JPS60162021A - Fuel injection control device of internal-combustion engine - Google Patents

Fuel injection control device of internal-combustion engine

Info

Publication number
JPS60162021A
JPS60162021A JP1574584A JP1574584A JPS60162021A JP S60162021 A JPS60162021 A JP S60162021A JP 1574584 A JP1574584 A JP 1574584A JP 1574584 A JP1574584 A JP 1574584A JP S60162021 A JPS60162021 A JP S60162021A
Authority
JP
Japan
Prior art keywords
pressure
valve
fuel
injection
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1574584A
Other languages
Japanese (ja)
Other versions
JPH0544539B2 (en
Inventor
Hideaki Nakano
英明 中野
Tadanori Azuma
東 忠則
Shuichi Sato
修一 佐藤
So Kashima
宗 鹿嶌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP1574584A priority Critical patent/JPS60162021A/en
Publication of JPS60162021A publication Critical patent/JPS60162021A/en
Publication of JPH0544539B2 publication Critical patent/JPH0544539B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0003Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • F02M59/105Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive hydraulic drive

Abstract

PURPOSE:To ease adjustment of injection timing, injection quantity and injection pressure by separately providing a solenoid valve which controls pressurized oil fed to a booster which highly pressurizes injection pressure of the fuel and a solenoid valve for injection control. CONSTITUTION:Working oil from the first pressure source 1 is introduced to a pressure receiving face 71 of big diameter on one end of mobile bodies 7, 8 of a booster 3 through the first solenoid valve 5 which is opened only for a period exceeding an injection period, while fuel oil from the second pressure source 2 is introduced into a pressure chamber 10 on a pressure receiving side 72 of small diameter of the other end through the first check valve 13. Subsequently, the fuel oil from the pressure chamber 10 is given into a pressure accumulation chamber 12 through the second check valve 11, then said fuel oil from the accumulation chamber 12 is injected from a nozzle hole 51 through a control valve 31 which makes pilot operation by means of the second solenoid valve 6. Thus injection timing, injection quantity and injection pressure can be easily adjusted.

Description

【発明の詳細な説明】 技術分野 本発明は、内燃機関全停止することなく、また内燃機関
の回転速度に依存せず、燃料噴射時期および燃料噴射量
、燃料噴射圧力を容易に調節できる内燃機関の燃料噴射
制御装置に関する。
Detailed Description of the Invention Technical Field The present invention relates to an internal combustion engine in which fuel injection timing, fuel injection amount, and fuel injection pressure can be easily adjusted without completely stopping the internal combustion engine and without depending on the rotational speed of the internal combustion engine. The present invention relates to a fuel injection control device.

背景技術 一般に内燃機関、特にディーゼル機関においては、燃料
噴射時期は機関性能特に燃料消費率に大きく影響する。
BACKGROUND ART In general, in internal combustion engines, and in diesel engines in particular, fuel injection timing greatly affects engine performance, particularly fuel consumption rate.

また燃料噴射圧力は高圧力化して燃料噴霧の微細化と噴
射期間の短縮を図り燃焼効率を高めることにより燃料消
費率の低減が図れるが、内燃機関が低負荷のときの昼圧
力噴射は、ディーゼルノックの原因となシ内燃機関に無
理が生じ、内燃機関の寿命の短縮や過大な騒音につなが
る。噴射の時期や圧力の最適値は、内燃機関の運転状態
や燃料油の質によシ大きく変化するので、内燃機関の運
転中でも燃料噴射時期や燃料噴射圧力が自由に調節でき
れば、燃料の大幅な節約が内燃機関に無理に強いること
なく可能と、なり、石油価格の高騰する現状から考え、
大きな利益を生む。
In addition, the fuel injection pressure can be increased to make the fuel spray finer and the injection period shorter, increasing the combustion efficiency and reducing the fuel consumption rate. However, when the internal combustion engine is under low load, daytime pressure injection The internal combustion engine that causes the knock becomes strained, leading to a shortened engine life and excessive noise. The optimal values for injection timing and pressure vary greatly depending on the operating conditions of the internal combustion engine and the quality of the fuel oil, so if the fuel injection timing and fuel injection pressure could be freely adjusted while the internal combustion engine is running, it would be possible to significantly reduce the amount of fuel used. Savings can be made without forcing the internal combustion engine, and considering the current situation of soaring oil prices,
generate big profits.

従来、内燃機関の運転に同期して駆動される定行程式燃
料噴射ポンプと、閉止弁付自動噴射ノズルとを直接燃料
噴射管全弁して接続して構成される内燃機関の燃料噴射
装置は、広く世界で採用されている。この従来式の燃料
噴射装置において、燃料噴射時期はカムの設定位置によ
り定まり、燃料噴射時期を変更する場合、カムのカム軸
への設定位置を変えることが必要であり、一旦内燃機関
を停止しなければならない。また燃料噴射圧力は、内燃
機関の回転速度と噴射ノズルの寸法とによって定まり、
自由に調節することはできない。
Conventionally, a fuel injection system for an internal combustion engine is constructed by directly connecting a fixed stroke fuel injection pump that is driven in synchronization with the operation of the internal combustion engine and an automatic injection nozzle with a shutoff valve with all fuel injection pipes connected. , has been widely adopted around the world. In this conventional fuel injection system, the fuel injection timing is determined by the set position of the cam, and when changing the fuel injection timing, it is necessary to change the set position of the cam on the camshaft, and the internal combustion engine must be stopped first. There must be. Furthermore, the fuel injection pressure is determined by the rotational speed of the internal combustion engine and the dimensions of the injection nozzle.
It cannot be adjusted freely.

一方、特開昭56−143344においてすでに公知で
ある燃料噴射装置では、閉止弁付叩射ノズルに電気油圧
式サーボ弁を装備し、燃料とは別の液体圧を利用して燃
料流路を切換えることにより、高圧力燃料源に蓄圧され
た燃料を噴射ノズルから気筒内に噴射供給し、その噴射
の開始および終了は前記電気油圧式サーボ弁に与える電
、気パルス信号で制御される燃料噴射装置があるが、こ
のような装置によれば、燃料噴射時期および燃料噴射量
は前記電気パルス信号の送出時期とパルス幅とにより決
まり、また高圧力燃料源に蓄圧された燃料圧力により燃
料噴射圧力が決まるので、燃料噴射時期、燃料噴射量お
よび燃料噴射圧力は内燃機関の速度やカムの取付けに関
係なく自由に調節することができる。しかしながらこの
ような装置では、噴射期間にかかわりなく常時、胃圧力
燃料源に噴射圧相当の高圧力燃料を蓄圧した状態を保持
しておく必要があり、高圧力燃料源と燃料弁の間の配管
による圧力損失と燃料噴射時の吐出による瞬間的な圧力
降下と全補償しなければ燃料弁からの高い燃料噴射率を
維持できず、噴射圧力の高圧化が達成できない。
On the other hand, in a fuel injection device already known in Japanese Patent Application Laid-Open No. 56-143344, an electro-hydraulic servo valve is equipped on an injection nozzle with a shutoff valve, and the fuel flow path is switched using liquid pressure other than fuel. The fuel injection device injects and supplies the fuel accumulated in the high-pressure fuel source into the cylinder from the injection nozzle, and the start and end of the injection is controlled by electric and pneumatic pulse signals applied to the electro-hydraulic servo valve. However, according to such a device, the fuel injection timing and fuel injection amount are determined by the transmission timing and pulse width of the electric pulse signal, and the fuel injection pressure is determined by the fuel pressure accumulated in the high-pressure fuel source. Therefore, the fuel injection timing, fuel injection amount, and fuel injection pressure can be freely adjusted regardless of the speed of the internal combustion engine or the installation of the cam. However, in such a device, it is necessary to maintain a state in which high-pressure fuel equivalent to the injection pressure is stored in the gastric pressure fuel source at all times regardless of the injection period, and the piping between the high-pressure fuel source and the fuel valve is required. Unless the pressure loss caused by this and the instantaneous pressure drop caused by discharge during fuel injection are fully compensated for, a high fuel injection rate from the fuel valve cannot be maintained and a high injection pressure cannot be achieved.

舶用機関での燃料噴射圧力は通常600〜1500 k
g/cm2 と非常に高い圧力がっ可燃物質であるため
、高圧力燃料源の圧力変動を緩和する手段は通常油圧管
路系に使用されるガス圧にょるア゛キュムレータではな
く燃料自身の体積弾性を利用した圧力容器とせざるを得
ない。
The fuel injection pressure in marine engines is usually 600 to 1500 k
Due to the extremely high pressures of g/cm2 and combustible materials, the means of mitigating pressure fluctuations in high-pressure fuel sources is usually the volume of the fuel itself rather than the gas-pressure accumulators used in hydraulic pipeline systems. There is no choice but to use a pressure vessel that utilizes elasticity.

