JPS60162002A - Thrust controller for exhaust turbine supercharger - Google Patents

Thrust controller for exhaust turbine supercharger

Info

Publication number
JPS60162002A
JPS60162002A JP1611284A JP1611284A JPS60162002A JP S60162002 A JPS60162002 A JP S60162002A JP 1611284 A JP1611284 A JP 1611284A JP 1611284 A JP1611284 A JP 1611284A JP S60162002 A JPS60162002 A JP S60162002A
Authority
JP
Japan
Prior art keywords
compressor
thrust
valve
valve opening
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1611284A
Other languages
Japanese (ja)
Inventor
Shigetoshi Narusue
成末 繁利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1611284A priority Critical patent/JPS60162002A/en
Publication of JPS60162002A publication Critical patent/JPS60162002A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D3/00Machines or engines with axial-thrust balancing effected by working-fluid
    • F01D3/04Machines or engines with axial-thrust balancing effected by working-fluid axial thrust being compensated by thrust-balancing dummy piston or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To reduce the pressure-receiving area of a bearing, by connecting the space on the back of the impeller of a compressor to the atmosphere through a control valve, connecting the space on the compressor-facing side of a turbine disk to that on the discharge side of the compressor through a control valve, and connecting the space on the opposite-the-compressor side of the disk to a gas outlet port through a control valve. CONSTITUTION:A rotor shaft 13 is supported halfway by thrust bearings 23, 24. An enclosed chamber C on the back of the impeller 1 of a compressor is connected to the atmosphere through a control valve 43. An enclosed chamber A on the side of a turbine disk 12 in the face of the compressor is connected to the discharge side 37 of the compressor through a control valve 45. An enclosed chamber B on the side of the disk 12 opposite the compressor is connected to a gas outlet port 40 through a control valve 47. The axial position of the rotor shaft 13 is detected by axial position gauges 49, 50 to control the degrees of opening of the control valves 43, 45, 47 depending on the deviation of the axial position of the rotor shaft. The thrust of the shaft 13 is thus minimized, so that the pressure-receiving area of each thrust bearing can be reduced.

Description

【発明の詳細な説明】 この発明は、ロータ軸を排気タービンおよび圧縮機間で
支承させている排気タービン過給機における軸推力調整
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a shaft thrust adjustment device for an exhaust turbine supercharger in which a rotor shaft is supported between an exhaust turbine and a compressor.

