JPS60163784A - Ship with air exhaust nozzles at bottom - Google Patents

Ship with air exhaust nozzles at bottom

Info

Publication number
JPS60163784A
JPS60163784A JP59019356A JP1935684A JPS60163784A JP S60163784 A JPS60163784 A JP S60163784A JP 59019356 A JP59019356 A JP 59019356A JP 1935684 A JP1935684 A JP 1935684A JP S60163784 A JPS60163784 A JP S60163784A
Authority
JP
Japan
Prior art keywords
ship
air
water
layer
ejected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59019356A
Other languages
Japanese (ja)
Inventor
Kazu Tanabe
田邊 和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP59019356A priority Critical patent/JPS60163784A/en
Publication of JPS60163784A publication Critical patent/JPS60163784A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/34Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
    • B63B1/38Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/34Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
    • B63B1/38Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes
    • B63B2001/387Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes using means for producing a film of air or air bubbles over at least a significant portion of the hull surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PURPOSE:To reduce the hull friction resistance by jetting compressed air through multiple exhaust nozzles provided on the ship's bottom and forming an air layer between the ship's bottom and water. CONSTITUTION:Air with a pressure higher than the water pressure at the ship's bottom section is jetted through multiple air exhaust nozzles 3 provided on the ship's bottom 2, and an air layer or a mixed layer of air and water is formed between the ship's bottom 2 and water. Accordingly, the friction resistance caused by the navigation of the ship can be effectively reduced without being limited by the size of the ship and the height of waves.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、船底に空気噴出口を設けて船底と水との間に
空気層を介在させることにより、船体の摩擦抵抗を減少
させる船に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a ship that reduces the frictional resistance of the ship's hull by providing an air outlet in the ship's bottom to create an air layer between the ship's bottom and water.

〔従来技術〕[Prior art]

船の抵抗は、造波抵抗、造渦抵抗、摩擦抵抗および空気
抵抗から成り立っている。
Ship resistance consists of wave resistance, eddy resistance, frictional resistance, and air resistance.

造波抵抗および造渦抵抗は船の水線下の形状で決まシ、
空気抵抗は水線上の形状で決まるものであり、これらの
抵抗を小さくするため船体形状に関する提案が数多くな
されている。
Wave resistance and eddy resistance are determined by the shape of the ship below the waterline.
Air resistance is determined by the shape of a ship above the waterline, and many proposals regarding the shape of the hull have been made to reduce this resistance.

一方、摩擦抵抗は船の水面下の形状には関係なくいわゆ
るシェーンヘルの式により船の浸水面積に基いてめられ
る。この浸水面積は、船の吃水および容積などから定め
られる船の長さおよび巾に対して造波抵抗および造渦抵
抗が最小に々る船型がめられれば自動的に定まり、摩擦
抵抗もこれに基いて定まる。
On the other hand, frictional resistance is determined based on the submerged area of the ship using the so-called Schoenherr's formula, regardless of the shape of the ship under water. This flooded area is automatically determined when a ship shape that minimizes wave-forming resistance and vortex-forming resistance is determined based on the ship's length and width determined from the ship's stutter and volume, and frictional resistance is also determined based on this. It is determined by

従来、この摩擦抵抗を減らす方法としては、船体浸水部
に摩擦抵抗の小さな塗料を塗る方法、あるいはホーバク
ラフトや水中翼船のように船体を水面から離す方法が実
施されていた。
Conventionally, methods for reducing this frictional resistance have been to apply paint with low frictional resistance to the submerged parts of the hull, or to move the hull away from the water surface, as in the case of hovercraft and hydrofoil boats.

ホーバクラフトには、水陸両用という特長があるが、荒
波時の漏洩空気量が大きく経済性が劣るという欠点並び
に四周からの漏洩空気によシ多量の飛沫が発生し視界を
妨げたシ積荷を濡らすという欠点があシ、水中翼船には
高速時に波高が高いと継続的に強い衝撃を受けるという
欠点がある。
Hovercraft have the advantage of being amphibious, but they also have the disadvantage of being less economical due to the large amount of air that leaks during rough seas, as well as the fact that the air leaking from all four sides generates a large amount of spray, which obstructs visibility and wets the cargo. Hydrofoils have the disadvantage of being subject to continuous strong impacts when waves are high and at high speeds.

しかし、これら両者に共通の最大の欠点は、船の大きさ
に制限があシ大型船に適用することができず、また航行
可能な波高にも制限があるということである。
However, the biggest drawbacks that both of these have in common are that they cannot be applied to large ships due to limitations on the size of the ship, and there are also restrictions on the wave height that can be navigated.

