JPS60162020A - Thrust controller for exhaust turbine supercharger - Google Patents

Thrust controller for exhaust turbine supercharger

Info

Publication number
JPS60162020A
JPS60162020A JP1712084A JP1712084A JPS60162020A JP S60162020 A JPS60162020 A JP S60162020A JP 1712084 A JP1712084 A JP 1712084A JP 1712084 A JP1712084 A JP 1712084A JP S60162020 A JPS60162020 A JP S60162020A
Authority
JP
Japan
Prior art keywords
thrust
turbine
compressor
valve
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1712084A
Other languages
Japanese (ja)
Inventor
Shigetoshi Narusue
成末 繁利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1712084A priority Critical patent/JPS60162020A/en
Publication of JPS60162020A publication Critical patent/JPS60162020A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D3/00Machines or engines with axial-thrust balancing effected by working-fluid

Abstract

PURPOSE:To minimize the pressure-receiving area of each thrust bearing despite the reactionary force of a turbine, by controlling the thrust acting on the back of the impeller of a compressor, and those acting on both the sides of a turbine disk, to eliminate or minimize the thrust of a rotor shaft. CONSTITUTION:An enclosed chamber A on the compressor side of a turbine disk 12 and an air discharge port 37 are connected to each other through a high- pressure air introducing pipe 46 furnished with a control valve 45. An enclosed chamber B and an exhaust gas outlet port 40 are connected to each other through an exhaust gas communication pipe 48 furnished with a control valve 47. An enclosed chamber C is connected to an atmosphere release pipe 44 furnished with a control valve 43. The output signals of the temperature transmitter 49, which transmits the temperatures of a thrust bearing 23 near a compressor and a thrust bearing 24 near a turbine, and those of a valve opening degree transmitter 50, which transmits the degree of opening of the control valves 43, 45, 47, are entered into an opening degree discriminator 51 connected to an actuator 54 through a deviation corrector 52 and a control unit 53.

Description

【発明の詳細な説明】 この発明は、ロータ軸を排気タービンおよび圧縮機間で
支承させている排気タービン過給機における軸推力調整
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a shaft thrust adjustment device for an exhaust turbine supercharger in which a rotor shaft is supported between an exhaust turbine and a compressor.

ロータ軸を排気タービンおよび圧縮機間で支承させてい
る排気タービン過給機の従来構造には第1図に示すもの
がある。すなわち、圧縮機ケーシング35の空気吸込口
36から空気を吸入して空気吐出口37から圧縮空気を
吐出させる圧縮機羽根車1とタービンケーシング38の
ガス人口39かも送流される排気ガスによって回転させ
られて排気ガス出口40から仕事を終えた排気ガスを排
出させているタービン翼11を突設したタービンディス
ク12とをロータ軸13によって連結させ、該ロータ軸
の中間部の圧縮機側を圧縮機側ジャーナル軸受21で、
才だタービン側をタービン側ジャーナル軸受22で支承
させるとともに、前記両軸受の中間部のロータ軸13か
ら突設しである推力受41の両側において圧縮機側に圧
縮機側推力軸受23を、タービン側にタービン側推力軸
受24を夫々配設させて軸推力を支承させているが、前
記両ジャーナル軸受の両件側に圧縮機側ラビリンスパツ
キン25およびタービン側ラビリンスパツキン26を設
置して潤滑油の漏洩を防止させるとともに、前記羽根車
の背面部の密閉室(C)の外周に空気漏洩防止ラビリン
スパツキン29を囲設して該密閉室内の空気を空気放出
路42を経て大気に放出させ、寸だ前記タービンディス
クの両側に密閉室(A)および(B)を配設させ、前記
密閉室(A)を前記ディスク外周部に配設した高圧空気
漏洩防止ラビリンスパツキン27によって密閉させると
ともに、前記各軸受を収蔵させである軸受ケース30に
穿設させた高圧空気路31、あるいは管路を経て該密閉
室内に前記空気吐出口の高圧空気を導入自在にし、また
前記密閉室(B)には該ディスク外周部に配設した排気
ガス侵入防止ラビリンスパツキン28でガスが流入しな
いようにし、かつ該室内を大気に連通させ、あるいはガ
ス出口通路に管路を経て連結させてなっている。
A conventional structure of an exhaust turbine supercharger in which a rotor shaft is supported between an exhaust turbine and a compressor is shown in FIG. That is, the compressor impeller 1 which takes in air from the air suction port 36 of the compressor casing 35 and discharges compressed air from the air discharge port 37 and the gas population 39 of the turbine casing 38 are also rotated by the flowing exhaust gas. A rotor shaft 13 connects a turbine disk 12 with a protruding turbine blade 11 for discharging exhaust gas that has finished its work from an exhaust gas outlet 40, and the compressor side of the intermediate portion of the rotor shaft is connected to the compressor side. With journal bearing 21,
The turbine side is supported by a turbine side journal bearing 22, and compressor side thrust bearings 23 are installed on the compressor side on both sides of the thrust receiver 41, which is protruded from the rotor shaft 13 at the intermediate portion between the two bearings. A turbine-side thrust bearing 24 is disposed on each side to support the axial thrust, and a compressor-side labyrinth packing 25 and a turbine-side labyrinth packing 26 are installed on both sides of the journal bearings to prevent lubricating oil. In addition to preventing leakage, an air leakage prevention labyrinth packing 29 is provided around the outer periphery of the sealed chamber (C) on the back of the impeller to release the air in the sealed chamber to the atmosphere through the air release path 42. Sealed chambers (A) and (B) are arranged on both sides of the turbine disk, and the sealed chamber (A) is sealed by a labyrinth packing 27 for preventing leakage of high-pressure air arranged on the outer periphery of the disk. High-pressure air from the air outlet can be freely introduced into the sealed chamber through a high-pressure air path 31 bored in the bearing case 30 in which the bearing is housed, or through a conduit, and the sealed chamber (B) is provided with high-pressure air. An exhaust gas intrusion prevention labyrinth packing 28 disposed on the outer periphery of the disk prevents gas from entering, and the chamber is communicated with the atmosphere or connected to the gas outlet passage via a pipe.