したがって圧力容器の容積は、最大吐出量と供給量との
バランスにおいて圧力変動幅をどの程度まで許容するか
によって定まる。舶用機関での燃料噴射期間は約30度
クランク角であるので、機関回転数f 500 rpm
とすれば約10m5の時間となる。仁のような短い時間
内における圧力変動を考える場合、実用上供給量は無視
できるので、例えば1サイクルあたりの吐出量115m
1!とじて、噴射期間内における許容圧力変動幅’53
0kg/Cm2とすれば、単純計算では約8.51の容
積が必要となる。
Therefore, the volume of the pressure vessel is determined by how much pressure fluctuation range is allowed in the balance between the maximum discharge amount and the supply amount. Since the fuel injection period in a marine engine is approximately 30 degrees crank angle, the engine speed is f 500 rpm.
If so, it will take about 10m5. When considering pressure fluctuations within a short period of time, the supply amount can be ignored in practice, so for example, the discharge amount per cycle is 115 m.
1! As a result, the allowable pressure fluctuation range within the injection period '53
Assuming 0 kg/Cm2, a simple calculation requires a volume of approximately 8.51.

このように多量のしかも超高圧力の燃料全保持する圧力
容器の構造寸法は、強度上内燃機関の従来の燃料噴射ポ
ンプの寸法に比較してかなり大きくならざるを得す、製
作コストおよび機関への配役方法に問題がある。また上
記圧力容器はその寸法の大きさゆえに、燃料噴射弁の配
設されるシリンダヘッドとは離れて配設せざるを得ない
ので、超高圧燃料は噴射管によって圧力容器と燃料噴射
弁を連通せしめられるが、超高圧力に耐え得るよう噴射
管や継手部の強度およびシール性能を高める必要がある
。さらに比較的長い噴射管全通して超高圧燃料を非常に
短い時間内に供給する必要があり、管内流速が早くなる
ので前述したように圧力損失が太きくなってその分所定
の噴射圧力よしも圧力容器における元圧を高くする必要
があるばかりでなく、噴射管内における圧力脈動のため
噴射管内圧力が異常に高くなったシ低くなったりして噴
射性および継手部において破損の危険性が生じるととも
に、2次、3次噴射等の不整噴射を生じるという問題が
ある。さらに高圧の燃料を蓄圧した容器が大型化し、高
圧の燃料が通る噴射管も長くなればそれだけ、燃料のも
れる機会も多くなる。高圧の燃料がもれた場合、霧化さ
れることが多く、それだけ火災に対する危険性も大きく
なる。
Due to its strength, the structural dimensions of the pressure vessel that holds all of this large amount of ultra-high pressure fuel must be considerably larger than the dimensions of conventional fuel injection pumps for internal combustion engines, which increases production costs and reduces the impact on the engine. There is a problem with the casting method. Furthermore, due to the size of the pressure vessel mentioned above, it has to be placed separately from the cylinder head where the fuel injection valve is installed, so the ultra-high pressure fuel is communicated between the pressure vessel and the fuel injection valve through the injection pipe. However, it is necessary to improve the strength and sealing performance of injection pipes and joints to withstand ultra-high pressure. Furthermore, it is necessary to supply ultra-high pressure fuel through the entire relatively long injection pipe within a very short period of time, and the flow velocity in the pipe increases, so as mentioned above, the pressure loss increases and it becomes difficult to maintain the specified injection pressure. Not only is it necessary to increase the source pressure in the pressure vessel, but pressure pulsations in the injection pipe can cause the pressure inside the injection pipe to become abnormally high or low, which can reduce injection performance and pose a risk of damage to the joint. , there is a problem that irregular injections such as secondary and tertiary injections occur. Furthermore, as the container holding the high-pressure fuel becomes larger and the injection pipe through which the high-pressure fuel passes becomes longer, the chances of fuel leaking increase. When high-pressure fuel leaks, it often becomes atomized, increasing the risk of fire.

船上における火災は、船および乗員の生命に多大の損害
を与える。
A fire on a ship causes great damage to the ship and the lives of its crew.

一方、上記問題を解決するために燃料の噴射圧力を超為
圧化する手段としてパスカルの原理全応用したブースタ
ーによる増圧構造を採用している先行技術がある。この
先行技術では、低圧力である駆動側の圧力室に供給する
作動油の供給量は燃料の噴射量よりも増圧比分だけ多く
なる。
On the other hand, in order to solve the above problem, there is a prior art that employs a pressure increasing structure using a booster that fully applies Pascal's principle as a means of increasing the fuel injection pressure to an extra pressure. In this prior art, the amount of hydraulic oil supplied to the drive-side pressure chamber at low pressure is greater than the amount of fuel injection by the pressure increase ratio.

例えば噴射圧1500 kg/Cm2の燃料の必要噴射
量’jc 10 msの噴射時間で15m/とすれば、
増圧比7の場曾、単純に計算すれに約214kg/ c
 m 2の作動油f 10 msのうちに105 ml
だけ供給する必要があるということになる。燃料噴射の
開始は上記作動油を圧力源とブースターの駆動側圧力室
を電磁弁により連通せしめることによって達成されるか
ら、電磁弁の圧油の通過流量は約630 l/minと
なる。
For example, if the required injection amount of fuel with an injection pressure of 1500 kg/Cm2 is 15 m/ with an injection time of 10 ms, then
If the pressure increase ratio is 7, then a simple calculation will yield approximately 214 kg/c.
m 2 of hydraulic oil f 105 ml in 10 ms
This means that it is necessary to supply only The start of fuel injection is achieved by communicating the hydraulic oil between the pressure source and the drive-side pressure chamber of the booster through the solenoid valve, so the flow rate of the pressure oil through the solenoid valve is about 630 l/min.

電磁弁には電磁力によりスプール全動かして圧油の流路
を切換える直動式と@動式電磁弁により切換えた圧油の
駆動力によりメインスプールを動かして圧油の流路の切
換えを行なうパイロット式とがある。高圧、大流量の場
合直動式では切換え動作時、流体力がスプールに作用し
て切換え不能となるので通常、パイロット式が採用され
る。ところがパイロット式の場合、複数段階操作である
ため構造上速い応答性を得るには限界がある。−力、内
燃機関の燃料噴射に要求される制御精度は1〜2度クラ
ンク角であり、500rpmの回転数では0.3〜0.
7msの極端に微少な時間精度となる。したがって上記
のような高圧力、大流量を扱う電磁弁により、内燃機関
の精度の高い燃料噴射制御を行なうことは現状の技術で
は不可能である0 目 的 本発明状、上記従来技術の問題点に鑑み、燃料の超筒圧
力化に要する増圧構造ブースタへ送給する大流量の圧油
の制御を行なう電磁弁と内燃機関の精度の高い燃料噴射
制御を行なう少流量の電磁弁とに燃料噴射の機能を分担
せしめることにより、上記間νξ点の解決を図ったもの
であり、内燃機関全停止することなく、また内燃機関の
回転速度に依存せず、燃料噴射時期および燃料噴射量、
燃料噴射圧力を容易に調節でき、かつ燃料圧力が高圧化
でき高信頼度で安価な内燃機関の燃料噴射制御装置を提
供することを目的とする。
The solenoid valve has a direct-acting type that uses electromagnetic force to move the entire spool to switch the pressure oil flow path, and a @-acting type solenoid valve that uses the driving force of the switched pressure oil to move the main spool and switch the pressure oil flow path. There is a pilot type. In the case of high pressure and large flow rate, a pilot type is usually adopted because the fluid force acts on the spool during the switching operation with a direct acting type, making it impossible to switch. However, in the case of a pilot type, there is a limit to achieving fast response due to its structure because it requires multiple steps of operation. -The control precision required for fuel injection in an internal combustion engine is 1 to 2 degrees of crank angle, and at a rotation speed of 500 rpm, it is 0.3 to 0.
This results in an extremely minute time accuracy of 7 ms. Therefore, it is impossible with the current technology to perform highly accurate fuel injection control of an internal combustion engine using a solenoid valve that handles high pressure and large flow rate as described above. In view of this, we have developed a solenoid valve that controls the large flow of pressure oil sent to the booster with a pressure booster structure required to achieve super cylinder pressure, and a small flow solenoid valve that performs highly accurate fuel injection control of the internal combustion engine. By sharing the injection function, the above-mentioned νξ point is resolved, and the fuel injection timing, fuel injection amount, and
It is an object of the present invention to provide a highly reliable and inexpensive fuel injection control device for an internal combustion engine that can easily adjust fuel injection pressure and increase the fuel pressure.

