JPS60163371A - Nonaqueous battery - Google Patents

Nonaqueous battery

Info

Publication number
JPS60163371A
JPS60163371A JP1870884A JP1870884A JPS60163371A JP S60163371 A JPS60163371 A JP S60163371A JP 1870884 A JP1870884 A JP 1870884A JP 1870884 A JP1870884 A JP 1870884A JP S60163371 A JPS60163371 A JP S60163371A
Authority
JP
Japan
Prior art keywords
battery
metal
aluminum chloride
chloride
thionyl chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1870884A
Other languages
Japanese (ja)
Inventor
Yasutoshi Shimizu
清水 康利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Nihon Denchi KK
Original Assignee
Japan Storage Battery Co Ltd
Nihon Denchi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Nihon Denchi KK filed Critical Japan Storage Battery Co Ltd
Priority to JP1870884A priority Critical patent/JPS60163371A/en
Publication of JPS60163371A publication Critical patent/JPS60163371A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To increase the discharge capacity and the discharge voltage of a nonaqueous battery by using as an electrolyte a mixture prepared by combining thionyl chloride with aluminum chloride, an alkali metal or alkaline earth metal and a metal phthalocyanine. CONSTITUTION:A nonaqueous battery is constituted by using thionyl chloride as the positive active material and an active metal as the negative electrode. An electrolyte for the battery is prepared by dissolving a small quantity of a metal phthalocyanine such as iron phthalocyanine in a solution prepared by combining thionyl chloride with aluminum chloride and an alkali metal or alkaline earth metal of a molar amount of at most that of aluminum chloride. As a result, the average discharge voltage and the capacity of the nonaqueous battery are increased and a large energy density can be achieved.

Description

【発明の詳細な説明】 本発明は、リチウム塩化チオニル電池に代表されるオキ
シハライド電池において、従来の電池より正極の多孔質
カーボンの単位ff1ffi当りの放電容量が大きく、
かつ、放電電圧の高い電池を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an oxyhalide battery represented by a lithium thionyl chloride battery, which has a larger discharge capacity per unit ff1ffi of porous carbon in the positive electrode than conventional batteries.
Moreover, the present invention provides a battery with a high discharge voltage.

電解質にルイス酸として塩化アルミニウムを、アルカリ
金属の塩として塩化リチウムを塩化アルミニウムのモル
数以下用いる酸性電解質の塩化チオニル溶液によるリチ
ウム−塩化チオニル電池においては、放電は(1)式に
示すように、まず塩化アルミニウムが関与する反応が起
き、放電生成物は液に可溶の四塩化アルミニウムリチウ
ムとなる。またこの反応の起電力は約4■と高い値を示
す。
In a lithium-thionyl chloride battery using a thionyl chloride solution as an acidic electrolyte in which aluminum chloride is used as a Lewis acid and lithium chloride is used as an alkali metal salt in moles of aluminum chloride or less, the discharge is as shown in equation (1). First, a reaction involving aluminum chloride occurs, and the discharge product becomes lithium aluminum tetrachloride, which is soluble in the liquid. Further, the electromotive force of this reaction is as high as about 4 cm.

N兄C,Ls 4Ll+ 2SOC+2−一−−→4Ll△1c14+
s+sO2・・・(1) この反応が進行し、塩化アルミニウムが消費されると次
に(2)式の反応が起こり、放電生成物として液に不溶
の塩化リチウムが正極の多孔質カーボン中に析出し、放
電を抑制してしまう。この反応は起電力は3.65 ’
Vである。
N brother C, Ls 4Ll+ 2SOC+2-1--→4Ll△1c14+
s+sO2...(1) As this reaction progresses and aluminum chloride is consumed, the reaction of equation (2) occurs next, and lithium chloride, which is insoluble in the liquid, is deposited in the porous carbon of the positive electrode as a discharge product. and suppresses discharge. The electromotive force for this reaction is 3.65'
It is V.

4L++ 2SOC12→4LtCl + S + S
 02・・・(2)従って放電は(1)式と(2)式の
反応により2段の放電カーブを示す。従来の酸性電解質
を用いるリチウム−塩化チオニル電池においては、塩化
アルミニウムの利用率が低く、放電の初期で電圧の低い
(2)式の反応に移行し、放電容量、平均放電電圧とも
に低い値にとどまっていた。
4L++ 2SOC12→4LtCl + S + S
02...(2) Therefore, the discharge shows a two-stage discharge curve due to the reactions of equations (1) and (2). In conventional lithium-thionyl chloride batteries that use an acidic electrolyte, the utilization rate of aluminum chloride is low, and the reaction shifts to the reaction of equation (2) with a low voltage at the beginning of discharge, resulting in both discharge capacity and average discharge voltage remaining at low values. was.