なお、前記排気ガス入口からの排気ガスはノズル33o
′ノズル人口32からタービン翼IJの流入し、まだ前
記排気ガス出口はガス出ロケーシング34で構成させら
れている。
Note that the exhaust gas from the exhaust gas inlet is passed through the nozzle 33o.
'The inflow of the turbine blade IJ from the nozzle population 32 and the exhaust gas outlet are made up of a gas outlet casing 34.

したがって、従来排気タービン過給機の前述した構造に
ついてその軸推力を考察すれば、説明の便宜のために該
軸推力を圧縮機側およびターピノ側に分けて述べると、
なお前記軸推力の方向をタービン側から圧縮機側に向く
方向を正(+)とすると、まず圧縮機側の推力FBは、
羽根車1の空気吸込口36側からの力FBIと背面側、
すなわち密閉室(C)側からの力FB2との和であるが
、力FB2が大きいので常に正(+)方向で、その値は
高い圧力比の圧縮機では極めて犬であるので、密閉室(
C)内空気を大気放出させて推力FBを軽減させている
。また、タービン側の推力FTは、タービン翼前後の圧
力差と運動量の合成力FT1(常に正(+)方向である
が、その大きさはタービンの反動度によって左右される
)、密閉室(A、 )側からの力FT2 (圧縮機吐出
圧力Pdによってほぼ決定され、負(−)方向に働く)
、および密閉室(B)側からの力F”ra (前記力F
TIと同様にタービンの反動度によって左右され、正(
+)方向に働く)の合成力であって、そのために、 FT ”’ FTt FT2 +FTaであられされる
。したがって、軸推力FTo’rは、前記圧縮機側推力
FBおよびタービン側推力FTの合成力であり、タービ
ンの反動度によって変化することになる。いま、軸推力
F”roTのタービンの反動度による変化を第2図によ
って示せば、タービンの反動度が大きい場合には、軸推
力FTOT は正(+)方向の大きな力となり、また反
動度が小さい場合には負(−)方向の力になることが知
られている。このことから、従来排気タービン過給機に
おいては、タービンの反動度の変化に応じて変る軸推力
FToTの大きさに対応させて圧縮機側推力軸受23お
よびタービン側推力軸受24とに受圧面積差を配設させ
、あるいは軸推力の最大値に対応した受圧面積を保持さ
せる構造を採用させているが、しかしこのような構造は
いずれも性能上からも不満足である上に、製造原価構成
の点からも不得策である。
Therefore, when considering the axial thrust of the above-mentioned structure of the conventional exhaust turbine supercharger, for convenience of explanation, the axial thrust is divided into the compressor side and the turpino side.
If the direction of the axial thrust is positive (+) from the turbine side to the compressor side, then the thrust force FB on the compressor side is
The force FBI from the air suction port 36 side of the impeller 1 and the back side,
In other words, it is the sum of the force FB2 from the closed chamber (C) side, but since the force FB2 is large, it is always in the positive (+) direction, and its value is extremely small for a compressor with a high pressure ratio, so it is the sum of the force FB2 from the closed chamber (C) side.
C) Internal air is released to the atmosphere to reduce thrust FB. In addition, the thrust force FT on the turbine side is the resultant force FT1 of the pressure difference before and after the turbine blades and the momentum (always in the positive (+) direction, but its magnitude depends on the degree of reaction of the turbine), the closed chamber (A , ) side FT2 (approximately determined by the compressor discharge pressure Pd and acts in the negative (-) direction)
, and the force F”ra from the closed chamber (B) side (the force F
Like TI, it is influenced by the degree of reaction of the turbine, and is positive (
Therefore, the axial thrust FTo'r is the resultant force of the compressor side thrust FB and the turbine side thrust FT. and will change depending on the degree of reaction of the turbine. Now, if the change in the degree of reaction of the turbine in the axial thrust F"roT is shown in Figure 2, if the degree of reaction of the turbine is large, the axial thrust FTOT will be It is known that it becomes a large force in the positive (+) direction, and when the degree of recoil is small, it becomes a force in the negative (-) direction. For this reason, in the conventional exhaust turbine supercharger, the pressure receiving area difference between the compressor-side thrust bearing 23 and the turbine-side thrust bearing 24 is adjusted to correspond to the magnitude of the axial thrust FToT that changes according to changes in the degree of reaction of the turbine. However, these structures are not only unsatisfactory in terms of performance, but also have problems in terms of manufacturing cost structure. This is also a bad idea.

