JPS60163409A - Direct cooling type electromagnetic coil - Google Patents

Direct cooling type electromagnetic coil

Info

Publication number
JPS60163409A
JPS60163409A JP59018192A JP1819284A JPS60163409A JP S60163409 A JPS60163409 A JP S60163409A JP 59018192 A JP59018192 A JP 59018192A JP 1819284 A JP1819284 A JP 1819284A JP S60163409 A JPS60163409 A JP S60163409A
Authority
JP
Japan
Prior art keywords
conductor
supply
cooling
insulating bushing
ports
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59018192A
Other languages
Japanese (ja)
Inventor
Yosuke Shimanuki
島貫 洋介
Hiroyuki Kamiya
宏之 神谷
Tsunehiko Yamauchi
山内 恒彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Nuclear Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Nuclear Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Nuclear Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP59018192A priority Critical patent/JPS60163409A/en
Publication of JPS60163409A publication Critical patent/JPS60163409A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Housings And Mounting Of Transformers (AREA)

Abstract

PURPOSE:To contrive the improvement in cooling effect and mechanical strength by leading out two supply vents and two exhaust vents which are adjacent in the winding direction belonging to the cooling pipes of different windings or one supply vent and one exhaust vent through a common insulating bushing. CONSTITUTION:An exhaust vent 6b of a cooling pipe 6 and a supply vent 7a of a cooling pipe 7 are led out with being inserted through an insulating bushing 8. The supply or exhaust vents of other cooling pipes are led out similary. Thus, it is unnecessary to keep a distance between the exhaust vent 6b and the supply vent 7a and accordingly, the non-cooled part between the vents 6 and 7 is eliminated and a conductor 2 is cooled uniformly and the partial increase of temperature of the conductor 2 in the vicinity of the supply vent can be prevented. Also, when the winding circuit of conductor 2 is n, (n+1) pieces of insulating bushings 8 are enough. According to this, numer of through holes 10 of a fixing frame 9 is also reduced and the range where those are arranged becomes small so that the mechanical strength is enhanced.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は直接冷却形態磁線軸に係り、特に核融合装置の
トロイダル磁場コイルなどに好適な直接冷却形態磁線軸
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a directly cooled magnetic line shaft, and more particularly to a directly cooled magnetic line axis suitable for a toroidal magnetic field coil of a nuclear fusion device.

〔発明の背景〕[Background of the invention]

核融合装置のトロイダル磁場コイルなどに用いられる電
磁線軸においては、大電流を流すために導体温度が著し
く上昇し、導体の各巻回間の層間絶縁物や導体の対地絶
縁物が高熱および熱伸びによって劣化し、遂には破壊し
たり、あるいはまた、導体自体も大きな熱応力や核融合
装置の起動、停止時に発生する大きな電磁力によって破
断する虞れがある。
In electromagnetic wire shafts used in toroidal magnetic field coils of nuclear fusion devices, the temperature of the conductor increases significantly due to the flow of large currents, and the interlayer insulation between each turn of the conductor and the ground insulation of the conductor are exposed to high heat and thermal expansion. There is a risk that the conductor itself will deteriorate and eventually break, or the conductor itself may break due to large thermal stress or large electromagnetic force generated when the fusion device is started or stopped.

このため、この種の電磁線軸としては、第1図および第
2図に示すような直接冷却形fiiIM輪1が一般に採
用されている。すなわち、複数回巻回さオ1.た導体2
の巻回面に沿って冷却媒体とし、ての水を流通させる冷
却管5を埋設して半田付けまたはろう付は等により結合
し、電磁線輪l全体を直接冷却できるように構成してい
る。なお、導体2の各巻回間には層間絶縁物3が施こさ
れ、また導体2全体の周りには対地絶縁物4が施こされ
ている。
For this reason, as this type of electromagnetic beam shaft, a directly cooled fiiIM wheel 1 as shown in FIGS. 1 and 2 is generally employed. That is, it is wound multiple times. conductor 2
A cooling pipe 5 for distributing water as a cooling medium is buried along the winding surface of the electromagnetic coil l, and the electromagnetic coil l is connected by soldering, brazing, etc., so that the entire electromagnetic coil l can be directly cooled. . Note that an interlayer insulator 3 is provided between each turn of the conductor 2, and a ground insulator 4 is provided around the entire conductor 2.