本発明は、第1圧力源1からの作動油を少なくとも燃料
噴射期間W1以上の期間W2だけ開弁状態となる第1電
磁升5を介して、ブースタ3における移動体7.8の一
端の大径受圧面71側に導き、移動体7,8の他端の小
径受圧面72側の圧力室10には、第2圧力源2から燃
料油t−第1逆止弁13を介して導入し、この圧力室1
0からの燃料油は第2逆止弁11を介して蓄圧室12に
与え、蓄圧至12からの燃料油は制御弁31を介してノ
ズル孔51から噴射され、制御弁31は第1圧力源1か
らの第2電磁弁6を介する作動油によってパイロット作
動することを特徴とする内燃機関の燃料噴射制御装置で
ある。
In the present invention, hydraulic oil from the first pressure source 1 is supplied to one end of the movable body 7.8 in the booster 3 through the first electromagnetic box 5 which is kept open for at least a period W2 which is longer than the fuel injection period W1. Fuel oil is introduced from the second pressure source 2 into the pressure chamber 10 on the small diameter pressure receiving surface 72 side at the other end of the movable bodies 7 and 8 via the first check valve 13. , this pressure chamber 1
The fuel oil from the pressure accumulation chamber 12 is supplied to the pressure accumulation chamber 12 via the second check valve 11, and the fuel oil from the pressure accumulation chamber 12 is injected from the nozzle hole 51 via the control valve 31. This fuel injection control device for an internal combustion engine is characterized in that it is pilot-operated by hydraulic oil that passes through the second electromagnetic valve 6 from the fuel injection control device.

本発明の好ましい実施態様では、制御弁31とノズル孔
51との間の通路35には、制御弁31の開弁時に閉じ
、制御弁31の閉弁時に開く弁手段を接続したことを特
徴とする内燃機関の燃料噴射制御装置である。
A preferred embodiment of the present invention is characterized in that a valve means is connected to the passage 35 between the control valve 31 and the nozzle hole 51, which closes when the control valve 31 is opened and opens when the control valve 31 closes. This is a fuel injection control device for an internal combustion engine.

また本発明の他の好ましい実施態様では、蓄圧室12の
異常圧力上昇時に、開弁状態となる安全弁80を設けた
ことを特徴とする内燃機関の燃料噴射制御装置である。
Another preferred embodiment of the present invention is a fuel injection control device for an internal combustion engine, characterized in that it is provided with a safety valve 80 that opens when the pressure in the pressure accumulation chamber 12 increases abnormally.

また本発明の更に勧好ましい実施態様では、制御弁31
は、燃料油の供給全制御する弁体31aと、弁体31a
lC連結され弁体側の第1受圧面83と弁体31aとは
反対側の第2受圧面73と會有する制御ピストン37と
を含み、第2電磁弁6を介する作動油は、第1受圧面1
00および第2受圧面101に選択的に与えられること
を特徴とする内燃機関の燃料噴射制御装置である。
In a further preferred embodiment of the present invention, the control valve 31
The valve body 31a fully controls the supply of fuel oil, and the valve body 31a
The control piston 37 includes a first pressure receiving surface 83 on the valve body side and a second pressure receiving surface 73 on the opposite side of the valve body 31a that are connected to each other. 1
00 and a second pressure-receiving surface 101.

実施例 図面によって本発明の詳細な説明する。第1図は本発明
の第1の実施例を示す構成図である。
The present invention will be explained in detail with reference to the drawings. FIG. 1 is a block diagram showing a first embodiment of the present invention.

第1圧力源1は、導管55、逆止弁17および第1電磁
弁5全介して導管15によりブースタ3の接続口19か
ら圧力室9に接続されており、導管55から分岐する導
管43により逆止弁42および第211磁弁6を介して
燃料噴射弁4の接続口39から通路41を経て圧力室3
8に接続可能になっている。導管15,43にけ、管路
内の圧力脈動全吸収するためのアキュームレータ18.
44が接続される。第2圧力源2け、導管27を介して
、ブースタ3の接続口21から、ばね付勢されている逆
止弁13を経て、圧力室10に接続される。
The first pressure source 1 is connected to the pressure chamber 9 from the connection port 19 of the booster 3 by the conduit 15 through the conduit 55, the check valve 17, and the first electromagnetic valve 5, and by the conduit 43 branching from the conduit 55. The pressure chamber 3 is connected from the connection port 39 of the fuel injection valve 4 through the passage 41 via the check valve 42 and the 211th magnetic valve 6.
8 can be connected. An accumulator 18 in the conduit 15, 43 for absorbing all the pressure pulsations in the conduit.
44 are connected. Two second pressure sources are connected via a conduit 27 from the connection 21 of the booster 3 to the pressure chamber 10 via a spring-loaded check valve 13 .

ブースタ3内には、上部シリンダ66t−滑動するピス
トン7と、下部シリンダ67を滑動するプランジャ8が
配設されておシ、ピストン7とプランジャ8は押接して
いる。シリンダ66とピストン7の上端部の大径受圧面
である頂面71とによって形成される圧力室9には、第
1圧力の1から供給される作動油が第1電磁、弁5を介
して供給可能となっている。シリンダ67とプランジャ
8の下端部の小径受圧面である面72によって形成され
る圧力室10には、第2圧力淵2から前述のように逆止
弁13を介して供給される燃料油が充満可能になってい
る。圧力室10は、にねつきの逆止弁11全介してブー
スタ3下部に配設された蓄圧室12に接続されている。
Inside the booster 3, a piston 7 that slides on the upper cylinder 66t and a plunger 8 that slides on the lower cylinder 67 are disposed, and the piston 7 and the plunger 8 are pressed against each other. The pressure chamber 9 formed by the cylinder 66 and the top surface 71 which is a large-diameter pressure receiving surface at the upper end of the piston 7 is supplied with hydraulic oil from the first pressure 1 through the first solenoid and the valve 5. It is available for supply. The pressure chamber 10 formed by the cylinder 67 and the small diameter pressure receiving surface 72 at the lower end of the plunger 8 is filled with fuel oil supplied from the second pressure well 2 via the check valve 13 as described above. It is now possible. The pressure chamber 10 is connected to a pressure accumulation chamber 12 disposed below the booster 3 through a double check valve 11 .

蓄圧室12には通路22によって燃料噴射弁4に連通し
ている。通路22は通路35によって燃料貯め48に連
通している。
The pressure accumulation chamber 12 is communicated with the fuel injection valve 4 through a passage 22 . The passage 22 communicates with a fuel reservoir 48 by a passage 35.

燃料噴射弁4は制御部Aと弁部BからS成される。制御
部Aには、シリンダ69を滑動する制御弁31と、シリ
ンダ68を滑動する制御ピストン37が押接して配設さ
れている。シリンダ68と制御ピストン37の面73に
よって制御弁310反対側に形成される圧力室38には
、第1圧力源1から接続口39を介して供給される作動
油が充満している。弁部Bには、シリンダ70を滑動す
る噴射弁体47と、噴射弁体47をノズル孔51の座面
50に押圧する方向に付勢する弁はね46が設けられて
いる。
The fuel injection valve 4 is composed of a control section A and a valve section B. In the control section A, a control valve 31 that slides on a cylinder 69 and a control piston 37 that slides on a cylinder 68 are disposed in pressure contact with each other. The pressure chamber 38 formed by the cylinder 68 and the surface 73 of the control piston 37 on the opposite side of the control valve 310 is filled with hydraulic oil supplied from the first pressure source 1 via the connection port 39 . The valve portion B is provided with an injection valve body 47 that slides on the cylinder 70 and a valve spring 46 that urges the injection valve body 47 in a direction to press it against the seat surface 50 of the nozzle hole 51.

第1圧力源1・では、作動油はタンク61からフィルタ
59を介してポンプ58によって昇圧される。調圧弁5
7によって圧力調整された圧油はフィルタ56を介して
導管55に供給される。
In the first pressure source 1., the pressure of hydraulic oil is increased from the tank 61 through the filter 59 by the pump 58. Pressure regulating valve 5
Pressure oil whose pressure is regulated by 7 is supplied to conduit 55 via filter 56 .

第2圧力源2では、燃料油はタンク65からフィルタ6
4を介してポンプ63によって高圧化され、調圧が2に
よって圧力調整された圧油が導管27に供給される。
In the second pressure source 2, the fuel oil is transferred from the tank 65 to the filter 6.
Pressure oil is supplied to the conduit 27 via the pump 63 and the pressure regulated by the pump 63 via the pump 63 .