この発明は、このような現状からなされたものであって
、圧縮機羽根車の背面に作用する推力、およびロータデ
ィスクの両面に夫々作用する各推力を夫々調整自在にす
ることによって、ロータ軸の軸推力を零値、寸たけ最小
値にさせて、タービンの反動度に拘らずに最小の各推力
軸受の受圧面積で満足させるようにした排気タービン過
給機における軸推力調整装置を提供することを目的とし
たものである。
This invention was made in view of the current situation, and by making it possible to adjust the thrust force acting on the back surface of the compressor impeller and the thrust force acting on both sides of the rotor disk, the rotor shaft can be adjusted. To provide a axial thrust adjustment device for an exhaust turbine supercharger, which makes the axial thrust zero value and minimum value, and satisfies the pressure receiving area of each thrust bearing with the minimum value regardless of the degree of reaction of the turbine. The purpose is to

つぎに、この発明の実施例を図面によって説明すれば、
第3図において、圧縮機ケーシング35の空気吸込口3
6からの吸入空気を空気吐出口37から高圧化させて吐
出する圧縮機羽根車1とタービンケーシング38の排気
ガス人口39からの送流ガスで回転させられ、仕事を終
えた該ガスをガス出口ケーシング34の排気ガス出口4
0から排出させるタービン翼11を突設しであるタービ
ンディスク12とを中間に推力受41を配設させたロー
タ軸13で連結させ、該ロータ軸の中間部の両側を圧縮
機側ジャーナル軸受21およびタービン側ジャーナル軸
受22で夫々支承させるとともに、前記推力受の両側を
圧縮機側推力軸受23およびタービン側推力軸受24で
夫々軸推力を支承させ、さらに前記両ジャーナル軸受の
両件側に夫夫圧縮機側ラビリンスパツキン25およびタ
ービン側ラビリンスパツキン26を設置させて潤滑油漏
洩を防止するとともに、前記羽根車の背面をその外周設
した空気漏洩防止ラビリンスパツキン29で密閉室(C
)を形成させ、また前記タービンディスクの圧縮機側面
をその外周設させた高圧空気漏洩防止ラビリンスパツキ
ン27で密閉室(A)を、圧縮機反対側面をその外周設
させた排気ガス侵入防止ラビリンスパツキン28で密閉
室(B)を夫々形成させである排気タービン過給機の前
記密閉室(C)の適宜個所に制ml弁(■c)43を介
設した大気放出管44を接続させて大気と連通自在にさ
せ、捷だ前記密閉室(A)と前記空気吐出口とを制御弁
(VA)45を介在させて高圧空気導入管46で接続さ
せ、さらに前記密閉室(B)と前記ガス出口ケーシング
とを制御卸弁(VB)47を介した排気ガス連通管48
で連通させるとともに、圧縮機側推力軸受23およびタ
ービン側推力11+受24温度を発信する温度発信器4
9および制御弁(VA) 45、(VB)47、(VC
)43 の各々の弁開度を発信する弁開度発信器50を
前記側推力軸受の温度を受信して検知した温度差が常に
一定範囲内にあるように前記各制御弁の弁開度を予め設
定したプロセスにしたがって計算して指示を行なう開度
判別装置51に接続し、ついで各制御弁の弁開度検出値
と該開度判別装置が与える弁開度設定値との偏差を修正
する偏差修正器52に、さらに前記修正器が修正した開
度偏差値量に対応して弁開度の増減量を設定する弁開度
コントローラ53に、捷たさらに前記コントローラの信
号によって各制御弁の弁開度の増減量を夫々の弁に伝達
するアクチュエータ54に連続して接続させてなるもの
である。
Next, an embodiment of the present invention will be described with reference to the drawings.
In FIG. 3, the air inlet 3 of the compressor casing 35
The compressor impeller 1 and the turbine casing 38 are rotated by the flow gas from the exhaust gas population 39 of the turbine casing 38, and the gas that has finished its work is transferred to the gas outlet. Exhaust gas outlet 4 of casing 34
A turbine blade 11 for discharging air from 0 is connected to a protruding turbine disk 12 through a rotor shaft 13 having a thrust bearing 41 disposed in the middle, and compressor-side journal bearings 21 are connected to both sides of the intermediate portion of the rotor shaft. and turbine-side journal bearings 22, and the compressor-side thrust bearings 23 and turbine-side thrust bearings 24 support the axial thrust on both sides of the thrust bearings. A labyrinth packing 25 on the compressor side and a labyrinth packing 26 on the turbine side are installed to prevent lubricating oil leakage, and the back of the impeller is sealed in a closed chamber (C
), and a sealed chamber (A) is formed by a high-pressure air leakage prevention labyrinth packing 27 having the compressor side of the turbine disk on its outer periphery, and an exhaust gas intrusion prevention labyrinth packing 27 having the opposite side of the compressor on its outer periphery. At 28, sealed chambers (B) are respectively formed, and atmospheric discharge pipes 44 with ml control valves (■c) 43 are connected to appropriate locations of the sealed chambers (C) of the exhaust turbine supercharger to release the atmosphere. The closed chamber (A) and the air outlet are connected by a high pressure air introduction pipe 46 through a control valve (VA) 45, and the closed chamber (B) and the gas An exhaust gas communication pipe 48 is connected to the outlet casing via a control valve (VB) 47.
A temperature transmitter 4 transmits the temperature of the compressor side thrust bearing 23 and the turbine side thrust bearing 11 + bearing 24.
9 and control valves (VA) 45, (VB) 47, (VC
)43 The valve opening transmitter 50 transmits the valve opening of each of the control valves so that the temperature difference detected by receiving the temperature of the side thrust bearing is always within a certain range. It is connected to an opening degree determination device 51 that calculates and gives instructions according to a preset process, and then corrects the deviation between the valve opening degree detection value of each control valve and the valve opening degree setting value given by the opening degree determination device. The deviation corrector 52 is further sent to a valve opening controller 53 which sets an increase/decrease in the valve opening in accordance with the opening deviation value corrected by the corrector. It is connected continuously to an actuator 54 that transmits an increase/decrease in the valve opening degree to each valve.