しかし、従来の直接冷却形電磁線軸においては。However, in the conventional directly cooled electromagnetic wire shaft.

第2図に示すように、冷却水を導体2の最内層巻回に設
けられた供給口A1がら供給し各巻回の冷却管内を矢印
方向に流通させた後、最外層巻回に設けられたII’出
口A2がら排出する方式であるため、冷却水の通路長が
長くなって供給口A1と排出口Aごとでは大きな温度が
生じ、電磁線輪1全体にわたって充分な冷却効果が得ら
れない。
As shown in Fig. 2, cooling water is supplied through the supply port A1 provided in the innermost winding of the conductor 2 and circulated in the direction of the arrow in the cooling pipe of each winding. Since the cooling water is discharged from the II' outlet A2, the passage length of the cooling water becomes long and a large temperature is generated at each of the supply port A1 and the discharge port A, and a sufficient cooling effect cannot be obtained over the entire electromagnetic wire ring 1.

そこで、これを改善するため、第3図に示すような冷却
水の通路長を短縮する冷却方式が提案されている。この
冷却方式では、冷却水の通路は導体の1巻回毎に区分さ
れ、導体の巻回方向Pに沿って形成されており、区分さ
れた各通路にはそれぞれ供給口Bx 、C1,Dxおよ
び排出口B2゜C3,D:!が付設されている。
In order to improve this problem, a cooling method has been proposed in which the passage length of the cooling water is shortened, as shown in FIG. In this cooling method, the cooling water passage is divided for each turn of the conductor and is formed along the winding direction P of the conductor, and each divided passage has a supply port Bx, C1, Dx and Discharge port B2゜C3,D:! is attached.

第4図はこのような冷却方式における冷却管水の給排楢
造を示すもので、導体2の各巻回に区分されて設けられ
た冷却管6は各巻回の終端部においてほぼ直角に折り曲
げ延長されて、側面がら突出する排出口6bに形成され
、またこの冷却管6の次に配置される冷却管7は前記終
端部に引き続く次の巻回の始端部において同様にほぼ直
角に折り曲げ延長されて、側面から突出する供給ロアa
に形成されている。なお、その他の巻回の冷却管におい
ても同様に供給口および排出口が形成される。
Figure 4 shows the structure of the cooling pipe water supply and discharge structure in such a cooling system.The cooling pipe 6, which is divided into each winding of the conductor 2, is bent at an almost right angle at the end of each winding and extended. The cooling pipe 7 disposed next to the cooling pipe 6 is similarly bent and extended at a substantially right angle at the starting end of the next winding following the terminal end. The supply lower a protruding from the side
is formed. Note that supply ports and discharge ports are similarly formed in the other windings of the cooling pipe.

この冷却方式によれば、導体2の各巻回毎に区分して各
別に冷却するため、冷却水の通路長を短縮し、電磁線軸
l全体を良好に冷却することができる。
According to this cooling method, since each turn of the conductor 2 is divided and cooled separately, the path length of the cooling water can be shortened and the entire electromagnetic beam axis l can be cooled well.

ところで、大形の電磁線軸においては、通電により導体
に加わる大きな電磁力によって移動しないように、電磁
線輪を固定枠に強固に呆持する必要がある。この固定枠
は機械的強度の大きい金属材料を用いるのが普通であり
、接地されCいる。
By the way, in a large electromagnetic wire shaft, it is necessary to firmly hold the electromagnetic wire ring on a fixed frame so that it does not move due to the large electromagnetic force applied to the conductor when energized. This fixed frame is usually made of a metal material with high mechanical strength and is grounded.