ピストン14は、シリンダ24内で第1図の上下に移動
可能であり、弁ばね25によって蓄圧室12に連通す名
圧力室23が小さくなるように第1図の上方に付勢され
ている。ピストン14がばね25のばね力に抗して変位
し圧力室23が太きくなると、この圧力室23は通路7
6から導管29に連通する。制御弁31の弁体31aが
座面32に着座して閉弁状態にあるとき、弁体31aに
形成された環状溝33によって通路36は接続口52か
らドレン管’s3.54%−介してタンク65に連通ず
る。制御弁31が開くと通路36と接続口52とは遮断
される。
The piston 14 is movable up and down in FIG. 1 within the cylinder 24, and is urged upward in FIG. 1 by a valve spring 25 so that the pressure chamber 23 communicating with the pressure accumulation chamber 12 becomes smaller. When the piston 14 is displaced against the spring force of the spring 25 and the pressure chamber 23 becomes thicker, the pressure chamber 23 becomes larger than the passage 7.
6 to a conduit 29. When the valve body 31a of the control valve 31 is seated on the seat surface 32 and in the closed state, the annular groove 33 formed in the valve body 31a allows the passage 36 to flow from the connection port 52 through the drain pipe's3.54%. It communicates with tank 65. When the control valve 31 opens, the passage 36 and the connection port 52 are cut off.

なお、ピストン7およびプランジャ8の最大ストローク
は、プランジャ8の最大ストロークボリュームが1回の
最大噴射量と高圧蓄圧に要する燃料の圧−縮容積の合計
よりも若干大きくなるように選ばれる。
The maximum strokes of the piston 7 and the plunger 8 are selected such that the maximum stroke volume of the plunger 8 is slightly larger than the sum of the maximum injection amount per injection and the compressed volume of fuel required for high-pressure accumulation.

次に作用を第1図にしたがい説明する。Next, the operation will be explained according to FIG.

第1電磁弁5の左側のソレノイドが励磁されて位置5b
Kあるとき、圧力室9に関して絞り弁60が介在されて
いる戻)導管16を介してブースタ3の接続口19全タ
ンク61に連通するように流路を切換えている。このと
きブースタ3の圧力室10には、逆止弁13のクラッキ
ング圧以上の圧力で第2圧力源2から導管27、ブース
タ3の接続口21および逆止弁13を介して燃料が供給
され、その圧力でプランジャ8およびピストン7が圧力
室9の容積を小さくする方向に押しあげられ、ピストン
7の頂面71がシリンダ66の端面74に圧接して停止
する。プランジャ8およびピストン7の移動速度は、戻
り導管16の途中に配設された絞り弁60によって制限
されているので、ポンプ63により高圧化された燃料に
よりピストン7が暴走するのを防止しストロークエンド
における衝撃力が緩和される。
The left solenoid of the first solenoid valve 5 is energized to position 5b.
At one time, the flow path is switched so that the connection port 19 of the booster 3 communicates with the entire tank 61 via the return conduit 16 in which the throttle valve 60 is interposed with respect to the pressure chamber 9 . At this time, fuel is supplied to the pressure chamber 10 of the booster 3 from the second pressure source 2 at a pressure higher than the cracking pressure of the check valve 13 via the conduit 27, the connection port 21 of the booster 3, and the check valve 13, The pressure pushes the plunger 8 and piston 7 upward in a direction that reduces the volume of the pressure chamber 9, and the top surface 71 of the piston 7 comes into pressure contact with the end surface 74 of the cylinder 66 and stops. The moving speeds of the plunger 8 and the piston 7 are limited by a throttle valve 60 disposed in the middle of the return conduit 16, so that the piston 7 is prevented from running out of control due to the fuel made highly pressurized by the pump 63, and the stroke end is reached. impact force is alleviated.

第2電磁弁6は、左側のソレノイドが励磁されて位置6
bにあって、圧力室38の接続口39が導管43に連通
するよう流路を切換えている。そのため燃料噴射弁4の
制御弁31では、第1圧力源1からの圧油は制御ピスト
ン37の面73に作用してその駆動力によう制御ピスト
ン37は第1図の左方に付勢されておシ、制御弁31の
弁体31aは制御部Aの弁体31aに対向した座面32
に圧接されており、接続口22と通路35は制御弁31
により遮断されている。
The second solenoid valve 6 is in position 6 when the left solenoid is energized.
In b, the flow path is switched so that the connection port 39 of the pressure chamber 38 communicates with the conduit 43. Therefore, in the control valve 31 of the fuel injection valve 4, the pressure oil from the first pressure source 1 acts on the surface 73 of the control piston 37, and the control piston 37 is urged to the left in FIG. The valve body 31a of the control valve 31 is connected to the seat surface 32 facing the valve body 31a of the control section A.
The connection port 22 and the passage 35 are connected to the control valve 31.
It is blocked by.

ブースタ3の蓄圧室12には、第2動力源2からの供給
圧力よりも高い超高圧力が蓄圧される。
An extremely high pressure higher than the supply pressure from the second power source 2 is accumulated in the pressure accumulation chamber 12 of the booster 3 .

蓄圧室12は、ばね付勢された逆止弁11によって圧力
室10と遮断され、かつ、安全弁80によって通路76
と遮断され、かつ、制御弁31により通路35と遮断さ
九ている。
The pressure accumulation chamber 12 is isolated from the pressure chamber 10 by a spring-biased check valve 11 and is isolated from the passage 76 by a safety valve 80.
and the passage 35 by the control valve 31.

燃料噴射弁4の通路35の途中から分岐する通路36は
、制御弁31の弁体31aに形成された環状溝35によ
って、接続口52からドレン管53.545介してタン
ク65に連通ずる。制御弁31、圧力室34、通路35
,36,52、および燃料貯め48は、大気圧に開放さ
れた燃料が充満している。
A passage 36 that branches off from the middle of the passage 35 of the fuel injection valve 4 communicates with the tank 65 from the connection port 52 via the drain pipe 53,545 through the annular groove 35 formed in the valve body 31a of the control valve 31. Control valve 31, pressure chamber 34, passage 35
, 36, 52, and the fuel reservoir 48 are filled with fuel open to atmospheric pressure.

弁部Bの噴射弁47は弁ばね46により付勢されており
、噴射9f47の先端部49が座面50に圧接され、燃
料貯め48をノズル孔51から遮断している。
The injection valve 47 of the valve portion B is biased by the valve spring 46, and the tip 49 of the injection 9f 47 is pressed against the seat surface 50, thereby blocking the fuel reservoir 48 from the nozzle hole 51.

次に、第1電磁弁5の右側ソレノイドが付勢されて第2
図il+のように時刻t1〜t4で期間W2だけ第1電
磁弁5の流路が切換って位置5aとなると導管15と接
続口19が連通して第1圧力源1から圧油が圧力室9に
供給される。そのためピストン7およびプランジャ8が
第1−の下方に押し下げられ、圧力室10に充満した燃
料を圧縮する。この除、アキュムレータ18は導W15
内の圧油の圧力の一間的な低下を防ぐために有効に働く
。プランジャ8の而72に対するピストン7の頂面71
の面積比’kK(K>1)とすると、圧力室10には圧
力室9の圧力に倍の圧力が発生する。
Next, the right solenoid of the first solenoid valve 5 is energized and the second
As shown in FIG. 9. Therefore, the piston 7 and the plunger 8 are pushed down to the first position, compressing the fuel filling the pressure chamber 10. Except for this, the accumulator 18 is connected to the conductor W15.
It works effectively to prevent a temporary drop in the pressure of the hydraulic oil inside. Top surface 71 of piston 7 relative to bottom 72 of plunger 8
If the area ratio is 'kK (K>1), then a pressure twice as high as the pressure in the pressure chamber 9 will be generated in the pressure chamber 10.

Ki増圧比と言う。このとき制御弁31け遮断状態にあ
るので、ピストン7およびプランジャ8は停止している
。圧力室10の圧力は、接続口21の圧力よりも高いの
で、逆止弁13は閉じられる。
This is called the Ki pressure intensification ratio. At this time, since the control valve 31 is in a shut-off state, the piston 7 and plunger 8 are stopped. Since the pressure in the pressure chamber 10 is higher than the pressure in the connection port 21, the check valve 13 is closed.

