising the pressure sensitive element and ff, the second force having a nonlinear relationship with the first force; a pressure receiving section receiving the first force; a transmitting body that processes the first force into a second force and transmits it to the pressure-sensitive element; and the pressure-sensitive element that converts the second force into an electrical signal; A force transducer characterized by having a non-linear relationship with the first force.A force transducer characterized by having a plurality of force transducers arranged in a 7-lay pattern.
JP59020294A 1984-02-07 1984-02-07 Force transducer Expired - Lifetime JPH068760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59020294A JPH068760B2 (en) 1984-02-07 1984-02-07 Force transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59020294A JPH068760B2 (en) 1984-02-07 1984-02-07 Force transducer

Publications (2)

Publication Number Publication Date
JPS60164230A true JPS60164230A (en) 1985-08-27
JPH068760B2 JPH068760B2 (en) 1994-02-02

Family

ID=12023140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59020294A Expired - Lifetime JPH068760B2 (en) 1984-02-07 1984-02-07 Force transducer

Country Status (1)

Country Link
JP (1) JPH068760B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999004233A1 (en) * 1997-07-15 1999-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Contact sensor assembly
JP2009505072A (en) * 2005-08-10 2009-02-05 カスタム センサーズ アンド テクノロジーズ インコーポレイテッド Double constant force transducer
WO2012002169A1 (en) * 2010-07-02 2012-01-05 太陽誘電株式会社 Pedal force sensor and electrically-assisted vehicle using same
US9631918B2 (en) 2010-07-07 2017-04-25 Robert Bosch Gmbh Sensor device for a pedal, and a method for providing information regarding an operation of a pedal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554548A (en) * 1978-06-26 1980-01-14 Agency Of Ind Science & Technol Baresthesia sensor
JPS57198839A (en) * 1981-06-01 1982-12-06 Nissan Motor Co Ltd Pressure sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554548A (en) * 1978-06-26 1980-01-14 Agency Of Ind Science & Technol Baresthesia sensor
JPS57198839A (en) * 1981-06-01 1982-12-06 Nissan Motor Co Ltd Pressure sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999004233A1 (en) * 1997-07-15 1999-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Contact sensor assembly
JP2009505072A (en) * 2005-08-10 2009-02-05 カスタム センサーズ アンド テクノロジーズ インコーポレイテッド Double constant force transducer
WO2012002169A1 (en) * 2010-07-02 2012-01-05 太陽誘電株式会社 Pedal force sensor and electrically-assisted vehicle using same
JP2012013626A (en) * 2010-07-02 2012-01-19 Taiyo Yuden Co Ltd Stepping force sensor and motor-driven assist vehicle using the same
US9631918B2 (en) 2010-07-07 2017-04-25 Robert Bosch Gmbh Sensor device for a pedal, and a method for providing information regarding an operation of a pedal

Also Published As

Publication number Publication date
JPH068760B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
US7284444B2 (en) Hermetically sealed displacement sensor apparatus
US5186054A (en) Capacitive pressure sensor
US5483834A (en) Suspended diaphragm pressure sensor
JPH01141328A (en) Differential pressure transmitter
JPS6224120A (en) Differential pressure transducer
US7698951B2 (en) Pressure-sensor apparatus
JP2006226858A (en) Fluctuation load sensor, and tactile sensor using the same
US3411361A (en) Sealed beam sensors
US8739632B2 (en) Pressure sensor structure and associated method of making a pressure sensor
JPS60164230A (en) Force converter
JPH05248977A (en) Pressure sensor
JPH06265430A (en) Cylinder inner pressure sensor
Elbestawi Force measurement
JPS62228927A (en) Pressure sensor
JPH08105806A (en) Piezoelectric sensor system
JPS586901B2 (en) Saatsu Oudousouchi
Noda et al. Stretchable force sensor array using conductive liquid
JPS5855833A (en) Differential pressure measuring apparatus
KR102498987B1 (en) Load detection device
JPH04370726A (en) Semiconductor pressure sensor
US20230012518A1 (en) Pressure Sensing Device
US3347100A (en) Differential pressure transducer
JPS61175538A (en) Pressure detector
JPH0694558A (en) High pressure sensor
JP2000065666A (en) Differential pressure sensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term