また、このような固定枠に電磁線軸を保持するものでは
、冷却管の供給口および排出口を外部に導出するために
は固定枠を貫通しなければならないが、冷却管は導体と
同電位であるから、接地電位にある固定枠を貫通する部
分において絶縁する必要がある。
In addition, in such a fixed frame that holds the electromagnetic beam axis, the cooling pipe must pass through the fixed frame in order to lead the supply and discharge ports to the outside, but the cooling pipe is at the same potential as the conductor. Therefore, it is necessary to insulate the part that penetrates the fixed frame, which is at ground potential.

第5図はこのような固定枠貫通部分の斜視図である。冷
却管6の排出口6bと冷却管7の供給ロアaは各別の絶
縁ブツシュ8中を挿通L2て固定枠9の貝通六10から
導出されている。この絶縁ブツシュ8にはっは部8aが
一体に形成されており。
FIG. 5 is a perspective view of such a fixed frame penetrating portion. The discharge port 6b of the cooling pipe 6 and the supply lower a of the cooling pipe 7 are inserted through separate insulating bushings 8 L2 and led out from shell holes 610 of the fixed frame 9. This insulating bushing 8 is integrally formed with a flap portion 8a.

これにより固定枠9と導体2との絶縁沿面距離を確保す
るようにしている。
This ensures an insulating creepage distance between the fixed frame 9 and the conductor 2.

しかし、このような構成では次のような種々の欠点があ
る。
However, such a configuration has various drawbacks as follows.

まず、絶縁ブツシュ8につば部8aがあるため。First, the insulating bushing 8 has a collar 8a.

隣接する冷却管6の排出口6bと冷却管7の供給ロアa
との間をつば部8aの径以上の距離Qだけ離さなければ
ならず、導体2はこの間の部分で無冷却となる。特に電
圧が高くなるほどつば部8aの径が大きくなるため、こ
の距@Qは長くなり、局部的に導体2の湿度が著しく上
昇して層間I@縁物3や対地l1lAa物4が高熱およ
び熱伸びによって劣化したり、破壊する。
Adjacent outlet 6b of cooling pipe 6 and supply lower a of cooling pipe 7
The conductor 2 must be separated by a distance Q that is equal to or larger than the diameter of the flange portion 8a, and the conductor 2 is not cooled in the area between this distance. In particular, the higher the voltage, the larger the diameter of the collar 8a, so this distance @Q becomes longer, and the humidity of the conductor 2 locally increases significantly, causing the interlayer I@edge material 3 and the ground l1lAa material 4 to heat up. Deteriorates or breaks due to stretching.

また、導体2の巻回数が多くなるにつれて導出される冷
却管の給排口の数も多くなるが、各給排口の間は前述の
ように距離Qだけ離す必要があるため、広い範囲にわた
って給排口が配置されることになる。したがって、固定
枠9には広い範囲にわたって多くの貢通穴10があき、
その機械的強度が低下するため、電磁線輪lの動きを充
分に押えることができず、運転時に加わる大きな電磁力
によって電磁線軸Iが破壊される虞れがある。
Furthermore, as the number of windings of the conductor 2 increases, the number of supply and discharge ports for the cooling pipes drawn out also increases, but since each supply and discharge port needs to be separated by the distance Q as described above, it can be used over a wide range. Supply and exhaust ports will be placed. Therefore, the fixed frame 9 has many tribute holes 10 over a wide area.
Since its mechanical strength is reduced, the movement of the electromagnetic wire wheel I cannot be sufficiently suppressed, and there is a risk that the electromagnetic wire axis I will be destroyed by the large electromagnetic force applied during operation.

さらに、同一側面上に多くの給排口が配置されているた
め、それより先の配管を接続する場合に。
Furthermore, since there are many supply and discharge ports on the same side, it is difficult to connect piping beyond them.