したがって、この発明によれば、前記各制御弁の弁開度
を調節することによって各密閉室内の圧力を制御できる
から、個々の推力および過給機全体の軸推力の制@1を
行なえるが、これを第4ア、4イ、4つ、4工、4オ、
4力、4キおよび4り図に示ず軸推力の調整例によって
説明すれば、タービン翼前後の圧力差と運動敬の合成力
FTIは、第4ア図において、タービンの反動度によっ
て、’I’11 (反動慶大)からT21(反動度小)
の範囲で一義的に定寸り、密閉室(A)側からの力FT
2は、第4イ図において、制御弁(VA)45を制御し
てT21(前記制御弁全開時)からT22(前記制御弁
全開時)の範囲の調整が自在であるので、その中間のT
24の設定ができ、1だ密閉室(B)側からの力FTi
l+は、第4つ図において、い才、制御弁(VB)が全
閉時には、T3□(反動慶大、調整前)からTa2(反
動度小、調整前)の範囲で一義的に定まるが、前記制御
弁に(1)密閉室(B)内の圧力PBがガス出口圧力P
E以下の場合(PB≦PE )に該弁が閉で、PB>P
Eの場合に該弁を開となる機能、(2)前記密閉室から
ガス出口に向うガス流がガス侵入防止ラビリンスパツキ
ン28によって制約されているから前記弁(VB)の代
りに適当形状のオリフィスまたは前略を設置させて制御
しない無制御機能のいずれかの機能をもだせると、力F
T3を反動度如何によらずに一定の力T33(制御弁(
Vll)による調整後)に調整可能であり、したがって
、第4工図に示すように、タービン側の推力FTは、制
御弁(VA )および(VB)の制御調整によって、T
43(反動慶大、FTを可能最小に調整、T48 ” 
Ti□十T2□十T33)からT44(反動度小、FT
二〇にW〜整、T44二T12+T2.十T33)の範
囲に設定でき、つぎに、圧縮機羽根車の空気吸込口から
の力FB□は、第4オ図において、圧縮機仕様によって
一義的に13thと定1す、羽根車背面からの力FE2
は、第4力図において、制御弁(VC)の制御によって
B2□(前記弁の全閉時)からB22(前記弁の全開時
)の範囲で調整できるから、その間の828.824等
の設定が自在であり、したがって、圧縮機側の推力FB
は、第4キ図において、制御弁(VC)の制御調整によ
って、B4、(前記弁の全閉時、J34、=B11+B
21)からB42(前記弁の全開時)B42−Btt 
+ B22 )の範囲で設定できるから、その間の84
3 (B48 = B2O+ 828 )、B44(1
344= Btt + B24 )等の設定が自在であ
る。前述したように、タービン側の推力FT1 および
圧縮機側の推力FBは、夫々の制御弁の制御によって設
定できるので、それ等の合力である過給機の軸推力FT
OTが自在に設定でき、いま反動度の大きい場合の大き
い場合を例示すれば、第4り図において、タービン側推
力FTがT48のように正(+)の推力がかかると、圧
縮機側推力FBとして前記T4B に絶対値が等しく、
かつ反対向き、すなわち負(−)向きの推力B411を
選定すれば、軸推力FToTは、FTOT4B (FT
OT4g ” T43 + B2O)となって零値にす
ることができ、また反動度の大きい場合を除けばタービ
ン側推力FTをT44のようにそれ自体で零値に調整す
ることができるが、圧縮機側推力FBは当然B44のよ
うに零値に調整されるので、その合力である軸推力FT
6T44となって零値になる。
Therefore, according to the present invention, since the pressure in each sealed chamber can be controlled by adjusting the valve opening degree of each of the control valves, it is possible to control the individual thrust and the axial thrust of the entire supercharger. , this is 4th a, 4th, 4th, 4th, 4th,
4 Force, 4 Ki, and 4 Diagram To explain using an example of adjusting the axial thrust (not shown in the diagram), the resultant force FTI of the pressure difference before and after the turbine blade and the motion force is determined by the degree of reaction of the turbine in Figure 4A. I'11 (reaction Keio University) to T21 (reaction degree small)
The force FT from the closed chamber (A) side is uniquely determined within the range of
2, in FIG. 4A, the control valve (VA) 45 can be controlled to adjust the range from T21 (when the control valve is fully open) to T22 (when the control valve is fully open), so the intermediate T
24 settings can be made, and 1 is the force FTi from the closed chamber (B) side.