圧力室10の圧力と蓄圧室12の圧力畔はとんど同じに
なるので、逆止弁11はばね力により閉弁している。第
2電流弁6は位置6bにあり、弁体31aと制御ピスト
ン37の面積比は、接続口22の圧力による開弁方向の
駆動力よりも、ピストン37の面73に作用する圧力室
38の圧力による閉弁方向の駆動力が充分大きくなるよ
うに選ばれる。そのため制御弁31は閉弁状態を維持し
ている0 その後、第2電磁弁6の右側ソl/ノイドが励磁される
と、論2電磁弁6の流路が切換って位置6aとなり、接
続口39が戻り導管45に連通して圧力室38の圧油が
タンク61に排出される。そのため接続口22側からの
圧油の駆動力により、制御弁31が第2図(2)の時刻
t2〜t3で開弁する。弁体31aの第1図右方への開
弁方向の移動に伴ない、制御弁31の滑動面によりシリ
ンダ69に開口した通路36と通路52が遮断されると
ともに、接続口22と圧力室34とが連通して通路35
に蓄圧室12から高圧燃料油が流入する。
Since the pressure in the pressure chamber 10 and the pressure in the pressure accumulation chamber 12 are almost the same, the check valve 11 is closed by the spring force. The second current valve 6 is in position 6b, and the area ratio between the valve body 31a and the control piston 37 is such that the area ratio of the pressure chamber 38 acting on the surface 73 of the piston 37 is greater than the driving force in the valve opening direction due to the pressure of the connection port 22. It is selected so that the driving force in the valve closing direction due to pressure is sufficiently large. Therefore, the control valve 31 maintains the closed state. Thereafter, when the right solenoid of the second solenoid valve 6 is energized, the flow path of the second solenoid valve 6 is switched to position 6a, and the connection is made. Port 39 communicates with return conduit 45 and pressurized oil in pressure chamber 38 is discharged to tank 61 . Therefore, the control valve 31 opens from time t2 to time t3 in FIG. 2(2) due to the driving force of the pressure oil from the connection port 22 side. As the valve body 31a moves to the right in FIG. The passage 35 is connected to
High-pressure fuel oil flows into the pressure storage chamber 12 from the pressure storage chamber 12 .

その結果、圧力室48内の圧力が高くなって、噴射弁4
7の段付き部75に作用する駆動力が閉弁方向に付勢し
ている弁はね46のばね力に打ち勝って、噴射弁47全
開弁し、ノズル孔51から高圧燃料が噴射される。
As a result, the pressure inside the pressure chamber 48 becomes high and the injection valve 4
The driving force acting on the stepped portion 75 of No. 7 overcomes the spring force of the valve spring 46 biasing in the valve closing direction, the injection valve 47 is fully opened, and high pressure fuel is injected from the nozzle hole 51.

噴射開始後蓄圧室12から通路35全介してノズル孔5
1に燃料が供給排出されるとともに、逆止弁11が開き
蓄圧室12には圧力室10から高圧の燃料が補給される
。第1圧力源1から充分な圧油の供給をうけてピストン
7はプランジャ8を移動させる。そのため圧力室10は
高圧に保持されており、燃料はその噴射圧力が高圧に保
たれたままでノズル孔51に補給される。
After the start of injection, from the pressure accumulation chamber 12 through the entire passage 35 to the nozzle hole 5
At the same time, the check valve 11 opens and the pressure storage chamber 12 is supplied with high-pressure fuel from the pressure chamber 10. The piston 7 moves the plunger 8 when supplied with sufficient pressure oil from the first pressure source 1. Therefore, the pressure chamber 10 is maintained at a high pressure, and fuel is supplied to the nozzle hole 51 while its injection pressure is maintained at a high pressure.

所定の噴射時間W1の経過の後、時刻t3で第2電磁弁
6の左側ソレノイドが励磁され、流路が接続口39と導
管43が連通するように位置6bに切換る。そのため圧
力室38には、第1圧力源1からの圧油が供給される。
After the predetermined injection time W1 has elapsed, the left solenoid of the second electromagnetic valve 6 is energized at time t3, and the flow path is switched to position 6b so that the connection port 39 and the conduit 43 communicate with each other. Therefore, pressure oil from the first pressure source 1 is supplied to the pressure chamber 38 .

したがって制御ピストン37の駆動力によって制御ピス
トン37および弁体31aは開弁方向に付勢され、弁座
32に弁体31afK:押圧して接続口22を通、路3
5かも遮断する。この際、弁体31aの閉弁方向への移
動に伴ない、環状溝33によって通路36と接続口52
が連通せしめられるので、通路35に充満する高圧燃料
油はドレン管53.54に排出され、圧力が急激に下が
る。その結果、燃料貯め48において噴射弁47に開弁
方向に作用していた駆動力が瞬時に小さくなって、弁ば
ね46の閉弁方向のばね力によシ、噴射弁47は閉弁方
向に付勢され、弁座50に噴射弁47の先端部49が押
圧されて閉弁する。そのためノズル孔51からの燃料噴
射が完了する。環状溝33からの排油は、いわゆる「燃
料の切れ」全よくするのに役立ち、燃料効率の向上に効
果がある。
Therefore, the control piston 37 and the valve body 31a are urged in the valve opening direction by the driving force of the control piston 37, and are pressed against the valve seat 32 to pass through the connection port 22 and pass through the passage 3.
5 is also blocked. At this time, as the valve body 31a moves in the valve closing direction, the annular groove 33 connects the passage 36 and the connection port 52.
, the high pressure fuel oil filling the passage 35 is discharged to the drain pipes 53 and 54, and the pressure drops rapidly. As a result, the driving force acting on the injection valve 47 in the valve opening direction in the fuel reservoir 48 instantly becomes smaller, and due to the spring force of the valve spring 46 in the valve closing direction, the injection valve 47 moves in the valve closing direction. The valve is energized, and the tip 49 of the injection valve 47 is pressed against the valve seat 50 to close the valve. Therefore, fuel injection from the nozzle hole 51 is completed. The drained oil from the annular groove 33 helps to eliminate so-called "fuel exhaustion" and is effective in improving fuel efficiency.

制御ピストン370ストロークはごくわずかであり、た
とえば1 mm程度である。したがって第2電磁弁6を
通過する作動油の流量は小さい。そのため作動油による
駆動力は小さくてよく直動形の電磁弁全使用することが
できる。これによって噴射タイミングおよび調整の精度
全向上することが可能となる。
The control piston 370 stroke is negligible, for example on the order of 1 mm. Therefore, the flow rate of the hydraulic oil passing through the second solenoid valve 6 is small. Therefore, the driving force required by the hydraulic oil is small and all direct-acting solenoid valves can be used. This makes it possible to improve the accuracy of injection timing and adjustment.

弁部Bの閉弁時に、蓄圧室12および圧力室10にはピ
ストン7およびプランジャ8の加速度によシ瞬間的に高
圧が発生する。このとき、蓄圧室12に開口している安
全弁80の圧力室23の容積はばね25のばね力に抗し
て滑動するピストン14の変位によって大きくなり、そ
のため衝撃圧力が吸収される。つ≠す、圧力室23は緩
衝ボリュームとして働く何らかの異常によりピストン1
4が成る一定値以上第1図の下方に移動すると、通路7
6が圧力室23に連通して高圧燃料が導管29からタン
ク65に排出される。そのため蓄圧室12が異常に高圧
になるのが防止される。蓄圧室12の圧力がピストン7
およびプランジャ8の停止に伴なって平準化されるに従
い、ピストン14はばね25によって押し戻される。
When the valve portion B is closed, high pressure is instantaneously generated in the pressure accumulation chamber 12 and the pressure chamber 10 due to the acceleration of the piston 7 and the plunger 8. At this time, the volume of the pressure chamber 23 of the safety valve 80 that opens to the pressure accumulation chamber 12 increases due to the displacement of the piston 14 that slides against the spring force of the spring 25, so that the impact pressure is absorbed. When the pressure chamber 23 acts as a buffer volume due to some abnormality, the piston 1
When moving downward in Figure 1 beyond a certain value of 4, passage 7
6 communicates with the pressure chamber 23 and high pressure fuel is discharged from the conduit 29 into the tank 65. Therefore, the pressure accumulation chamber 12 is prevented from becoming abnormally high pressure. The pressure in the pressure accumulator 12 is applied to the piston 7
As the plunger 8 is stopped and leveled, the piston 14 is pushed back by the spring 25.