本発明はこれら従来の電池の問題点を解決したものであ
り、液中に金属フタロシアンを添加することにより塩化
アルミニウムの利用率を向上させ、放電容量、平均放電
電圧等の電池特性が従来のものよりづぐれた電池を提供
するものである。
The present invention solves these problems of conventional batteries, and improves the utilization rate of aluminum chloride by adding metal phthalocyanine to the liquid, and improves battery characteristics such as discharge capacity and average discharge voltage compared to conventional batteries. It provides a battery that is better than anything else.

以下、その実施例について詳述する。Examples thereof will be described in detail below.

第1図は本発明になる電池の一実施例を示す断面図であ
り、図において(1)は電槽、(2)は負極、(3〉は
セパレータ、(4)は正極、〈5)(ま負極端子、(6
)は注液管である。
FIG. 1 is a sectional view showing an embodiment of the battery according to the present invention, in which (1) is a battery case, (2) is a negative electrode, (3> is a separator, (4) is a positive electrode, and (5) is a negative electrode. (Ma negative terminal, (6
) is the liquid injection pipe.

テフロンをバインダーとしてエキスバンドニッケル集電
体に固定化したアセヂレンブラックを正極として中央に
配し、その両側にリチウムを活物質と′丈る負極を有づ
る、第1図に示づ゛パイセル溝造の電池を組み、4.5
Mの塩化アルミニウムを溶解した塩化ヂAニル溶液に鉄
フタロシアンを溶液に対し2+110/ml添加して電
池に注液し、10℃で1.65 A (30111Δ/
 a+! )で放電した。鉄フタロシアンを用いなかっ
た電池Aの放電結果と共に第2図に示す。従来の電池Δ
では、1段目の電圧の放電容量からめた塩化アルミニウ
ムの利用率は25%ときわめて小さく、全体の放電容量
も正極のアセチレンブラック甲位重司当り 0.65Δ
11/gと小さな値にとどまり、平均放電電圧し2.9
VT”あった。本発明による電池Bでは反応式(1)に
よる放電面1111段目の放電時間がきわめて長くなり
、塩化アルミニ・クムの利用率は100%−に近い値と
なった。1段目の容量が増大した7jめ、平均放電電圧
も3.1vと高(なり、容量に関しても正極の不S態化
の生じない(1)式の反応による放電容量が増大したた
めに、2.7V終止でLOAh、/Fとぎわめて大きな
値となった。またアルカリ金属の塩として硫化リチウム
を用いた系でも同様の効果が認められた。
Acetylene black fixed to an expanded nickel current collector with Teflon as a binder is placed in the center as a positive electrode, and on both sides lithium is an active material and long negative electrodes are used. Assemble Mizozo's battery, 4.5
Iron phthalocyanate was added to a dianyl chloride solution in which aluminum chloride (M) was dissolved, and the solution was poured into a battery at 1.65 A (30111Δ/ml) at 10°C.
a+! ) was discharged. The results are shown in FIG. 2 together with the discharge results of battery A that did not use iron phthalocyanate. Conventional battery Δ
In this case, the utilization rate of aluminum chloride based on the discharge capacity of the first stage voltage is extremely small at 25%, and the overall discharge capacity is 0.65Δ per acetylene black upper layer of the positive electrode.
The average discharge voltage remained at a small value of 11/g, and the average discharge voltage was 2.9
In battery B according to the present invention, the discharge time of the 1111th stage of the discharge surface according to reaction formula (1) was extremely long, and the utilization rate of aluminum chloride was close to 100%. The average discharge voltage was also high at 3.1V (2.7V) due to the increase in the discharge capacity due to the reaction of equation (1), which does not cause passivation of the positive electrode. At the end of the test, LOAh and /F became extremely large values.A similar effect was also observed in a system using lithium sulfide as the alkali metal salt.