供給口と排出口を間違えないように充分に注意して接続
しなければならず、接続作業が面倒である。
The connection work must be done with great care so as not to confuse the supply port and the discharge port, making the connection work troublesome.

そして、例えば冷却水路の異なる1対の供給し]と排出
口を間違えて配管した場合には、2つの冷却水路に冷却
水が流れなくなって、無冷却状態となり、導体2が異常
に宛熱しJf間絶縁物3や対地絶縁物4が劣化したり破
壊する。
For example, if a pair of cooling water channels with different supply and discharge ports are connected incorrectly, the cooling water will no longer flow into the two cooling water channels, resulting in an uncooled state, and the conductor 2 will become abnormally heated. The intermediate insulator 3 and the ground insulator 4 deteriorate or break.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の欠点をなくし、冷
却効果を改善しかつ機械的強度を向上し得る簡単な構造
の直接冷却形電磁線輪を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a directly cooled electromagnetic coil having a simple structure, which eliminates the above-mentioned drawbacks of the prior art, improves the cooling effect, and improves the mechanical strength.

〔発明の概要〕[Summary of the invention]

この目的を達成するため、本発明は、うず巻状に複数回
巻回された導体における互に異なる巻回の冷却管に属す
る巻回方向に隣接する2つの供給口、2つの排出口、あ
るいは各1一つの供給口および排出口を共通の絶縁ブツ
シュを通し、て導出することにより、絶縁ブツシュの数
を減らし、かつ導体の無冷却部分をなくしたことを特徴
とする。
To achieve this objective, the present invention provides two supply ports, two discharge ports, or The present invention is characterized in that the number of insulating bushings is reduced and the uncooled portion of the conductor is eliminated by leading out each one of the supply ports and the discharge ports through a common insulating bushing.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図示の各実施例に基づいて詳細に説明す
る。
Hereinafter, the present invention will be explained in detail based on each illustrated embodiment.

第6図は本発明の一実施例に係る電a線軸の要部斜視図
である。この実施例では、第5図の従来例において、各
別の絶縁プツシ」、8中を神通しC導出されていた冷却
管6の排出口6bと冷却管7の供給ロアaが1つの絶縁
ブツシュ8中を共通に挿通して導出されている。なお、
その他の冷却管の給UP口も同様に導出され、また、そ
の他の構造は第5図の従来例と同じである。
FIG. 6 is a perspective view of a main part of an electric A-wire shaft according to an embodiment of the present invention. In this embodiment, the outlet 6b of the cooling pipe 6 and the supply lower a of the cooling pipe 7, which were led out through the separate insulating pushers 8 in the conventional example shown in FIG. 5, are integrated into one insulating bushing. It is derived by commonly inserting the inside of 8. In addition,
The supply ports of the other cooling pipes are led out in the same manner, and the other structures are the same as the conventional example shown in FIG.

この実施例によれは、導体2の互に異なる巻回の冷却管
6,7に属する巻回方向に隣接する排出口6bと供給ロ
アAとが1つの共通な絶縁ブツシュ8中を挿通して導出
されているため、これらの州・出口6bと供給ロアaと
の間を従来例のように離す必要はなく、したがって従来
例における排出口6bと供給ロア1′Iとの間の冷却管
が設けられていない無冷却部分をなくし、導体2を均一
に冷却して給排口近傍での導体2の局部的な温度上昇を
防ぐことができる。また、従来例では導体2の巻回数を
nとした場合、2a個の絶縁ブツシュ8が必要であった
が、本実施例では(n + 1 )個の絶縁ブツシュ8
で済み、約半分に減らすことができるとともに、これに
伴って画定枠9の貫通穴10の数も減りかつその配置さ
れる範囲も狭くなるため、その機械的強度が増大し、運
転時に加わる大きな電磁力に対して電磁線輪1が動かな
いように充分強固に固定することができる。
According to this embodiment, the discharge ports 6b and the supply lower A, which are adjacent in the winding direction and belong to the cooling pipes 6, 7 of different windings of the conductor 2, are inserted through one common insulating bushing 8. Therefore, there is no need to separate the state/outlet 6b and the supply lower a as in the conventional example, and therefore the cooling pipe between the discharge port 6b and the supply lower 1'I in the conventional example is By eliminating the uncooled portion, the conductor 2 can be cooled uniformly, and a local temperature rise of the conductor 2 near the supply/discharge port can be prevented. Furthermore, in the conventional example, when the number of turns of the conductor 2 is n, 2a insulating bushings 8 are required, but in this embodiment, (n + 1) insulating bushings 8 are required.
This reduces the number of through holes 10 in the defining frame 9 and narrows the range in which they are arranged, increasing its mechanical strength and reducing the large amount of damage that is applied during operation. The electromagnetic wire ring 1 can be fixed sufficiently firmly so that it does not move against electromagnetic force.