〔目 的〕〔the purpose〕

本発明の目的は、このような従来技術の問題を解消し、
船の大きさに制約されずしかも波の高さの影響をほとん
ど受けることなく摩擦抵抗を減少させうる船の構造を提
供することである。
The purpose of the present invention is to solve the problems of the prior art,
To provide a structure for a ship capable of reducing frictional resistance without being restricted by the size of the ship and almost unaffected by the height of waves.

〔構 成〕〔composition〕

船の摩擦抵抗力はv=1c・ρ・s 、 v2なる一般
式で表わすことができる。ここで、Cは船の浸水部の形
および表面状態で定まる係数、ρは流体の密度、Sは浸
水面積、Vは船の速度をそれぞれ表わす。
The frictional resistance of a ship can be expressed by the general formula v=1c・ρ・s, v2. Here, C is a coefficient determined by the shape and surface condition of the flooded part of the ship, ρ is the density of the fluid, S is the flooded area, and V is the speed of the ship.

本発明は、船底から空気を噴出して空気または空気と水
との混合層で船底部を覆うことによシ、上記式中のρを
小さくして摩擦抵抗力Fを小さくしようとするものであ
る。
The present invention aims to reduce ρ in the above equation and reduce the frictional resistance force F by blowing air out from the bottom of the ship and covering the bottom of the ship with air or a mixed layer of air and water. be.

すなわち、本発明によれば、船底に設けた複数個の空気
噴出口から船底部水圧よシ高い圧力の空気を噴出して船
底と水との間に空気の層または空気と水との混合層を形
成することを特徴とする船が提供される。
That is, according to the present invention, air having a pressure higher than the water pressure at the bottom of the ship is ejected from a plurality of air outlets provided at the bottom of the ship, thereby creating a layer of air or a mixed layer of air and water between the bottom of the ship and the water. A ship is provided that is characterized in that it forms a.

この場合、船底の形状あるいは空気噴出口の位置によっ
ては、必要に応じ、船底の両舷側に略前後方向に延在す
るせきを設けて噴出空気の船体側方への流出を防止する
よう構成することが好ましい。
In this case, depending on the shape of the bottom of the ship or the position of the air outlet, if necessary, weirs extending approximately in the longitudinal direction may be provided on both sides of the bottom of the ship to prevent the ejected air from flowing out to the sides of the ship. It is preferable.

また、第2の本発明によれば、船底に設けた複数個の空
気噴出口から船底部水圧よシ高い圧力の空気を噴出して
船底と水との間に空気の層または空気と水との混合層を
形成するとともに、船底の後端部近傍にプロペラ軸線と
略一致する整流突起を設けてプロペラへの空気捲き込み
量を減少させることを特徴とする船が提供される。
Further, according to the second aspect of the present invention, air having a pressure higher than the water pressure at the bottom of the ship is ejected from a plurality of air jet ports provided at the bottom of the ship to create a layer of air between the bottom of the ship and the water, or between air and water. Provided is a ship characterized in that a mixed layer is formed in the bottom of the ship, and a rectifying protrusion is provided near the rear end of the bottom of the ship that substantially coincides with the axis of the propeller to reduce the amount of air drawn into the propeller.

〔実施例〕〔Example〕

以下第1図〜第8図を参照して本発明の詳細な説明する
The present invention will be described in detail below with reference to FIGS. 1 to 8.

第1図および第2図は本発明の第1実施例を示す図であ
る。
1 and 2 are diagrams showing a first embodiment of the present invention.

第1図および第2図において、船体1の下側には船底の
平面部2が形成され、該平面部には複数個の空気噴出口
3が設けられている。各噴出口3からは船内に装備した
圧縮機などによりその深度における水圧(静圧と動圧の
和)すなわち船底部の水圧より高い圧力の空気が噴出さ
れる。なお、第1図中の線Wは水面を示す。
In FIGS. 1 and 2, a bottom flat part 2 is formed on the underside of a hull 1, and a plurality of air jet ports 3 are provided in the flat part 2. As shown in FIGS. Air having a pressure higher than the water pressure (sum of static pressure and dynamic pressure) at that depth, that is, the water pressure at the bottom of the ship, is ejected from each jet port 3 by a compressor or the like installed inside the ship. Note that line W in FIG. 1 indicates the water surface.

第2図中、参照番号4は船底2の平面部の外縁を示すデ
ッドフラットの載を示し、参照番号5は甲板の線を示す
In FIG. 2, reference numeral 4 indicates a dead flat that indicates the outer edge of the planar portion of the bottom 2, and reference numeral 5 indicates a line on the deck.