以上の説明及び実施例から明らかな様に、本発明は従来
の酸性電解質を用いたリチウム−塩化チオニル電池の塩
化アルミニウムの利用率の低さを解決し、従来の電池よ
り平均放電電圧及び容量を向上させて、より大きなエネ
ルギー密度を有り−る電池を提供するものである。
As is clear from the above description and examples, the present invention solves the problem of low aluminum chloride utilization in conventional lithium-thionyl chloride batteries using acidic electrolytes, and achieves higher average discharge voltage and capacity than conventional batteries. The purpose of the present invention is to provide a battery with improved energy density.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明になる電池の一実施例を示す断面図、第
2図は本発明になる電池B及び従来の電池△の放電特性
図である。 1・・・電槽、2・・・負極、3・・・セパレータ、4
・・・正極−9r 1 図 λ ZIJ 楚y霞Fff向 0分)
FIG. 1 is a sectional view showing an embodiment of a battery according to the present invention, and FIG. 2 is a discharge characteristic diagram of a battery B according to the present invention and a conventional battery Δ. 1... Battery case, 2... Negative electrode, 3... Separator, 4
...Positive electrode -9r 1 Figure λ ZIJ Chuy Kasumi Fff direction 0 minutes)

Claims (1)

【特許請求の範囲】[Claims] 1、正極活物質として塩化チオニルを、負極に活性金属
を用い、電解質として前記塩化チオニル中に塩化アルミ
ニウムと、塩化アルミニウムのモル数以下のアルカリ金
属あるいはアルカリ土類金属の塩を添加した溶液に金属
フタロシアンを溶解させることを特徴とする非水電池。
1. Using thionyl chloride as a positive electrode active material and an active metal as a negative electrode, a metal is added to a solution in which aluminum chloride and an alkali metal or alkaline earth metal salt in an amount equal to or less than the number of moles of aluminum chloride are added to the thionyl chloride as an electrolyte. A non-aqueous battery characterized by dissolving phthalocyanine.
JP1870884A 1984-02-03 1984-02-03 Nonaqueous battery Pending JPS60163371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1870884A JPS60163371A (en) 1984-02-03 1984-02-03 Nonaqueous battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1870884A JPS60163371A (en) 1984-02-03 1984-02-03 Nonaqueous battery

Publications (1)

Publication Number Publication Date
JPS60163371A true JPS60163371A (en) 1985-08-26

Family

ID=11979146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1870884A Pending JPS60163371A (en) 1984-02-03 1984-02-03 Nonaqueous battery

Country Status (1)

Country Link
JP (1) JPS60163371A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109728247A (en) * 2019-01-02 2019-05-07 山东科技大学 Aluminium ion anode and battery of a kind of high electrochemical window and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54116639A (en) * 1978-01-31 1979-09-11 Accumulateurs Fixes Primary cell
JPS56165276A (en) * 1980-04-14 1981-12-18 Honeywell Inc Lithium/thionyl chloride battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54116639A (en) * 1978-01-31 1979-09-11 Accumulateurs Fixes Primary cell
JPS56165276A (en) * 1980-04-14 1981-12-18 Honeywell Inc Lithium/thionyl chloride battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109728247A (en) * 2019-01-02 2019-05-07 山东科技大学 Aluminium ion anode and battery of a kind of high electrochemical window and preparation method thereof
CN109728247B (en) * 2019-01-02 2021-04-06 山东科技大学 Aluminum ion battery anode with high electrochemical window, battery and preparation method of aluminum ion battery anode

Similar Documents

Publication Publication Date Title
JP2001512526A (en) New electrode materials obtained from polyquinone-based ionic compounds and their use in electrochemical generators
JPH10265567A (en) Aniline polymer, electrode material and secondary battery
JPH06196169A (en) Nonaqueous electrolyte secondary battery
JPH10188977A (en) Lithium secondary battery
JPH1126016A (en) Electrolyte for lithium secondary battery
JPH03152879A (en) Nonaqueous electrolyte secondary battery
JPS60163371A (en) Nonaqueous battery
JPS638588B2 (en)
JP4127890B2 (en) Non-aqueous electrolyte battery
JPS6215761A (en) Nonaqueous electrolyte secondary cell
JP3691380B2 (en) Nonaqueous electrolyte secondary battery
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JP2730641B2 (en) Lithium secondary battery
JPH08162154A (en) Secondary battery having nonaqueous solvent electrolyt
JP3148905B2 (en) Manufacturing method of thin non-aqueous electrolyte secondary battery
JPS62272472A (en) Nonaqueous solvent secondary battery
JPS60163370A (en) Nonaqueous battery
JPH09167635A (en) Nonaqueous electrolytic solution and nonaqueous electrolytic solution battery
JPH0722068A (en) Secondary battery having nonaqueous solvent electrolyte
JP2707657B2 (en) Electrolyte for lithium secondary battery
JPS62222577A (en) Electrolyte for lithium battery
JPS63114075A (en) Electrolyte for lithium secondary battery
JPS59146157A (en) Nonaqueous electrolyte secondary cell
JPS6089075A (en) Nonaqueous electrolyte secondary battery
JPH02281572A (en) Electrolyte for lithium secondary battery