In Figure 4, when the control valve (VB) is fully closed, l+ is uniquely determined in the range from T3□ (reaction level, before adjustment) to Ta2 (reaction level is small, before adjustment). , (1) The pressure PB in the sealed chamber (B) is set to the gas outlet pressure P.
The valve is closed when E or less (PB≦PE), and PB>P
(2) Since the gas flow from the sealed chamber toward the gas outlet is restricted by the gas intrusion prevention labyrinth packing 28, an orifice of an appropriate shape is used instead of the valve (VB). Or, if you install the above function and can perform any of the uncontrolled functions, the force F
A constant force T33 (control valve (
Therefore, as shown in the fourth engineering drawing, the thrust force FT on the turbine side can be adjusted to T by the control adjustment of the control valves (VA) and (VB).
43 (Reaction Keidai, FT adjusted to the minimum possible, T48 ”
Ti□10T2□10T33) to T44 (low recoil, FT
20 W ~ adjustment, T442 T12 + T2. Next, the force FB from the air suction port of the compressor impeller is uniquely determined as 13th according to the compressor specifications in Figure 4. The power of FE2
can be adjusted in the range of B2□ (when the valve is fully closed) to B22 (when the valve is fully open) by controlling the control valve (VC) in the fourth force diagram, so settings such as 828, 824 etc. Therefore, the thrust force FB on the compressor side is
In Fig. 4, by adjusting the control valve (VC), B4, (when the valve is fully closed, J34, = B11 + B
21) to B42 (when the valve is fully open) B42-Btt
+B22), so it can be set within the range of 84
3 (B48 = B2O+ 828), B44 (1
344=Btt+B24), etc. can be freely set. As mentioned above, since the thrust force FT1 on the turbine side and the thrust force FB on the compressor side can be set by controlling the respective control valves, the axial thrust force FT of the supercharger which is the resultant force of these
OT can be set freely, and to give an example of a case where the degree of reaction is large, in the fourth diagram, when the turbine side thrust FT is positive (+) as in T48, the compressor side thrust As FB, the absolute value is equal to the above T4B,
And if thrust B411 in the opposite direction, that is, in the negative (-) direction, is selected, the axial thrust FToT becomes FTOT4B (FT
OT4g ” T43 + B2O), and the turbine side thrust FT can be adjusted to zero by itself like T44, except in cases where the degree of reaction is large, but the compressor Since the side thrust FB is naturally adjusted to a zero value like B44, the resultant force is the axial thrust FT.
It becomes 6T44 and becomes a zero value.