燃料噴射の終了後、第2図(1)の時刻t4で、第1電
磁弁5が切換えられて位置5bとなり、流路が接続口1
9と戻シ導管16が連通するように切換ると圧力室9の
圧油は、戻り導管16から絞り弁60金介してタンク6
1に排出され、る。この際、圧力室9からの圧油の排出
に伴ない、圧力室10の燃料の駆動力により、ピストン
7およびプランジャ8は上方に移動し、圧力室10の容
積が増大して圧力が下がる。圧力室10は、逆止弁11
によって蓄圧至12とは遮断されているので、蓄圧室1
2には高圧力が保持される。圧力室10の圧力が接続口
21の圧力よりも逆止弁13のクラッキング圧だけ低く
なると、逆止弁13が開弁し、第2圧力源から間圧燃料
が補充され、ピストン頂面71がシリンダ66の座面7
4に押圧されて停止する。戻り導管16の途中に配設さ
れた絞り弁60の開〆は、圧力室10の圧油の駆動力に
よるピストン7およびプランジャ8の移動速度を制限す
るように調整されている。
After the fuel injection ends, at time t4 in FIG.
9 and the return conduit 16 are switched so that the pressure oil in the pressure chamber 9 is transferred from the return conduit 16 to the tank 6 through the throttle valve 60.
It is discharged to 1. At this time, as the pressure oil is discharged from the pressure chamber 9, the piston 7 and the plunger 8 move upward due to the driving force of the fuel in the pressure chamber 10, the volume of the pressure chamber 10 increases, and the pressure decreases. The pressure chamber 10 has a check valve 11
Since the pressure accumulation chamber 12 is cut off by
2, a high pressure is maintained. When the pressure in the pressure chamber 10 becomes lower than the pressure in the connection port 21 by the cracking pressure of the check valve 13, the check valve 13 opens and the interpressure fuel is replenished from the second pressure source, causing the piston top surface 71 to Seat surface 7 of cylinder 66
Press 4 to stop. The opening and closing of the throttle valve 60 disposed in the middle of the return conduit 16 is adjusted so as to limit the moving speed of the piston 7 and the plunger 8 due to the driving force of the pressure oil in the pressure chamber 10.

第1電磁弁5を通過する作動油の流量は、燃焼性能全向
上させるため増圧比?太きくとりかつ大きい噴射量を短
時間に出すため大流量となる。回転数500rpmで、
1lccの燃料をクランク角25度で噴射するとき、増
圧比を8とすると、このため第1電磁弁5は、バイロン
ト作動方式にせざるを得す、パイロット作動式の電磁弁
は応答性が悪いが、圧力室10への燃料の補充は噴射期
間以外の充分長い時間内で行なえばよく、第1電磁弁5
の切換えに第2電磁弁6のような高速性が要求されない
。事実、500rpmで回転する内燃機関において噴射
期間や噴射時期をクランク角1度単位で制fi14Iす
る場合、 程度の応答性が第2電磁弁6に要求されるが、第1電磁
弁5は噴射時期を25度とすると、の間に流路を切換え
、燃料全圧力室10に補給すればよいので、第2電磁弁
6と比べ応答性は1/10以下でよい。
The flow rate of the hydraulic oil passing through the first solenoid valve 5 is determined by the pressure increase ratio in order to completely improve the combustion performance. It is thick and produces a large amount of injection in a short time, resulting in a large flow rate. At a rotation speed of 500 rpm,
When 1lcc of fuel is injected at a crank angle of 25 degrees, the pressure increase ratio is 8. Therefore, the first solenoid valve 5 must be of the Byronto operation type, although pilot operated solenoid valves have poor response. , the pressure chamber 10 may be refilled with fuel within a sufficiently long period of time other than the injection period, and the first solenoid valve 5
Unlike the second solenoid valve 6, high-speed switching is not required. In fact, when controlling the injection period and injection timing in units of 1 degree of crank angle in an internal combustion engine rotating at 500 rpm, the second solenoid valve 6 is required to have a certain degree of responsiveness, but the first solenoid valve 5 is required to control the injection timing. When the angle is set to 25 degrees, it is only necessary to switch the flow path and replenish the entire fuel pressure chamber 10 during this period, so the response may be 1/10 or less compared to the second electromagnetic valve 6.

上記のごとく構成された実施例では 01回の噴射周期ごとに超高圧燃料を蓄圧し、噴射期間
内に燃料を常に袖先するようにブースタ3が作用するの
で、安定した噴射率が得られる。
In the embodiment configured as described above, the ultra-high pressure fuel is accumulated every 01 injection cycles, and the booster 3 acts to always supply the fuel within the injection period, so that a stable injection rate can be obtained.

大容量の超高圧圧力容器が不要である。A large-capacity ultra-high-pressure pressure vessel is not required.

■蓄圧容器であるブースタ3が小型化できるので、ブー
スタ3を噴射弁4と近接あるいは直接結合できる。その
ため圧力容器である蓄圧室12かでの圧力損失を小さく
しうるとともに、また配管の省略によって燃料漏れの発
生を抑え、火災の発生を防ぐことができる。
(2) Since the booster 3, which is a pressure accumulating container, can be miniaturized, the booster 3 can be connected closely or directly to the injection valve 4. Therefore, the pressure loss in the pressure accumulator 12, which is a pressure vessel, can be reduced, and by omitting piping, it is possible to suppress the occurrence of fuel leakage and prevent the occurrence of fire.

■大容量の超高圧圧力容器が不要で作動油圧力淵からブ
ースタまでは噴射圧力に比べ小さな圧力配管でよいので
、配管継手は従来のものが使用でき、安価である。
■A large-capacity ultra-high-pressure pressure vessel is not required, and pressure piping that is smaller than the injection pressure is sufficient from the hydraulic oil pressure well to the booster, so conventional piping joints can be used and are inexpensive.

■従来の油圧作動による増圧式燃料噴射装置で1はブー
スタのピストンやプランジャの着座時に発生する衝撃力
が問題であったが、本発明の場合、渭圧部に関して蓄圧
室12に配、設した衝撃吸収ピストンと安全弁を構成す
るピストン14により蓄圧室12の過圧を防止すること
ができる。
■In the conventional pressure booster fuel injection device operated by hydraulic pressure, the impact force generated when the booster piston or plunger is seated was a problem, but in the case of the present invention, the problem is that the pressure force generated when the booster piston or plunger is seated is disposed in the pressure accumulation chamber 12 for the side pressure part. Overpressure in the pressure storage chamber 12 can be prevented by the shock absorbing piston and the piston 14 that constitutes a safety valve.

■蓄圧室12に逆止弁11,13全配設することにより
、燃料の供給が可能となり、少量の噴射も可能となる。
(2) By disposing all check valves 11 and 13 in the pressure accumulating chamber 12, fuel can be supplied and a small amount of fuel can be injected.

■増圧のための高圧作動油の供給には、大容量の電磁弁
が必要であるが、従来の場合、応答性、再現性ともに非
常に高い制御精度の要求される噴射タイミングの制御を
単一の電磁弁で行なわしめているので、大容量と精11
’t−同時に達成することは両立しない。本発明では、
増圧に要する油圧駆動力を発生させる機能と噴射期間の
制御を行なう機能を個別の電磁弁5,6により分担せし
めることにより、油圧作動による燃料噴射を達成し得る
■A large-capacity solenoid valve is required to supply high-pressure hydraulic oil for pressure increase, but conventional methods simply control injection timing, which requires extremely high control precision in both response and reproducibility. Because it is operated by one solenoid valve, it has a large capacity and precision.
't-Achievement at the same time is incompatible. In the present invention,
By having the individual solenoid valves 5 and 6 share the function of generating the hydraulic driving force required for pressure increase and the function of controlling the injection period, fuel injection by hydraulic operation can be achieved.

■1気筒毎にブースタ3と噴射弁4とが設けられ噴射糸
が気筒毎に独立しているので高圧式噴射装置のように気
筒間の干渉が防げるとともに、1気筒分のこのような構
成が故障しても、内燃機関の運転を他の気筒で続行する
ことができるので、エンジンの信頼性が高い。
■Since a booster 3 and an injection valve 4 are provided for each cylinder, and the injection thread is independent for each cylinder, interference between cylinders can be prevented like in a high-pressure injection device, and this configuration for one cylinder can be Even if a failure occurs, the internal combustion engine can continue operating in other cylinders, making the engine highly reliable.

■制御部Aと弁部Bとを一体的に組合せて燃料噴射弁4
を構成するので、配管が省略される。そのため燃料漏れ
が防がれるとともに、燃料漏れに起因した火災の発生が
防がれる。
■The control part A and the valve part B are integrally combined to form the fuel injection valve 4.
, so piping is omitted. Therefore, fuel leakage is prevented, and the occurrence of a fire due to fuel leakage is also prevented.

第3図は本発明の他の実施例の構成図である。FIG. 3 is a block diagram of another embodiment of the present invention.

この実施例は、第1図および第2肉示の実施例に類似し
、対応する部分には同一の参照符を付す。
This embodiment is similar to the embodiment of FIGS. 1 and 2, and corresponding parts have been given the same reference numerals.

注目すべきは、蓄圧室12の燃料の圧力によって、制御
弁31の弁体31aの段付き部には、第3図の上への力
が作用して開弁状態となるように構成される。
What should be noted is that the pressure of the fuel in the pressure accumulation chamber 12 causes an upward force to act on the stepped portion of the valve body 31a of the control valve 31 in FIG. 3, causing the valve to open. .

本発明のさらに他の実施例として、絞り弁60を専管1
6に介在する代りに、導管27に介在してもよい。
As yet another embodiment of the present invention, the throttle valve 60 is
Instead of intervening in 6, it may be interposed in conduit 27.