前記空気噴出口3は、船体中心線Aを挾んで前後方向に
平行な2列の噴出口群と船底の平面部20両側すなわち
デッドフラットの線4の内側に沿って曲線状に配置され
た噴出口群とから成っている・ 船尾部分の水面Wの下には推進用のプロペラ6が設けら
れている。
The air jet ports 3 include two rows of jet ports parallel to each other in the longitudinal direction sandwiching the hull centerline A, and jet ports arranged in a curved line along both sides of the flat part 20 of the bottom of the ship, that is, along the inside of a dead flat line 4. A propeller 6 for propulsion is provided below the water surface W in the stern section.

第1図および第2図において、船が矢印V方向に進行す
るとき、各空気噴出口3から船底部の水圧よシ高い圧力
の空気を連続的に噴出させると、この空気は空気の層ま
たは水との混合層を形成して船底の平坦部2の大部分に
接しつつ後方へ流れる。
In Figs. 1 and 2, when the ship moves in the direction of arrow V, air with a pressure higher than the water pressure at the bottom of the ship is continuously ejected from each air outlet 3, and this air forms an air layer or It forms a mixed layer with water and flows rearward while contacting most of the flat part 2 of the ship's bottom.

第3図および第4図は本発明の第2実施例を示し、本実
施例は、第1実施例の構造に加えて、船底2の後端部近
傍のプロペラ6の軸線と略一致する位置に整流突起7を
設けるとともに、船底20両舷側部の前記デッドフラッ
トの線4に治ってほぼ前後方向に延在するせき8.8を
設ける構造になっている。
3 and 4 show a second embodiment of the present invention, and in addition to the structure of the first embodiment, this embodiment has a position near the rear end of the bottom 2 that substantially coincides with the axis of the propeller 6. A rectifying protrusion 7 is provided on the bottom 20, and weirs 8.8 are provided on the dead flat line 4 on both sides of the bottom 20 and extending substantially in the fore-and-aft direction.

船尾に設けるゾロ(う6の位置によっては、後方へ流れ
る空気がプロペラ6に捲き込まれ、キャビテーシマンが
発生して推進効率が低下する場合がある。本実施例では
、整流突起7を設けたので、空気噴出口3から船尾方向
へ流れる空気がプロペラ6に捲き込まれるのを防止する
ことができ、推進効率の低下を防ぐことができる・ また、空気噴出口3からの噴出空気は、後方へ流れる間
に船体側方へ広がシ、船底形状および噴出口位置によっ
ては、船体側方へ流出し舷側に沿って上昇する量が増大
する。本実施例では船底2の両舷側に略前後方向に延在
するせI8.8を設けたので、船底形状や噴出口位置の
如何にかかわらず、船体側方への空気の流出を防止し、
船底の大部分の領域で均−表空気層または水との混合層
を維持することができる。
Depending on the position of the propeller 6 provided at the stern, the air flowing backward may be drawn into the propeller 6, causing cavity damage and reducing propulsion efficiency.In this embodiment, a rectifying protrusion 7 is provided. Therefore, the air flowing from the air outlet 3 toward the stern can be prevented from being drawn into the propeller 6, and a decrease in propulsion efficiency can be prevented.In addition, the air blown from the air outlet 3 can be prevented from being drawn into the propeller 6. Depending on the shape of the bottom of the ship and the position of the spout, the amount that flows out to the sides of the ship and rises along the side of the ship increases. By providing a groove I8.8 that extends in the direction, air is prevented from flowing out to the sides of the hull, regardless of the shape of the bottom or the location of the air outlet.
An even surface air layer or a mixed layer with water can be maintained in most areas of the bottom of the ship.

以上第1図〜第4図に示した各実施例によれば、船が矢
印V方向に進行するとき各空気噴出口3から船底部の水
圧よシ高い圧力の空気を連続的に噴出させると、空気は
空気層または水との混合層乏形成して船底の平坦部2に
接しつつ後方へ流れる。
According to the embodiments shown in FIGS. 1 to 4 above, when the ship moves in the direction of arrow V, air at a pressure higher than the water pressure at the bottom of the ship is continuously jetted from each air outlet 3. The air flows rearward while contacting the flat part 2 of the bottom of the ship, forming a poor air layer or a mixed layer with water.

船底2に形成される空気の層または水・空気混合層の厚
さは時間当りの空気噴出量および船の速度によって変化
するが、水だけの場合に比べて比重(前記式中のρ)が
小さくなり、船の摩擦抵抗を大巾に減少させることがで
きる。その結果、船の全抵抗が小さくな力、必要機関出
力の減少および燃料消費量の低下が可能となり、高い経
済性を達成することができる。
The thickness of the air layer or water/air mixed layer formed on the bottom 2 of the ship varies depending on the amount of air ejected per hour and the speed of the ship, but the specific gravity (ρ in the above formula) is smaller than that of water alone. This makes it possible to greatly reduce the frictional resistance of the ship. As a result, it is possible to achieve high economic efficiency, with a lower overall resistance of the ship, a lower required engine power and lower fuel consumption.