ロータ軸を排気タービンおよび圧縮機間で支承させてい
る排気タービン過給機の従来構造には第1図に示すもの
がある。すなわち、圧縮機ケーシング35の空気吸込口
36がら空気を吸入して空気吐出口37から圧縮空気を
吐出させる圧縮機羽根車1とタービンケーシング38の
ガス人口39から送流される排気ガスによって回転させ
られて排気ガス出口40から仕事を終えた排気ガスを排
出させているタービン翼11を突設したタービンディス
ク12とをロータ軸13によって連結させ、該ロータ軸
の中間部の圧縮機側を圧縮機側ジャーナル軸受21で、
またタービン側をタービン側ジャーナル軸受22で支承
させるとともに、前記両軸受の中間部のロータ軸13か
ら突設しである推力受41の両側において圧縮機側に圧
縮機側推力軸受23を、タービン側にタービン側推力軸
受24を夫々配設させて軸推力を支承させているが、前
記両ジャーナル軸受の両外側に圧縮機側ラビリンスパツ
キン25およびタービン側ラビリンスパツキン26を設
置して潤滑油の漏洩を防止させるとともに、前記羽i車
の背面部の密閉室(C)の外周に空気漏洩防止ラビリン
スパツキン29を囲設して該密閉室内の空気を空気放出
路42を経て大気に放出させ、また前記タービンディス
クの両側に密閉室(A)および(B)を配設させ、前記
密閉室(A)を前記ディスク外周部に配設した高圧空気
漏洩防止ラビリンスパツキン27によって密閉させると
ともに、前記各軸受を収蔵させである軸受ケース30に
穿設させた高圧空気路31、あるいは管路を経て該密閉
室内に前記空気吐出口の高圧空気を導入自在にし、また
前記密閉室(B)には該ディスク外周部に配設した排気
ガス侵入防止ラビリンスパツキン28でガスが流入しな
いようにし、かつ該室内を大気に連通させ、あるいはガ
ス出口通路に管路を経て連結させてなっている。なお、
前記排気ガス入口からの排気ガスはノズル33のノズル
人口32からタービン翼11の流入し、1だ前記排気ガ
ス出口はガス出口ケーシング34で構成させられている
A conventional structure of an exhaust turbine supercharger in which a rotor shaft is supported between an exhaust turbine and a compressor is shown in FIG. That is, it is rotated by the compressor impeller 1 which sucks air through the air suction port 36 of the compressor casing 35 and discharges compressed air from the air discharge port 37, and the exhaust gas sent from the gas port 39 of the turbine casing 38. A rotor shaft 13 connects a turbine disk 12 with a protruding turbine blade 11 for discharging exhaust gas that has finished its work from an exhaust gas outlet 40, and the compressor side of the intermediate portion of the rotor shaft is connected to the compressor side. With journal bearing 21,
In addition, the turbine side is supported by a turbine side journal bearing 22, and compressor side thrust bearings 23 are provided on both sides of the thrust receiver 41, which is protruded from the rotor shaft 13 at the intermediate portion of both bearings. A turbine-side thrust bearing 24 is disposed on each side to support the axial thrust, and a compressor-side labyrinth packing 25 and a turbine-side labyrinth packing 26 are installed on both outsides of both journal bearings to prevent leakage of lubricating oil. At the same time, an air leakage prevention labyrinth packing 29 is provided around the outer periphery of the sealed chamber (C) on the back side of the impeller to release the air in the sealed chamber to the atmosphere through the air release path 42. Sealed chambers (A) and (B) are arranged on both sides of the turbine disk, and the sealed chamber (A) is sealed by a high-pressure air leak prevention labyrinth packing 27 arranged on the outer periphery of the disk, and each of the bearings is sealed. The high-pressure air from the air outlet can be freely introduced into the sealed chamber through a high-pressure air path 31 bored in the bearing case 30 or a conduit, and the sealed chamber (B) is provided with the outer periphery of the disk. The exhaust gas intrusion prevention labyrinth packing 28 provided in the chamber prevents gas from entering the chamber, and the chamber is communicated with the atmosphere or connected to the gas outlet passage via a pipe. In addition,
The exhaust gas from the exhaust gas inlet flows into the turbine blade 11 through the nozzle port 32 of the nozzle 33, and one exhaust gas outlet is constituted by a gas outlet casing 34.