また、第7図および第8図は本発明の他の実施例に係る
電磁線輪の概略横断平面図および要部斜視図である。こ
の実施例では、導体2の互に隣接する巻回の区分された
各冷却管に流通させる冷却水の流通方向が矢印で示す如
く交互に反対方向となるように1区分された各冷却管に
はそれぞれ供給口Bz 、Cx + Dzおよび排出口
Bz、Cz+D2が付設されている。すなわち、第1層
目の巻回の始端部および終端部に排出口B2および供給
口81が1次の第2層目の巻回の始端部および終端部に
供給口C1および排出口C2が、また第3層目の巻回の
始端部および終端部に排出口D2および供給口D1が、
以下同様に順次付設されている。したがって、第8図に
示すように、導体2の互に異なる巻回の冷却管6,7に
属する巻回方向に隣接する2つの供給口6a、7a、例
えば第7図のBx、Cxと、同様に異なる巻回の冷却管
6゜11に属する巻回方向に隣設する2つの排出口6b
、llb、例えば第7図のCz、Dzとは、それぞれ1
つの共通な絶縁ブツシュ8A、8Bから導出され、かつ
これらの供給口を導出する絶縁ブツシュ8Aと排出口を
導出する絶縁ブツシュ8Bは電磁線輪1の径方向におい
て交互に配置されている。
7 and 8 are a schematic cross-sectional plan view and a perspective view of essential parts of an electromagnetic wire according to another embodiment of the present invention. In this embodiment, the direction of flow of cooling water flowing through each sectioned cooling tube of mutually adjacent windings of the conductor 2 is alternately opposite to each other as shown by the arrows. are provided with supply ports Bz and Cx+Dz and discharge ports Bz and Cz+D2, respectively. That is, the discharge port B2 and the supply port 81 are provided at the starting end and the terminal end of the winding of the first layer, and the supply port C1 and the discharge port C2 are provided at the starting end and the terminal end of the winding of the second layer. In addition, a discharge port D2 and a supply port D1 are provided at the beginning and end of the winding of the third layer.
The following items are added sequentially in the same manner. Therefore, as shown in FIG. 8, two supply ports 6a and 7a adjacent in the winding direction belonging to cooling pipes 6 and 7 of mutually different windings of the conductor 2, for example, Bx and Cx in FIG. Similarly, two discharge ports 6b adjacent to each other in the winding direction belong to cooling pipes 6°11 with different windings.
, llb, for example, Cz and Dz in FIG. 7 are each 1
The insulating bushes 8A, which are derived from two common insulating bushes 8A, 8B, and which lead out the supply ports and the insulating bushes 8B, which lead out the discharge ports, are arranged alternately in the radial direction of the electromagnetic coil 1.