すなわち、船体の浸水部の中でもその船底2の部分を空
気の層または空気と水との混合層で覆えば、船底2表面
の流体の密度ρ1が水単独の比重ρより小さくなり、摩
擦抵抗力が減少する。
In other words, if the bottom 2 of the submerged parts of the hull is covered with a layer of air or a mixed layer of air and water, the density ρ1 of the fluid on the surface of the bottom 2 will be smaller than the specific gravity ρ of water alone, and the frictional resistance will be reduced. decreases.

全浸水面積をS、船底2で空気層または空気・水混合層
に接する部分の面積を81とし、それぞれの部分におけ
る摩擦抵抗係数をC,C,とすれば、本実施例における
摩擦抵抗力F、は次式で表わせる。
If the total flooded area is S, the area of the part of the bottom 2 in contact with the air layer or air/water mixed layer is 81, and the coefficient of frictional resistance in each part is C, then the frictional resistance force F in this example is , can be expressed by the following formula.

1 】 F1=−C・ρ・(S−81)v2+iC1・ρl−8
Iv2ここで、CとC1とがほぼ同じであるとすれば、
両者をCで表わすと%F1は次の(2)式で表わせる。
1] F1=-C・ρ・(S-81)v2+iC1・ρl-8
Iv2 Here, if C and C1 are almost the same, then
If both are represented by C, %F1 can be expressed by the following equation (2).

(2)式中の1Cす・S・マ2は空気層あるいは水との
混金層がなく水のみが接触する従来の摩擦抵抗力を示し
、(2)式中の()内はこれに対する摩擦抵抗力の比を
示す。
1C S・S・Ma2 in the formula (2) represents the conventional frictional resistance force in which only water contacts without an air layer or a mixed metal layer with water, and the values in parentheses in the formula (2) correspond to this. Indicates the ratio of frictional resistance.

ρ1 ところで、ρ凰はρよシ小さく、1−−はlよρ シ小さいので、前記()内の値はlよシ小であり、船の
浸水部分の一部を空気層または空気・水混合層で覆うこ
とによp船の摩擦抵抗力を減少させることができ、その
面積が大きいほど摩擦抵抗力の減少率を高めることがで
きる・ 船が左右に動揺するときは、船底2の傾斜方向に応じて
空気が高い方へ向って流れ、その一部は舷側に沿って浮
上し船底平坦部を覆う空気・水混合層の面積が減少し、
摩擦抵抗の減少程度が減殺される場合がある。この減殺
率を小さくするためには、図示のごとく前後方向に並べ
た空気噴出口群を複数列設けることが有効である。さら
に、船の傾斜に応じて、船底が洩くなる側の噴出口から
の噴出量を減少させ深くなる側の噴出量を増加させるよ
う、流量制御することによシ、摩擦抵抗低減作用を維持
するとともに空気供給動力の無駄をなくすことができる
ρ1 By the way, ρ is smaller than ρ, and 1- is smaller than l, so the value in parentheses above is smaller than l, and a part of the flooded part of the ship is divided into an air layer or air/water. By covering with a mixed layer, the frictional resistance of the ship can be reduced, and the larger the area, the higher the rate of reduction of the frictional resistance. When the ship moves from side to side, the inclination of the bottom 2 Depending on the direction, the air flows higher, and some of it floats up along the ship's side, reducing the area of the air/water mixed layer that covers the flat part of the ship's bottom.
The degree of reduction in frictional resistance may be reduced. In order to reduce this attenuation rate, it is effective to provide a plurality of rows of air jet nozzle groups arranged in the front-rear direction as shown in the figure. Furthermore, according to the inclination of the ship, the flow rate is controlled to reduce the amount of ejection from the ejection ports on the side where the bottom leaks and increase the amount of ejection on the side where the bottom is deeper, thereby maintaining the frictional resistance reduction effect. At the same time, waste of air supply power can be eliminated.

第5図は二軸広巾船に本発明を適用した第3実施例を示
す。
FIG. 5 shows a third embodiment in which the present invention is applied to a two-shaft wide ship.