第4図1d、本発明の更に他の実施例全示す構成図であ
る。これら実施例は前述の実施例に類似しており、対応
する部分には同一の参照符を付す。
FIG. 4 1d is a block diagram showing still another embodiment of the present invention. These embodiments are similar to the previously described embodiments and corresponding parts are provided with the same reference numerals.

注目すべきは、第2を磁弁6に4方向弁を用いたことで
あり、制御ピストン37の両側に配した第。
What should be noted is that the second solenoid valve 6 is a four-way valve, and the second valve is placed on both sides of the control piston 37.

1受圧面100と第2受圧面101を有する圧力室38
a、38bは第2電磁弁6によシ圧力のかかつ次導管4
3と逃し導管45にそれぞれ交互に接続可能になってい
て、制御ピストン371;l[Aえ位置6aでは右方向
へ、切換え位置6bでは左方向へそれぞれ付勢される。
A pressure chamber 38 having a first pressure receiving surface 100 and a second pressure receiving surface 101
a and 38b are connected to the conduit 4 to which pressure is applied by the second solenoid valve 6.
The control piston 371 is biased to the right in position 6a and to the left in switching position 6b.

第4図示は、第1電磁弁5が切換え位置5aに、第2亀
磁升6が切慄え位置6bKあり、第3図における時刻t
1とt2の間にある状態を示している。圧力室10と蓄
圧室12にはブースタ3により増圧された燃料油が保持
されていて弁部Bは閉じている。つまり、通路22を介
して制御弁31を右方向へ付勢する燃料油による力は、
制御ピストン37を左方向へ付勢する作動油による力よ
りも小さく、制御弁31は閉じている。このため通路3
5の圧力はタンクに開放されており、弁体47はばね4
6に付勢され閉じている。時刻t2において第2電磁弁
6が切換えられ6aに示す状態になると、圧力室38a
に圧力導管43が、圧力室38bに逃し導管45がi9
j:絖され制御ピストン37は右方向へ付勢されるので
、制御弁31は右へ移動し、蓄圧室12の燃料は通路2
2から燃料貯め48へ流れる。弁体47は燃料圧力に付
勢さればね46の抗力に反して上昇し図示しないシリン
ダ室へ噴射が行なわれる。時刻t3になると第2[磁弁
6は再び切換えられ、第4図示の状態となり、制御弁3
1け左へ移動し、閉弁されるので噴射は終了する。
In the fourth illustration, the first electromagnetic valve 5 is at the switching position 5a, the second tortoise valve 6 is at the switching position 6bK, and the time t in FIG.
1 and t2. Fuel oil pressurized by the booster 3 is held in the pressure chamber 10 and the pressure accumulation chamber 12, and the valve portion B is closed. In other words, the force exerted by the fuel oil that urges the control valve 31 to the right through the passage 22 is
The force is smaller than the force exerted by the hydraulic fluid that urges the control piston 37 to the left, and the control valve 31 is closed. For this reason, passage 3
5 pressure is released to the tank, and the valve body 47 is connected to the spring 4
6 and is closed. When the second solenoid valve 6 is switched to the state shown in 6a at time t2, the pressure chamber 38a
The pressure conduit 43 is connected to the pressure chamber 38b, and the relief conduit 45 is connected to the pressure chamber 38b.
j: Since the control piston 37 is forced to the right, the control valve 31 moves to the right, and the fuel in the pressure accumulator 12 flows into the passage 2.
2 to the fuel storage 48. The valve body 47 is biased by the fuel pressure and rises against the resistance of the spring 46, causing injection into a cylinder chamber (not shown). At time t3, the second magnetic valve 6 is switched again, and the state shown in the fourth figure is reached, and the control valve 3 is switched again.
It moves one place to the left and the valve closes, thus ending the injection.

第5図は本発明の他の実施例を示す構成図でちる。これ
ら実施例は前述の実施例に類似しており、対応する部分
には同一の参照符を付す。注目すべきは、第2電磁弁6
に4方向弁を用いたことであり、制御ピストン370両
側に配した紀1受圧面100と第2受圧面101を翁す
る圧力室38a。
FIG. 5 is a block diagram showing another embodiment of the present invention. These embodiments are similar to the previously described embodiments and corresponding parts are provided with the same reference numerals. What should be noted is the second solenoid valve 6.
A four-way valve is used for the control piston 370, and the pressure chamber 38a is connected to the first pressure receiving surface 100 and the second pressure receiving surface 101 arranged on both sides of the control piston 370.

38bは第2電磁弁6により圧力のかかった導管43と
逃し導管45にそれぞれ交互に接続可能になっていて、
制御ピストン37は切換え位餘6aでは上方向へ、切換
え位@6bでは下方向へそれぞれ付勢でれる。第5(9
)示は、年1電磁弁5が切換え位@5aに、第2電磁弁
が切換え位眞6bにあり、第3図における時刻t1とt
2の間にある状態金示している。圧力室10と蓄圧室1
2にはブースタ3により増圧された燃料油が保持されて
いて、弁部B7−j閉じている。つまり、通路22を介
して制御弁31を上方向へ付勢する燃料油による力は、
制御ピストン37を下方向へ付勢する作動油による力よ
りも小さく、制御弁31は閉じている。このため通路3
5の圧力はタンクに開放されてお夛弁体47はばね46
に付勢され萌している。
38b can be alternately connected to the pressured conduit 43 and the relief conduit 45 by the second solenoid valve 6,
The control piston 37 is biased upwardly at the switching position 6a and downwardly at the switching position @6b. 5th (9th
) shows that the first solenoid valve 5 is at the switching position @5a, the second solenoid valve is at the switching position 6b, and the times t1 and t in FIG.
It shows the condition between 2. Pressure chamber 10 and pressure accumulation chamber 1
2 holds fuel oil whose pressure has been increased by the booster 3, and the valve portion B7-j is closed. In other words, the force exerted by the fuel oil that urges the control valve 31 upward through the passage 22 is
The force is smaller than the force exerted by the hydraulic fluid that urges the control piston 37 downward, and the control valve 31 is closed. For this reason, passage 3
The pressure of 5 is released to the tank, and the valve body 47 is connected to the spring 46.
It is energized and blooming.

時刻t2において第2電磁弁6が切換えられ6aに示す
状態になると、圧力室38aに圧力導管43が圧力室3
8bに逃し導管45が接続きれ制御ピストン37は上方
向へ付勢されるので、制御弁31は上へ移動し、蓄圧室
12の燃料は通路22から燃料貯め48へ流れる。弁体
47は燃料圧力に付勢1れはね46の抗力に反して上昇
し、図示しないシリンダ室へ噴射が行なわれる。時刻t
3になると第2電磁弁6は再び切換えられ第5図示に示
す状態となり、制御弁31は下へ移動し、閉弁されるの
で噴射は終了する。
When the second solenoid valve 6 is switched to the state shown in 6a at time t2, the pressure conduit 43 is connected to the pressure chamber 38a.
Since the relief conduit 45 is connected to 8b and the control piston 37 is urged upward, the control valve 31 moves upward and the fuel in the pressure accumulation chamber 12 flows from the passage 22 to the fuel reservoir 48. The valve body 47 is biased by the fuel pressure and rises against the resistance of the spring 46, and injection is performed into a cylinder chamber (not shown). Time t
3, the second electromagnetic valve 6 is switched again to the state shown in FIG. 5, and the control valve 31 moves downward and is closed, thus ending the injection.