この実施例によれば、第6図の実施例と同様な効果が得
られるほか、1つの共通な絶縁ブツシュ8Aまたは8B
からは同じ供給口または和、出口が導出されかつこれら
の絶縁ブツシュ8A、8Bは電磁線輪lの径方向におい
て交互に規則正しく配置されているため、給排口にそれ
より先の配管を接続する場合に、供給口と排出口との区
別が容易で5接続の間違いが少なく、かつ接続作業も容
易となる効果も得られる。
According to this embodiment, in addition to obtaining the same effect as the embodiment of FIG. 6, one common insulating bushing 8A or 8B
Since the same supply port or outlet is led out from the insulating bushings 8A and 8B, and these insulating bushes 8A and 8B are regularly arranged alternately in the radial direction of the electromagnetic wire ring l, the piping beyond that is connected to the supply and discharge port. In this case, it is easy to distinguish between the supply port and the discharge port, there are fewer mistakes in connection, and the connection work is also easy.

第9@Jは本発明のさらに他の実施例に係る電磁線輪の
要部斜視図である。この実施例では、第8図の実施例に
おいて、2つの供給口6a+7aを導出する一方の共通
な各絶縁ブツシュ8Aが導体2の一方の側面に配置され
、2つの排出口6b。
No. 9@J is a perspective view of a main part of an electromagnetic wire ring according to still another embodiment of the present invention. In this embodiment, in the embodiment of FIG. 8, one common insulating bushing 8A is arranged on one side of the conductor 2 leading out two supply ports 6a+7a, and two discharge ports 6b.

11bを導出する他方の共通な各絶縁ブツシュ8Bが導
体2の他方の側面に配置されている。
The other common insulating bushing 8B leading out 11b is arranged on the other side of the conductor 2.

したがって、この実施例によれば、第8図の実施例と同
様な効果が得られるほか、導体2の一方の側面からは供
給口のみが、また他方の側面からは排出口のみが導出さ
れているため、給徘口にそれより先の配管を接続する場
合に、供給口と排出口の区別がさらに容易で、接続の間
違いがより少なく、かつ接続作業もさらに容易となる効
果も得られる。
Therefore, according to this embodiment, in addition to obtaining the same effect as the embodiment shown in FIG. 8, only the supply port is led out from one side of the conductor 2, and only the discharge port is led out from the other side. Therefore, when connecting the piping beyond the supply port to the supply port, it is easier to distinguish between the supply port and the discharge port, there are fewer mistakes in connection, and the connection work is also easier.

なお、前記各実施例では、冷却管を導体2の1巻回毎に
区分した場合について述べたが1本発明はこれに限らず
、2巻回、3巻回毎に区分した場合についても同様に適
用することができる。
In each of the above embodiments, the case where the cooling pipe is divided into each turn of the conductor 2 has been described; however, the present invention is not limited to this, and the same applies to the case where the cooling pipe is divided into every 2nd or 3rd turn. It can be applied to