したがって、従来排気タービン過給機の前述した構造に
ついてその軸推力を考察すれば、説明の便宜のために該
軸推力を圧縮機側およびタービン側に分けて述べると、
なお前記軸推力の方向をりると、まず圧縮機側の推力F
Bは、羽根車1の空気吸込口36側からの力FBIと背
面側、すなわち密閉室(C)側からの力FB2との和で
あるが、カFB2が大きいので常に正(+)方向で、そ
の値は高い圧力比の圧縮機では極めて大であるので、密
閉室(C)内空気を大気放出させて推力FBを軽減させ
ている。また、タービン側の推力FTは、タービン翼前
後の圧力差と運動量の合成力FTI (常に正(+)方
向であるが、その大きさはタービンの反動度によって左
右される)、密閉室(A)側からの力FT□(圧縮機吐
出圧力Pdによってほぼ決定され、負(=)方向に働く
)、および密閉室(B)側からの力FT8 (前記力F
Ttと同様にタービンの反動度によって左右され、正(
+)方向に働く)の合成力であって、そのために、 FT = FTI FT2 + FT8であられされる
。したがって、軸推力F”ro’rは、前記圧縮機側推
力FBおよびタービン側推力FTの合成力であシ、ター
ビンの反動度によって変化す7− > 1− 1/’ 
fp 1 1− 、kml−4−u−−1−h−−−−
−反動度による変化を第2図によって示せば、タービン
の反動度が大きい場合には、軸推力FTo’rは正(+
)方向の大きな力となり、また反動度が小さい場合には
負(−)方向の力になることが知られている。このこと
から、従来排気タービン過給機においては、タービンの
反動度の変化に応じて変る軸推力FToTの大きさに対
応させて圧縮機側推力軸受23およびタービン側推力軸
受24とに受圧面積差を配設させ、あるいは軸推力の最
大値に対応しだ受圧面積を保持させる構造を採用させて
いるが、しかしこのような構造はいずれも性能上からも
不満足である上に、製造原価構成の点からも不得策であ
る。
Therefore, when considering the axial thrust of the above-mentioned structure of the conventional exhaust turbine supercharger, for convenience of explanation, the axial thrust is divided into the compressor side and the turbine side.
In addition, if we look at the direction of the axial thrust, we will first notice the thrust F on the compressor side.
B is the sum of the force FBI from the air suction port 36 side of the impeller 1 and the force FB2 from the back side, that is, the closed chamber (C) side, but since the force FB2 is large, it is always in the positive (+) direction. Since this value is extremely large in a compressor with a high pressure ratio, the air inside the closed chamber (C) is released to the atmosphere to reduce the thrust force FB. In addition, the thrust force FT on the turbine side is the resultant force of the pressure difference before and after the turbine blades and the momentum FTI (always in the positive (+) direction, but its magnitude depends on the degree of reaction of the turbine), the closed chamber (A ) side FT□ (approximately determined by compressor discharge pressure Pd and acts in the negative (=) direction), and force FT8 from the closed chamber (B) side (the force F
Like Tt, it is influenced by the degree of reaction of the turbine, and is positive (
(acting in the +) direction), and is therefore given by FT = FTI FT2 + FT8. Therefore, the axial thrust F"ro'r is a composite force of the compressor side thrust FB and the turbine side thrust FT, and changes depending on the degree of reaction of the turbine.7->1-1/'
fp 1 1-, kml-4-u--1-h---
- If the change due to the degree of reaction is shown in Figure 2, if the degree of reaction of the turbine is large, the axial thrust FTo'r will be positive (+
It is known that the force becomes a large force in the ) direction, and when the degree of recoil is small, it becomes a force in the negative (-) direction. For this reason, in the conventional exhaust turbine supercharger, the pressure receiving area difference between the compressor-side thrust bearing 23 and the turbine-side thrust bearing 24 is adjusted to correspond to the magnitude of the axial thrust FToT that changes according to changes in the degree of reaction of the turbine. However, these structures are not only unsatisfactory in terms of performance, but also have a negative impact on the manufacturing cost structure. This is also a bad idea.