第5図において、空気噴出口3は船底2の中心11i1
をはさんで前後方向に平行に配列された噴出口群と船底
の前端部および中間部から左右に所定の広が9角度を有
する線上に2段に配列された噴出口群とで構成されてい
るりこの噴出口群の段数は船の大きさや船底形状によっ
ては3段以上に配列することもできる。
In FIG. 5, the air outlet 3 is located at the center 11i1 of the bottom 2 of the ship.
It consists of a group of jet ports arranged parallel to each other in the front-rear direction across the bottom, and a group of jet ports arranged in two stages on a line having a predetermined spread of 9 angles from the front end and middle part of the bottom to the left and right. Depending on the size of the ship and the shape of the ship's bottom, the number of stages of Ruriko's jet ports can be arranged in three or more stages.

船体1の長さが長い場合デッドフラットの線4の形状に
よっては船体側方へ流出し舷側に沿って浮上する空気量
が多くなることもあり得るが、本実施例のように左右に
広が多角度をもって2段に配列した空気噴出口群を設け
れば、船底の中途から空気を補給しうるので、せき8.
8がない場合でも側方へ流出する空気量を減らすととも
に船底全域に一様な空気層または空気・水混合層を形成
することができる。
If the length of the hull 1 is long, depending on the shape of the dead flat line 4, the amount of air that flows out to the sides of the hull and floats up along the gunwale may increase, but as in this example, the amount of air that spreads to the left and right may increase. By providing a group of air outlets arranged in two stages at multiple angles, air can be supplied from the middle of the bottom of the ship.
Even without 8, it is possible to reduce the amount of air flowing out to the side and form a uniform air layer or air/water mixed layer over the entire bottom of the ship.

左右に広が多角度を有する線上に配列する空気噴出口群
は、図示のようガ2段配列に限られるものではなく、必
要に応じ3段以上に配列することもできる。また、船底
中心線に対する広が多角度も船底形状および段数などを
考慮して適当な角度および線を選定することができる。
The air jet nozzle groups arranged in a line extending left and right and having multiple angles are not limited to the two-stage arrangement as shown in the figure, but can be arranged in three or more stages as necessary. Furthermore, appropriate angles and lines can be selected in consideration of the shape of the bottom of the ship, the number of stages, etc., as well as the spread angle with respect to the center line of the bottom of the ship.

船底2の後端近傍の各プロペラ6・6の軸線とt9:、
 IY、一致する位置には、各プロペラの空気捲き込み
量金減らしてΦヤビテーシ曹ンなどの不具合発生を防止
するための整流突起7.7が設けられ、また、船底20
両側縁すなわちデッドフラットの線4 K 沿ってほぼ
前後方向に延在するせき8.8が設けられ船体側方への
空気の流出防止が図られている。
The axis of each propeller 6 near the rear end of the bottom 2 and t9:
IY, a rectifying protrusion 7.7 is provided at the corresponding position to reduce the amount of air drawn in by each propeller and prevent problems such as Φ Yabitasin.
Weirs 8.8 extending substantially in the longitudinal direction along the line 4K of both side edges or dead flats are provided to prevent air from flowing out to the sides of the hull.

なお、これら整流突起7,7およびせき8.8は場合に
よって杜省略することができる。
Note that these rectifying protrusions 7, 7 and weirs 8, 8 may be omitted depending on the case.

本実施例のその他の部分の構造は第1および第2実施例
のものと実質上回じであシ、対応する部分をそれぞれ同
じ参照番号(および参照符号)で表示しその説明を省略
する。
The structure of other parts of this embodiment is substantially the same as that of the first and second embodiments, and corresponding parts are designated by the same reference numerals (and reference numerals), and a description thereof will be omitted.

この第5図の第3実施例によっても、第2実施例の場合
の同じ作用、効果を奏することができる。
The third embodiment shown in FIG. 5 also provides the same functions and effects as the second embodiment.

第6図および第7図は本発明全滑走艇に適用した第4実
施例を示す図である。
FIGS. 6 and 7 are diagrams showing a fourth embodiment of the present invention applied to a fully personal watercraft.

第6図において、滑走艇の滑走状態では、船体lが水面
Wに対し迎え角αをもって■方向へ滑走するとき、船底
2における岐点Pよシ前方へ戻される水lOに与えるエ
ネルギーと岐点Pよシ後方へ流れる水から受ける摩擦抵
抗R,によるエネルギーの水平分力と船底2に直角の方
向に水が及ばず圧力(揚力)Lの水平成分によるエネル
ギーとの三つのエネルギーの和に相当する推進力エネル
ギー(推進馬力)が必要になる。
In Fig. 6, when the watercraft is in a planing state, when the hull l is planing in the direction ■ with an angle of attack α with respect to the water surface W, the energy given to the water lO returned forward from the turning point P at the bottom 2 and the turning point. It corresponds to the sum of three energies: the horizontal component of energy due to the frictional resistance R received from the water flowing backwards from P, and the horizontal component of the pressure (lift force) L due to the water not reaching the bottom 2 at right angles. Propulsion energy (propulsion horsepower) is required to do so.