上述したように、この発明は、タービン側推力を制御弁
(VA)および(VB)を夫々側−し、また圧縮機側推
力を制御弁(vc)を制御することによって、前記側推
力の合力である過、給機軸推力を自在に制御できるから
、その産業上の利用価値が極めて高い。
As described above, the present invention controls the thrust on the turbine side through the control valves (VA) and (VB), and controls the thrust on the compressor side through the control valve (VC), thereby generating the resultant force of the side thrust. Since the feeder shaft thrust can be freely controlled, its industrial value is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来排気タービン過給機の要部の縦断側面図
、第2図は、同じくタービンの反動度に対応する過給機
軸推力の値を示す曲線図、第3図は、この発明の実施例
を示す要部の縦断側面図に制イ卸系統を雄面した説明図
、第4ア、4イ、4つおよび4工図は、タービン側推力
の調整例を示す曲線図、第4オ、4カおよび4キ図は、
圧縮機側推力の調整例を示す曲線図、第4り図は、過給
機軸推力の調整例を示す曲線図である。 1・・圧縮機羽根車、11・・タービン翼、12・・タ
ービンティスフ、13・・ロータ軸、21・・圧縮機側
ジャーナル軸受、22・・タービン側ジャーナル軸受、
23・・圧縮機側推力軸受、24・・タービン側推力軸
受、25・・圧縮機側ラビリンスパツキン、26・・タ
ービン側ラビリンスパツキン、27・・高圧空気漏洩防
止ラビリンスパツキン、28・・排気ガス侵入防止ラビ
リンスパツキン、2911・空気漏洩防止ラビリンスパ
ツキン、30・・軸受ケース、31・・高圧空気路、3
2・・ノズル入口、33・・ノズル、34・・ガス出口
ケーシング、35・・圧縮機ケーシング、36・・空気
吸込口、37・・空気吐出口、38−−タービンケーシ
ング、39・・排気ガス入口、40・・排気ガス出口、
41・・推力受、42・・空気放出路、43・・制御弁
(Vo)、44・・大気放出官、45・・制御弁(VA
)、46・・高圧空気導入1・、47・・制御弁(VB
)、48・・排気ガス連通管、49・・温度発信器、5
0・・弁開度発信器、51・・開度判別装置、52・・
偏差修正器、53・・弁開度コントローラ、54・・ア
クチュエータ、(A)・・密閉室、(B)・・密閉室、
(C)・・密閉室。 第8図 ←反動4ノ((、〕1\ 】りi:動ノ17:火−+タ
ーピ“ン乃反動力し 手続補正書(方式) 昭和59年 5月21日 特許庁長官 若 杉 和 夫 殿 1、事件の表示 特願昭59年17120号2、発明の
名称 排気タービン過給機における軸推力調整装置3、
補正をする者 事件との関係 出願人名 称 三菱重工
業株式会社 4、復代理人 〒100東京都千代田区有楽町−丁目8
番1号日比谷パークビルヂング519号(電話213−
0686)5、補正命令の日付 昭和59年 4月24
日6、補正の対象 図面 7、補正の内容 第4−7図ないし第4−り図を別紙の
とおり第4−イ図 圧141!・o土出圧力 Pd(mtr+H$)第4−
ウ図 圧膣宰驚口土出斤力 Pま(mmH’))第4−1図 RI ’JI4−オ図 圧m*n土出圧力ρd(mTrLH’J、)第4−内因
Fig. 1 is a longitudinal cross-sectional side view of the main parts of a conventional exhaust turbine supercharger, Fig. 2 is a curve diagram showing the value of the supercharger axial thrust corresponding to the degree of reaction of the turbine, and Fig. 3 is a diagram of the present invention. 4A, 4A, 4, and 4 engineering drawings are a curve diagram showing an example of adjusting the thrust on the turbine side. The 4o, 4ka and 4ki diagrams are