〔発明の効果〕 以上述へたように1本発明によれば、導体の互に異なる
巻回の冷却管に属する巻回方向において隣接する2つの
供給口、2つの排出口、あるいは各1つの供給口および
排出口を共通の絶縁ブツシュを通して導出したので、こ
れらの給M[口が接近状態となり、冷却管の設けられて
いない導体の無冷却部分をなくして導体を均一に冷却゛
シ、給徘口近傍での導体の局部的な温度上昇を防ぐこと
ができる。また、絶縁ブツシュの数を減らすことができ
るとともに、絶縁ブツシュを突出させるための固定枠の
貫通穴の数も減りかつその配置される範囲も狭くなるた
め、その機械的強度が増大し、電磁線輪を強固に固定す
ることができる。
[Effects of the Invention] As described above, according to the present invention, two supply ports, two discharge ports, or one each of two adjacent supply ports in the winding direction belonging to cooling pipes with different windings of the conductor Since the supply port and the discharge port are led out through a common insulating bushing, these supply ports are in close proximity, and the conductor can be uniformly cooled and supplied by eliminating the uncooled part of the conductor where no cooling pipe is provided. It is possible to prevent a local temperature rise of the conductor near the leakage port. In addition, the number of insulating bushings can be reduced, and the number of through-holes in the fixed frame for protruding the insulating bushings is also reduced, and the range in which they are arranged is also narrowed, increasing its mechanical strength and preventing electromagnetic radiation. The ring can be firmly fixed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来の直接冷却形電磁線軸の斜視
図および概略横断平面図、第3図は従来の他の直接冷却
形電磁線軸の概略横断平面図、第4図および第5図は同
電磁線輪の冷却水給排構造および固定枠貫通部分の斜視
図、第6図は本発明の一実施例に係る直接冷却彫型i線
軸の要部斜視図、第7図および第8図は本発明の他の実
施例に係る直接冷却形電磁線軸の概略横断平面図および
要部斜視図、第9図は本発明のさらに他の実施例に係る
直接冷却形電磁線輪の要部斜視図である。 2・・・・・・導体、6.7.11・・・・冷却管、6
a。 7a・・・・・供給口、6b、]、1b・・・・・・排
出口、8゜8A、8B・・・・・・絶縁ブツシュ。 ?「lZ″1?: 代理人 弁理士 武 顕次部:、、;□、:、、、、1
“:1.1.1.−4: 第1図 第2図 第311 第4図 第50 第611 第7図 第8図 第9図
1 and 2 are a perspective view and a schematic cross-sectional plan view of a conventional directly cooled electromagnetic wire shaft, FIG. 3 is a schematic cross-sectional plan view of another conventional directly cooled electromagnetic wire shaft, and FIGS. 4 and 5 6 is a perspective view of the cooling water supply and discharge structure of the same electromagnetic wire ring and the fixed frame penetrating portion, FIG. 6 is a perspective view of the main part of a directly cooled carved i-line shaft according to an embodiment of the present invention, and FIGS. 7 and 8 The figures are a schematic cross-sectional plan view and a perspective view of a main part of a directly cooled electromagnetic wire shaft according to another embodiment of the present invention, and FIG. 9 is a main part of a directly cooled electromagnetic wire wheel according to still another embodiment of the present invention. FIG. 2... Conductor, 6.7.11... Cooling pipe, 6
a. 7a... Supply port, 6b, ], 1b... Discharge port, 8° 8A, 8B... Insulating bushing. ? “lZ″1? : Agent Patent Attorney Kenji Take:,,;□,:,,,,,1
":1.1.1.-4: Figure 1 Figure 2 Figure 311 Figure 4 Figure 50 611 Figure 7 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】 1、うす巻状に複数回巻回された導体と、この導体の巻
回方向に沿い導体に密接して設けられた冷却管と、この
冷却管内に冷却媒体を前記導体の各巻回毎に流通させる
ための供給口および排出口とを備え、二の供給口および
排出口を絶縁ブツシュを通して前記導体の側面から導出
するようにした直接冷却形電磁線輪において、前記導体
の互に異なる巻回の冷却管に属する巻回方向に隣接する
2つの供給口、2つの排出口、あるいは各1つの供給口
および排出口を共通の絶縁ブツシュを通して導出したこ
とを特徴とする直接冷却形態磁線軸。 2、特許請求の範囲第1項において、前記導体の互に隣
接する巻回の冷却管に流通させる冷却媒体の流通方向を
互に反対にし、前記2つの供給口を導出する共通の絶縁
ブツシュと前記2つの排出口を導出する共通の絶縁ブツ
シュを径方向において交互に配置したことを特徴とする
直接冷却形電磁線輪。 3、特許請求の範囲第2項において、前記2つの供給口
を導出する共通の絶縁ブツシュを前記導体の一方の側面
に配置し、前記2つの排出口を導出する共通の絶縁ブツ
シュを前記導体の他方の側面に配置したことを特徴とす
る直接冷却形電磁線輪。
[Scope of Claims] 1. A conductor wound multiple times in a thin spiral shape, a cooling pipe provided closely to the conductor along the winding direction of the conductor, and a cooling medium in the cooling pipe that connects the conductor. A direct cooling type electromagnetic wire ring is provided with a supply port and a discharge port for each winding of the conductor, and the second supply port and discharge port are led out from the side surface of the conductor through an insulating bushing. Direct cooling characterized in that two supply ports, two discharge ports, or one supply port and one discharge port each adjacent to each other in the winding direction belonging to cooling pipes of different windings are led out through a common insulating bushing. Morphological magnetic line axis. 2. According to claim 1, a common insulating bushing is provided in which the directions of flow of the cooling medium flowing through the cooling tubes of mutually adjacent turns of the conductor are opposite to each other, and the two supply ports are led out. A direct cooling type electromagnetic wire ring characterized in that common insulating bushings leading out from the two discharge ports are arranged alternately in the radial direction. 3. In claim 2, a common insulating bushing leading out the two supply ports is disposed on one side of the conductor, and a common insulating bushing leading out the two discharge ports is arranged on one side of the conductor. A directly cooled electromagnetic wire ring characterized by being placed on the other side.
JP59018192A 1984-02-06 1984-02-06 Direct cooling type electromagnetic coil Pending JPS60163409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59018192A JPS60163409A (en) 1984-02-06 1984-02-06 Direct cooling type electromagnetic coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59018192A JPS60163409A (en) 1984-02-06 1984-02-06 Direct cooling type electromagnetic coil