前記摩擦抵抗力R,は、第6図から明らかなごとく、迎
え角αをもって滑走する際には船体lの後半部における
船底すなわち船底接水部11に作用する。また、前記岐
点Pの位置は、船の必要揚力が一定であることから、船
の速度が増すにつれて必要接水面積が減少し1次第に後
方へ移動する。
As is clear from FIG. 6, the frictional resistance force R acts on the bottom of the rear half of the hull 1, that is, the water-contacted portion 11 of the hull 1 when the boat is planing at an angle of attack α. Further, since the required lift of the ship is constant, the position of the turning point P gradually moves backward as the speed of the ship increases, the required water contact area decreases.

船底2には、第7図に示すごとく、船を横断する方向に
並べた空気噴出口3の列が前後方向に複数段(図示の例
では3段)にわたって設けられている。これらの空気噴
出口3からは前述の実施91の場合と同様船底部の水圧
よシ高い圧力の空気力噴出され、船底接水部11と水と
の間に空気層または空気・水混合層を形成して摩擦抵抗
力を減りさせる。また、船底20両側には噴出空気の船
体側方への流出を防止するためのせき8.8が設けられ
ている。
As shown in FIG. 7, the bottom 2 of the ship is provided with a plurality of rows (three stages in the illustrated example) of air jet ports 3 arranged in the direction across the ship in the longitudinal direction. As in the case of Embodiment 91 described above, air is ejected from these air outlets 3 at a pressure higher than the water pressure at the bottom of the ship, creating an air layer or a mixed layer of air and water between the bottom water contact area 11 and the water. form to reduce frictional resistance. Furthermore, weirs 8.8 are provided on both sides of the bottom 20 to prevent the ejected air from flowing out to the sides of the hull.

しかして、空気噴出口3からの空気噴出は、岐点Pが後
方へ移動して噴出口3が露出したときは、この露出した
噴出口を閉塞し、岐点Pよシ後方に位置する噴出口3の
みから空気を噴出させるよう制御される。
Therefore, when the jetting point P moves backward and the jetting port 3 is exposed, the air jetting from the air jetting port 3 closes this exposed jetting port, and the air jetting out from the jetting port 3 is blocked. It is controlled so that air is blown out only from the outlet 3.

また、船底2が平坦でなく断面V字形などデッドライズ
を有する形状のときは、船底の中心線近くに前後方向に
空気噴出口3を配列することが好ましい。その理由は、
デッドライズを有する場合、船底から噴出する空気が第
8図中ベクトル12で示すごとく左または右方向へ角度
γをなす方向へ流れるので、船体中心ah近傍への噴出
空気の補充を充分に行ないかつ船底全体に空気層または
空気・水混合層を形成しやすくするためである。
Further, when the bottom 2 is not flat and has a deadrise shape such as a V-shaped cross section, it is preferable to arrange the air jet ports 3 in the longitudinal direction near the center line of the bottom. The reason is,
When there is a deadrise, the air ejected from the bottom of the ship flows to the left or right in a direction forming an angle γ as shown by vector 12 in Fig. 8, so it is necessary to sufficiently replenish the ejected air near the hull center ah. This is to facilitate the formation of an air layer or an air/water mixed layer over the entire bottom of the ship.

〔効果〕〔effect〕

以上の説明から明らかなごとく、本発明によれば、船底
と水との間に空気層または空気・水混合層を形成するこ
とによシ摩擦抵抗力を減少させることができ、したがっ
て、船の大きさや波の高さに制約されることなく摩擦抵
抗力を減少させうる船が得られる。
As is clear from the above description, according to the present invention, the frictional resistance of the ship can be reduced by forming an air layer or an air/water mixed layer between the bottom of the ship and the water. A ship that can reduce frictional resistance without being restricted by size or wave height can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による空気噴出口を有する船の第1実施
例を示す側面図、第2図は第1図中の線■−■から見た
底面図、第3図は本発明の第2実施例の側面図、第4図
は第3図中の線IV−IVから見た底面図、第5図は本
発明の第3実施例の底面図、第6図は本発明の第4実施
例の縦断面図、第7図は第6図の底面図、第8図はデッ
ドライズを有する船底での噴出空気の流れ方向を例示す
る説明的底面図である。 1・・・船体、2・・・船底、3・・・空気噴出口、6
・・・プロペラ、7・・・整流突起、8・・・せき、1
1・・・船底接水部、A・・・船底(船体)中心線、■
・・・船の進行方向、W・・・水面、α・・・仰え角、
P・・・岐点、R2・・・接水部の摩擦抵抗力。
FIG. 1 is a side view showing a first embodiment of a ship having an air outlet according to the present invention, FIG. 2 is a bottom view taken from line ■-■ in FIG. 1, and FIG. 4 is a bottom view taken from line IV-IV in FIG. 3, FIG. 5 is a bottom view of the third embodiment of the present invention, and FIG. 6 is a bottom view of the fourth embodiment of the present invention. FIG. 7 is a longitudinal sectional view of the embodiment, FIG. 7 is a bottom view of FIG. 6, and FIG. 8 is an explanatory bottom view illustrating the flow direction of jet air at the bottom of a ship having a deadrise. 1... Hull, 2... Bottom, 3... Air outlet, 6
... Propeller, 7 ... Rectifier projection, 8 ... Weir, 1
1... Bottom water contact area, A... Bottom (hull) center line, ■
...Direction of the ship, W...Water surface, α...Angle of elevation,
P... Turning point, R2... Frictional resistance of the water contact area.