The fourth diagram is a curve diagram showing an example of adjusting the compressor side thrust. The fourth diagram is a curve diagram showing an example of adjusting the supercharger axial thrust. 1... Compressor impeller, 11... Turbine blade, 12... Turbine tire, 13... Rotor shaft, 21... Compressor side journal bearing, 22... Turbine side journal bearing,
23...Compressor side thrust bearing, 24...Turbine side thrust bearing, 25...Compressor side labyrinth packing, 26...Turbine side labyrinth packing, 27...High pressure air leak prevention labyrinth packing, 28...Exhaust gas intrusion Preventing labyrinth packing, 2911・Air leak prevention labyrinth packing, 30・Bearing case, 31・High pressure air path, 3
2... Nozzle inlet, 33... Nozzle, 34... Gas outlet casing, 35... Compressor casing, 36... Air suction port, 37... Air discharge port, 38-- Turbine casing, 39... Exhaust gas Inlet, 40...exhaust gas outlet,
41... Thrust receiver, 42... Air release path, 43... Control valve (Vo), 44... Atmospheric release officer, 45... Control valve (VA
), 46... High pressure air introduction 1, 47... Control valve (VB
), 48...Exhaust gas communication pipe, 49...Temperature transmitter, 5
0... Valve opening degree transmitter, 51... Opening degree determination device, 52...
Deviation corrector, 53... Valve opening controller, 54... Actuator, (A)... Sealed chamber, (B)... Sealed chamber,
(C)...Closed room. Figure 8←Reaction 4ノ((、〕1\】RIi: Movement 17: Fire-+Tarpin “Reaction force and procedural amendment (method) May 21, 1980 Commissioner of the Patent Office Kazu Wakasugi Mr. Husband 1. Indication of the incident: Patent Application No. 17120 of 1982 2. Title of the invention: Shaft thrust adjustment device in exhaust turbine supercharger 3.
Person making the amendment Relationship to the case Applicant Name Mitsubishi Heavy Industries, Ltd. 4, Sub-Agent Address: 8-chome, Yurakucho, Chiyoda-ku, Tokyo 100
No. 1 Hibiya Park Building No. 519 (Telephone 213-
0686) 5. Date of amendment order: April 24, 1982
Day 6, Subject of correction Drawing 7, Contents of correction Figures 4-7 and 4-3 are attached as attached, and Figure 4-A figure pressure 141!・o Exhumation pressure Pd (mtr + H$) 4th -
Fig. 4-1 RI 'JI 4- O Fig. pressure m*n Evacuation pressure ρd (mTrLH'J,) 4th-Internal cause