Publications (1)

Publication Number Publication Date
JPS60163409A true JPS60163409A (en) 1985-08-26

Family

ID=11964756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59018192A Pending JPS60163409A (en) 1984-02-06 1984-02-06 Direct cooling type electromagnetic coil

Country Status (1)

Country Link
JP (1) JPS60163409A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509479A (en) * 1973-05-23 1975-01-30
JPS56103900A (en) * 1980-01-23 1981-08-19 Hitachi Ltd Electromagnetic coil for nuclear fusion reactor
JPS58184775A (en) * 1982-04-22 1983-10-28 Toshiba Corp Heat insulating container for superconductive magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509479A (en) * 1973-05-23 1975-01-30
JPS56103900A (en) * 1980-01-23 1981-08-19 Hitachi Ltd Electromagnetic coil for nuclear fusion reactor
JPS58184775A (en) * 1982-04-22 1983-10-28 Toshiba Corp Heat insulating container for superconductive magnet

Similar Documents

Publication Publication Date Title
KR910008536B1 (en) Ventilated and turns for rotor windings of a dynamoelectric machine
US6236207B1 (en) Coil system for magnetic resonance systems with integrated cooling unit
US4031422A (en) Gas cooled flux shield for dynamoelectric machine
US5430274A (en) Improvements made to the cooling of coils of an induction heating system
US20020070833A1 (en) Structure of transformer bobbin assembly having multiple step pin rows
US3808351A (en) Improved cryogenic connection
US2339625A (en) Electric apparatus
JPS60163409A (en) Direct cooling type electromagnetic coil
US3602857A (en) Shielded winding with cooling ducts
US5034716A (en) Radial cooled autotransformer assembly
US4587659A (en) Feed through structure for electrodes in electric furnaces
US4580118A (en) Superconducting coil
JP2007027216A (en) Small high electric power current transformer
WO2020225132A1 (en) An electrical machine comprising a cooling device
JPS58202508A (en) Electromagnet coil
JPH0279336A (en) Indirectly heated cathode structure
JP2924533B2 (en) Stationary guidance equipment
JPH0510027B2 (en)
JPS6023757Y2 (en) Toroidal magnetic field coil of torus-shaped fusion device
JPH06251956A (en) Transformer winding
JPH1126253A (en) Electric apparatus coil and lead wire
JPS589534A (en) Stator for rotary electric machine
JPS60171704A (en) Electromagnetic coil
JPS609107A (en) Electromagnetic coil
JPH01157037A (en) Deflection yoke