Claims (5)

【特許請求の範囲】[Claims] (1) 船底に設けた複数個の空気噴出口から船底部水
圧より高い圧力の空気を噴出して船底と水との間に空気
の層はたけ空気と水との混合層を形成することを特徴と
する船。
(1) Air is ejected at a pressure higher than the water pressure at the bottom of the ship from multiple air outlets provided on the bottom of the ship, creating a layer of air between the bottom of the ship and the water, forming a mixed layer of air and water. A ship.
(2) 前記空気噴出口の少なくとも一部を前後方向中
心線に対し所定の角度を有する直線または曲線に沿って
配列することを特徴とする特許請求の範囲第1項記載の
船。
(2) The ship according to claim 1, wherein at least a portion of the air jet ports are arranged along a straight line or a curved line having a predetermined angle with respect to the center line in the longitudinal direction.
(3) 船の前後、左右それぞれの動揺または船の速度
変化に伴なう姿勢の変化に応じて作動し、高い方に位置
する噴出口の空気噴出量を自製的に減する噴出量調整手
段を設けることを特徴とする特許請求の範囲第1項また
は第2項記載の船。
(3) Air jet amount adjustment means that operates in response to the ship's fore-aft, side-to-side motion, or changes in attitude due to changes in ship speed, and that self-manufactured to reduce the amount of air jetted out from the jet ports located on the higher side. A ship according to claim 1 or 2, characterized in that the ship is provided with:
(4)船底の両舷側に略前後方向に延在するせきを設け
て噴出空気の船体側方への流出を防止することを特徴と
する特許請求の範囲第1項〜第3項のいずれかに記載の
船。
(4) Any one of claims 1 to 3, characterized in that weirs extending substantially in the longitudinal direction are provided on both sides of the bottom of the ship to prevent the ejected air from flowing out to the sides of the ship. Ships listed in.
(5)船底に設けた複数個の空気噴出口から船底部水圧
より高い圧力の空気を噴出して船底と水との間に空気の
層または空気と水との混合層を形成するとともに、船底
の後端部近傍にゾロにう軸線と略一致する整流突起を設
けてプロペラへの空気捲き込み量を減少させることを特
徴とする船。
(5) Air with a pressure higher than the water pressure at the bottom of the ship is ejected from multiple air outlets provided on the bottom of the ship to form a layer of air or a mixed layer of air and water between the bottom of the ship and the water. A ship characterized by reducing the amount of air drawn into the propeller by providing a rectifying protrusion near the rear end that substantially coincides with the axis of the propeller.
JP59019356A 1984-02-07 1984-02-07 Ship with air exhaust nozzles at bottom Pending JPS60163784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59019356A JPS60163784A (en) 1984-02-07 1984-02-07 Ship with air exhaust nozzles at bottom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59019356A JPS60163784A (en) 1984-02-07 1984-02-07 Ship with air exhaust nozzles at bottom

Publications (1)

Publication Number Publication Date
JPS60163784A true JPS60163784A (en) 1985-08-26

Family

ID=11997093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59019356A Pending JPS60163784A (en) 1984-02-07 1984-02-07 Ship with air exhaust nozzles at bottom

Country Status (1)