Claims (1)

【特許請求の範囲】[Claims] 両側軸端に圧縮機羽根車およびタービン翼を突設したタ
ービンディスクを配設しであるロータ軸の中間に突設し
た推力受の両側を夫々推力軸受で、ならびにさらにその
両側を夫々ジャーナル軸受で支承させるとともに、前記
羽根車背面の密閉室を制御弁を介設して大気放出させ、
また前記ディスクの圧縮機側の密閉室と圧縮機空気吐出
口とを制御弁を介して、さらに前記ディスクの圧縮機反
対側の密閉室とガス出口とを制御弁を介して夫々連通さ
せ、前記側推力軸受の温度を発信する温度発信器および
各制御弁の弁開度を発信する弁開度発信器を前記側推力
軸受の温度差が常に定範囲内にあるように弁開度を設定
プロセスにしたがって算出指示する開度判別装置に接続
し、ついで各弁開度検出値と該開度判別装置の弁開度設
定値との偏差を修正する偏差修正器に、さらに前記修正
器が修正した偏差値量に対応して弁開度増減量を設定す
る弁開度コントローラに、またさらに該コントローラの
信号によって各弁の開度増減量を夫々の弁に伝達するア
クチュエータに連続して接続させたことを特徴とする排
気タービン過給機における軸推力調整装置。
A turbine disk with a compressor impeller and turbine blades protruding from both ends of the shaft is arranged.A thrust receiver protruding from the middle of the rotor shaft is provided with thrust bearings on both sides, and journal bearings on both sides. At the same time, the sealed chamber on the back of the impeller is vented to the atmosphere by interposing a control valve,
Further, the sealed chamber on the compressor side of the disk and the compressor air discharge port are communicated via a control valve, and the sealed chamber on the opposite side of the disk to the compressor and the gas outlet are communicated via a control valve, respectively. A process of setting the valve opening so that the temperature difference between the side thrust bearings is always within a certain range using a temperature transmitter that transmits the temperature of the side thrust bearing and a valve opening transmitter that transmits the valve opening of each control valve. is connected to an opening degree determination device that instructs calculation according to It was connected continuously to a valve opening controller that sets the increase/decrease in the valve opening in response to the deviation value, and further to an actuator that transmits the increase/decrease in the opening of each valve to each valve based on a signal from the controller. A axial thrust adjustment device for an exhaust turbine supercharger, characterized in that:
JP1712084A 1984-02-03 1984-02-03 Thrust controller for exhaust turbine supercharger Pending JPS60162020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1712084A JPS60162020A (en) 1984-02-03 1984-02-03 Thrust controller for exhaust turbine supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1712084A JPS60162020A (en) 1984-02-03 1984-02-03 Thrust controller for exhaust turbine supercharger

Publications (1)

Publication Number Publication Date
JPS60162020A true JPS60162020A (en) 1985-08-23

Family

ID=11935171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1712084A Pending JPS60162020A (en) 1984-02-03 1984-02-03 Thrust controller for exhaust turbine supercharger

Country Status (1)

Country Link
JP (1) JPS60162020A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293404A (en) * 1985-10-18 1987-04-28 Hitachi Ltd Turbine compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293404A (en) * 1985-10-18 1987-04-28 Hitachi Ltd Turbine compressor
JPH0336122B2 (en) * 1985-10-18 1991-05-30 Hitachi Ltd

Similar Documents

Publication Publication Date Title
US5141389A (en) Control system for regulating the axial loading of a rotor of a fluid machine
KR830001267B1 (en) Axial thrust bearing device
EP1918200B1 (en) Auxiliary power unit assembly
CA1096463A (en) Control for gas turbine engine
JPH0599196A (en) Turbo type compressor and its control
JP5840390B2 (en) Thrust control system for steam turbine
JPS60543B2 (en) Control system of multistage axial flow compressor of gas turbine engine
JP5840389B2 (en) Thrust control system for steam turbine
US6925805B2 (en) Turbocharger
US6598615B1 (en) Compact independent pressure control and vacuum isolation for a turbomolecular pumped plasma reaction chamber
EP1908950B1 (en) Pressure balance control for gas turbine engine nozzle
EP2941538B1 (en) Method for balancing thrust, turbine and turbine engine
JPS60162020A (en) Thrust controller for exhaust turbine supercharger
US5447023A (en) Synthesized fuel flow rate and metering valve position
CA2430441A1 (en) System for control and regulation of the flame temperature for single-shaft gas turbines
RU2686781C2 (en) Gas pressure regulator
JPS60162002A (en) Thrust controller for exhaust turbine supercharger
JPS60147538A (en) Axial-thrust controlling apparatus for exhaust turbocharger
JPH08189302A (en) Thrust automatic adjusting device
JPS6093124A (en) Intake device of rotary piston engine
JPS6131283B2 (en)
JPH0615809B2 (en) Turbine thrust adjustment device
US10590857B2 (en) Turbocharger assembly with oil carry-over protection
JPS62294701A (en) Thrust control device for expansion turbine
JPH02119681A (en) Axial thrust reducing device of francis turbine