以上のように本発明によれば、内燃機関全停止すること
なく、また内燃機関の回転速度に依存せず、燃料噴射時
期および燃料噴射量、燃料噴射圧力を容易Kn節でき、
しかも燃料圧力、が高圧化できるようになる。
As described above, according to the present invention, the fuel injection timing, fuel injection amount, and fuel injection pressure can be easily adjusted without completely stopping the internal combustion engine and without depending on the rotational speed of the internal combustion engine.
Moreover, fuel pressure can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成図、第2図は第1図に
示された実施例の動作を説明するためのグラフ、第3図
は本発明の他の実施例の構成図、第4図は本発明の更に
他の実施例の構成図、第5図は本発明の他の実施例の構
成図である。 1・・・第1圧力源、2・・・第2圧力γ坤、3・・・
ブースタ、4・・・燃料噴射弁、5,6・・・電磁弁、
7・・・ピストン、8・・・グランジャ、lO・・・圧
力室、11.13・・・逆止弁、12・・・蓄圧室、3
1・・・制御弁、35・・・通路、51・・・ノズル孔
、A・・・制御部、B・・・弁部代理人 弁理士 西教
辛一部
Fig. 1 is a block diagram of one embodiment of the present invention, Fig. 2 is a graph for explaining the operation of the embodiment shown in Fig. 1, and Fig. 3 is a block diagram of another embodiment of the present invention. , FIG. 4 is a block diagram of still another embodiment of the present invention, and FIG. 5 is a block diagram of another embodiment of the present invention. 1... First pressure source, 2... Second pressure γkon, 3...
Booster, 4... Fuel injection valve, 5, 6... Solenoid valve,
7... Piston, 8... Granger, lO... Pressure chamber, 11.13... Check valve, 12... Pressure accumulation chamber, 3
1... Control valve, 35... Passage, 51... Nozzle hole, A... Control section, B... Valve department agent Patent attorney Shin Saikyo Department

Claims (4)

【特許請求の範囲】[Claims] (1)第1圧力源1からの作動油−を、少なくとも燃料
噴射期間W1以上の期間W2だけ開弁状態となる第1電
磁弁5を介して、ブースタ3における移動体7,8の一
端の大径受圧面71側に導き、移動体7,8の他端の小
径受圧面72側の圧力室10には、$2圧力源2から燃
料油を第1逆止弁13を介して導入し、この圧力室10
からの燃料油は第2逆止弁11を介して蓄圧室12に与
え、蓄圧室12’75.らの燃料油は制御弁31を介し
てノズル孔51から噴射され、制御弁31は、第1圧力
源1からの第2電磁弁6を介する作動油によってバイ四
ツ上作動することを特徴とする内燃機関の燃料噴射制御
装置。
(1) Hydraulic oil from the first pressure source 1 is supplied to one end of the movable bodies 7 and 8 in the booster 3 via the first electromagnetic valve 5 that is open for at least a period W2 that is longer than the fuel injection period W1. Fuel oil is introduced from the $2 pressure source 2 through the first check valve 13 into the pressure chamber 10 on the side of the small diameter pressure receiving surface 72 at the other end of the movable bodies 7 and 8. , this pressure chamber 10
The fuel oil from the pressure storage chambers 12'75. The fuel oil is injected from the nozzle hole 51 via the control valve 31, and the control valve 31 is operated in a bidirectional manner by the hydraulic oil from the first pressure source 1 via the second electromagnetic valve 6. A fuel injection control device for internal combustion engines.
(2)蓄圧室12の異常圧力上昇時に、開弁状態となる
安全弁80を設けたことを特徴とする特許請求の範囲第
1項記載の内燃機関の燃料噴射制御装置。
(2) The fuel injection control device for an internal combustion engine according to claim 1, further comprising a safety valve 80 that opens when the pressure in the pressure accumulation chamber 12 increases abnormally.
(3)制御弁31とノズル孔51との間の通路35には
、制御弁31の開弁時に閉じ、制御弁31の閉弁時に開
く弁手段全接続したことを特徴とする特許請求の範囲第
1項または第2項記載の内燃機関の燃料噴射制御装置。
(3) The passage 35 between the control valve 31 and the nozzle hole 51 is fully connected to a valve means that closes when the control valve 31 is opened and opens when the control valve 31 closes. A fuel injection control device for an internal combustion engine according to item 1 or 2.
(4)制御弁31は、燃料油の供給を制御する弁体31
aと、弁体31aに連結され弁体側の第1受圧面83と
弁体31aとは反対側の第2受圧面73とを有する制御
ピストン37と全含み、第2電磁弁6を介する作動油は
、第1受圧面100および第2受圧面101に選択的に
与えられることを特徴とする特許請求の範囲第1項記載
の内燃機関の燃料噴射制御装置。
(4) The control valve 31 is a valve body 31 that controls the supply of fuel oil.
a, and a control piston 37 connected to the valve body 31a and having a first pressure receiving surface 83 on the valve body side and a second pressure receiving surface 73 on the opposite side to the valve body 31a, and hydraulic oil flowing through the second solenoid valve 6. The fuel injection control device for an internal combustion engine according to claim 1, wherein is selectively applied to the first pressure receiving surface 100 and the second pressure receiving surface 101.
JP1574584A 1984-01-31 1984-01-31 Fuel injection control device of internal-combustion engine Granted JPS60162021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1574584A JPS60162021A (en) 1984-01-31 1984-01-31 Fuel injection control device of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1574584A JPS60162021A (en) 1984-01-31 1984-01-31 Fuel injection control device of internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS60162021A true JPS60162021A (en) 1985-08-23
JPH0544539B2 JPH0544539B2 (en) 1993-07-06

Family

ID=11897297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1574584A Granted JPS60162021A (en) 1984-01-31 1984-01-31 Fuel injection control device of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS60162021A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0830503A1 (en) * 1995-06-07 1998-03-25 Diesel Technology Company High-pressure electromagnetic fuel injector
EP0982492A2 (en) * 1998-08-28 2000-03-01 Wärtsilä NSD Schweiz AG Apparatus for injecting fuel in a reciprocating internal combustion engine
EP2568156A1 (en) * 2011-09-08 2013-03-13 Wärtsilä Schweiz AG Fuel injection system for an internal combustion engine, method for injecting fuel, as well as an internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124032A (en) * 1981-01-24 1982-08-02 Diesel Kiki Co Ltd Fuel injector
JPS5844262A (en) * 1981-08-22 1983-03-15 エム・ア−・エヌ・マシ−ネンフアブリ−ク・アウグスブルク−ニユルンベルク・アクチエンゲゼルシヤフト Fuel injector for internal combustion engine
JPS58119961A (en) * 1982-01-11 1983-07-16 Kawasaki Heavy Ind Ltd Fuel injection device in diesel engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124032A (en) * 1981-01-24 1982-08-02 Diesel Kiki Co Ltd Fuel injector
JPS5844262A (en) * 1981-08-22 1983-03-15 エム・ア−・エヌ・マシ−ネンフアブリ−ク・アウグスブルク−ニユルンベルク・アクチエンゲゼルシヤフト Fuel injector for internal combustion engine
JPS58119961A (en) * 1982-01-11 1983-07-16 Kawasaki Heavy Ind Ltd Fuel injection device in diesel engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0830503A1 (en) * 1995-06-07 1998-03-25 Diesel Technology Company High-pressure electromagnetic fuel injector
EP0830503A4 (en) * 1995-06-07 2000-01-19 Diesel Tech Co High-pressure electromagnetic fuel injector
EP0982492A2 (en) * 1998-08-28 2000-03-01 Wärtsilä NSD Schweiz AG Apparatus for injecting fuel in a reciprocating internal combustion engine
EP0982492B1 (en) * 1998-08-28 2008-03-26 Wärtsilä Schweiz AG Apparatus for injecting fuel in a reciprocating internal combustion engine
EP2568156A1 (en) * 2011-09-08 2013-03-13 Wärtsilä Schweiz AG Fuel injection system for an internal combustion engine, method for injecting fuel, as well as an internal combustion engine
CN102996260A (en) * 2011-09-08 2013-03-27 瓦锡兰瑞士公司 Fuel injection system for internal combustion engine, method for injecting fuel, as well as internal combustion engine

Also Published As

Publication number Publication date
JPH0544539B2 (en) 1993-07-06

Similar Documents

Publication Publication Date Title
US5515829A (en) Variable-displacement actuating fluid pump for a HEUI fuel system
US6439202B1 (en) Hybrid electronically controlled unit injector fuel system
US5511528A (en) Accumulator type of fuel injection device
JP2651432B2 (en) Common rail fuel injector
US3689205A (en) Pump-and-nozzle assembly for injecting fuel into internal combustion engines
US6931845B2 (en) Free piston engine
EP0050053B1 (en) Fuel injection pump for controlling the duration and timing of the injection
KR19990036336A (en) Fuel injectors used in internal combustion engines
US6863507B1 (en) Generic free-piston engine with transformer valve assembly for reducing throttling losses
JPH07189849A (en) Fuel injector for internal combustion engine
US20060011735A1 (en) Fuel injector provided with a servo leakage free valve
US4317541A (en) Fuel injector-pump unit with hydraulic needle fuel injector
US6427664B1 (en) Pressure booster for a fuel injection system for internal combustion engines
US20040055574A1 (en) Fuel injector and diesel engine comprising the same
JP2004514826A (en) Fuel injection system for internal combustion engines
CN101310104A (en) High pressure fuel injector
JPS60162021A (en) Fuel injection control device of internal-combustion engine
JPH0567773B2 (en)
JP2004518875A (en) Valve seat / sliding valve with pressure compensation pin
EP0974750B1 (en) Fuel-injection pump having a vapor-prevention accumulator
US4216754A (en) Fuel injection system
JPH03271561A (en) Fuel injection control device of internal combustion engine
JPH0435611B2 (en)
JPH0116336B2 (en)
JP3322578B2 (en) Two-fluid injection device