Country Link
JP (1) JPS60163784A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994026583A1 (en) * 1993-05-11 1994-11-24 Ishikawajima-Harima Heavy Industries Co., Ltd. Method of reducing friction on cruising body, cruising body with reduced friction, method of and apparatus for generating microbubbles for use in reduction of friction
US6145459A (en) * 1997-12-19 2000-11-14 Ishikawajima-Harima Heavy Industries Co., Ltd. Friction-reducing ship and method for reducing skin friction
US7752986B2 (en) * 2007-09-27 2010-07-13 Van Krieken Johannes Pieter Boat hull design
JP2012066742A (en) * 2010-09-24 2012-04-05 Mitsubishi Heavy Ind Ltd Frictional resistance alleviating apparatus for ship
JP2012166704A (en) * 2011-02-15 2012-09-06 National Maritime Research Institute Bubble blowout device for reducing frictional resistance of ship
JP2014012443A (en) * 2012-07-04 2014-01-23 Japan Marine United Corp Frictional resistance reducing ship
JP2015199480A (en) * 2014-04-06 2015-11-12 一夫 有▲吉▼ Energy saving vessel whose speed is increased by reducing friction resistance of sea water
CN105109616A (en) * 2015-07-09 2015-12-02 浙江洛洋游艇制造有限公司 Glass fiber reinforced plastic catamaran
JP2017507073A (en) * 2014-03-05 2017-03-16 シルバーストリーム・テクノロジーズ・ビー.ブイ. Air lubrication system and ship equipped with such a system
WO2018168585A1 (en) * 2017-03-16 2018-09-20 三菱重工業株式会社 Ship

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847690A (en) * 1981-09-17 1983-03-19 Kazu Tanabe Method of reducing frictional resistance of ship and its device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847690A (en) * 1981-09-17 1983-03-19 Kazu Tanabe Method of reducing frictional resistance of ship and its device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994026583A1 (en) * 1993-05-11 1994-11-24 Ishikawajima-Harima Heavy Industries Co., Ltd. Method of reducing friction on cruising body, cruising body with reduced friction, method of and apparatus for generating microbubbles for use in reduction of friction
US5575232A (en) * 1993-05-11 1996-11-19 Hiroharu Kato Method and device for reducing friction on a navigating vehicle
US6145459A (en) * 1997-12-19 2000-11-14 Ishikawajima-Harima Heavy Industries Co., Ltd. Friction-reducing ship and method for reducing skin friction
US7752986B2 (en) * 2007-09-27 2010-07-13 Van Krieken Johannes Pieter Boat hull design
JP2012066742A (en) * 2010-09-24 2012-04-05 Mitsubishi Heavy Ind Ltd Frictional resistance alleviating apparatus for ship
JP2012166704A (en) * 2011-02-15 2012-09-06 National Maritime Research Institute Bubble blowout device for reducing frictional resistance of ship
JP2014012443A (en) * 2012-07-04 2014-01-23 Japan Marine United Corp Frictional resistance reducing ship
JP2017507073A (en) * 2014-03-05 2017-03-16 シルバーストリーム・テクノロジーズ・ビー.ブイ. Air lubrication system and ship equipped with such a system
JP2015199480A (en) * 2014-04-06 2015-11-12 一夫 有▲吉▼ Energy saving vessel whose speed is increased by reducing friction resistance of sea water
CN105109616A (en) * 2015-07-09 2015-12-02 浙江洛洋游艇制造有限公司 Glass fiber reinforced plastic catamaran
WO2018168585A1 (en) * 2017-03-16 2018-09-20 三菱重工業株式会社 Ship

Similar Documents

Publication Publication Date Title
US5570650A (en) Surface effect vessel hull
US7225752B2 (en) Power boat with improved hull
US4813365A (en) Double deadrise with multiple reflex chine boat hull structure and engine mounting system
US8857364B2 (en) Wakesurfing boat and hull for a wakesurfing boat
MXPA04008057A (en) Air cushion vessel.
US6293216B1 (en) Surface effect ship (SES) hull configuration having improved high speed performance and handling characteristics
KR100415770B1 (en) Planing vessel
US6604478B2 (en) Hull configuration utilizing multiple effects for enhanced speed, range and efficiency
US6138602A (en) Catamaran--V boat hull
JPH07215266A (en) Sliding type ship hull
JPS60163784A (en) Ship with air exhaust nozzles at bottom
US4924792A (en) High speed planing boat
US7497179B2 (en) Quadrapod air assisted catamaran boat or vessel
US7165503B2 (en) Hull of a ship having a central keel and side chines
EP2842861B1 (en) Wakesurfing boat and hull for a wakesurfing boat
RU2139807C1 (en) High-speed vessel with gas cavities and water-jet propulsors
US7168381B2 (en) Vessel hull and method for cruising at a high Froude number
US6948439B2 (en) Surface effect ship improvements
US6604484B2 (en) Ship supported by submerged structure
CA1275869C (en) High speed planing boat
US6938569B2 (en) Surface effect ship advancements
US20040074433A1 (en) Surface effect ship improvements
CA1279530C (en) Marine hull
US20040074434A1 (en) Surface effect ship advancements
JPH07329874A (en) Gliding type hull