この発明は、このような現状からなされたものであって
、圧縮機羽根車の背面に作用する推力、およびロータデ
ィスクの両面に夫々作用する各推力を夫々調整自在にす
ることによって、ロータ軸の軸推力を零値、または最小
値にさせて、タービンの反動度に拘らずに最小の各推力
軸受の受圧面積で満足させるようにした排気タービン過
給機における軸推力調整装置を提供することを目的とし
たものである。
This invention was made in view of the current situation, and by making it possible to adjust the thrust force acting on the back surface of the compressor impeller and the thrust force acting on both sides of the rotor disk, the rotor shaft can be adjusted. To provide a axial thrust adjusting device for an exhaust turbine supercharger that makes the axial thrust zero or a minimum value and satisfies the pressure receiving area of each thrust bearing at the minimum regardless of the degree of reaction of the turbine. This is the purpose.

つぎに、この発明の実施例を図面によって説明すれば、
第3図において、圧縮機ケーシング35の空気吸込口3
6からの吸入空気を空気吐出口37から高圧化させて吐
出する圧縮機羽根車lとタービンケーシング38の排気
ガス人口39からの送流ガスで回転させられ、仕事を終
えた該ガスをガス出口ケーシング34の排気ガス出口4
0から排出させるタービン翼11を突設しであるタービ
ンディスク12とを中間に推力受41を配設させたロー
タ軸13で連結させ、該ロータ軸の中間部の両側を圧縮
機側ジャーナル軸受21およびタービン側ジャーナル軸
受22で夫々支承させるとともに、前記推力受の両側を
圧縮機側推力軸受23およびタービン側推力軸受24で
夫々軸推力を支承させ、さらに前記両ジャーナル軸受の
両性側に夫夫圧縮1機側ラビリンスパツキン25および
タービン側ラビリンスパツキン2Gを設置させて潤滑油
漏洩を防止するとともに、前記羽根車の背面をその外層
膜した空気漏洩防止ラビリンスパツキン29で密閉室(
C)で形成させ、また前記タービンディスクの圧縮機側
面をその外層膜させた高圧空気漏洩防止ラビリンスパツ
キン27で密閉室(A)ヲ、圧縮機反対側面をその外層
膜させた排気ガス侵入防止ラビリンスパツキン28で密
閉室(B)を夫々形成させである排気タービン過給機の
前記密閉室(C)の適宜個所に制御弁(VC)43を介
設した大気放出管44を接続させて大気と連通自在にさ
せ、また前記密閉室(A)と前記空気吐出口とを制御弁
(vA)45を介在させて高圧空気導入管46で接続さ
せ、さらに前記密閉室(B)と前記ガス出口ケーシング
とを制御弁(VB)47を介した排気ガス連通管48で
連通させるとともに、ロータ軸13の圧縮機側軸端に付
設しである圧縮機側軸位置計49および同じくタービン
側軸端に付設しているタービン側軸位置計50によって
検知した夫々の軸位置を発信する軸位置発信器51およ
び制御弁(VA)45、(VB)47、(VC)43の
各々の弁開度を発信する弁開度発信器52を前記両軸位
置計が検知した夫々の計測値が等しくなるように前記各
制御弁の弁開度を予め設定したプロセスにしたがって計
算して指示を行なう開度判別装置53に接続し、ついで
各制御弁の弁開度検出値と該開度判別装置が与える弁開
度設定値との偏差を修正する偏差修正器54に、さらに
前記修正器が修正した開度偏差値量に対応して弁開度の
増減量を設定する弁開度コントローラ55に、またさら
に前記コントローラの信号によって各制御弁の弁開度の
増減量を夫々の弁に伝達するアクチュエータ56に連続
して接続させてなるものである。なお、前述の軸位置計
の説明において、ロータ軸13の両軸端に夫々軸位置計
を配設した場合について述べたが、片側だけに軸位置計
を付設させてもよく、この場合には検出された軸位置を
軸推力が零値のときの初期軸位置に一致させるように開
度判別装置53が計算して指示をするようにさせれば、
同様な効果がある。
Next, an embodiment of the present invention will be described with reference to the drawings.
In FIG. 3, the air inlet 3 of the compressor casing 35
The compressor impeller 1 which increases the pressure of the intake air from 6 and discharges it from the air outlet 37 is rotated by the flow gas from the exhaust gas population 39 of the turbine casing 38, and the gas that has finished its work is transferred to the gas outlet. Exhaust gas outlet 4 of casing 34
A turbine blade 11 for discharging air from 0 is connected to a protruding turbine disk 12 through a rotor shaft 13 having a thrust bearing 41 disposed in the middle, and compressor-side journal bearings 21 are connected to both sides of the intermediate portion of the rotor shaft. and turbine-side journal bearings 22, and the compressor-side thrust bearings 23 and turbine-side thrust bearings 24 support the axial thrust on both sides of the thrust bearings. A labyrinth packing 25 on the 1-machine side and a labyrinth packing 2G on the turbine side are installed to prevent lubricating oil leakage, and an air leakage prevention labyrinth packing 29, which is an outer layer on the back surface of the impeller, is installed to seal the airtight chamber (
C), and the high-pressure air leakage prevention labyrinth packing 27 is formed with the compressor side of the turbine disk as the outer layer, and the sealed chamber (A) is the exhaust gas intrusion prevention labyrinth with the outer layer formed on the opposite side of the compressor. Sealed chambers (B) are formed by gaskets 28, and atmospheric discharge pipes 44 with control valves (VC) 43 interposed are connected to appropriate locations of the sealed chambers (C) of the exhaust turbine supercharger. The sealed chamber (A) and the air discharge port are connected by a high pressure air introduction pipe 46 via a control valve (vA) 45, and the sealed chamber (B) and the gas outlet casing are A compressor-side shaft position meter 49 attached to the compressor-side shaft end of the rotor shaft 13 and a compressor-side shaft position meter 49 attached to the turbine-side shaft end of the rotor shaft 13 are connected to each other by an exhaust gas communication pipe 48 via a control valve (VB) 47. A shaft position transmitter 51 transmits the respective shaft positions detected by the turbine side shaft position meter 50 and transmits the valve opening degrees of the control valves (VA) 45, (VB) 47, and (VC) 43. an opening degree determination device 53 that calculates and instructs the valve opening degree of each control valve according to a preset process so that the respective measured values detected by the dual-axis position meters are equal to each other using the valve opening degree transmitter 52; The valve opening deviation value corrected by the corrector is connected to a deviation corrector 54 which corrects the deviation between the valve opening detection value of each control valve and the valve opening setting value given by the opening determination device. The controller 55 is connected to a valve opening controller 55 that sets an increase or decrease in the valve opening in accordance with the amount, and further to an actuator 56 that transmits the increase or decrease in the valve opening of each control valve to the respective valve according to a signal from the controller. It is made by connecting. In addition, in the above description of the shaft position meter, the case was described in which the shaft position meter was provided at both ends of the rotor shaft 13, but the shaft position meter may be provided only on one side, and in this case, If the opening determination device 53 is made to calculate and give an instruction so that the detected shaft position matches the initial shaft position when the shaft thrust is zero,
It has a similar effect.

したがって、この発明によれば、前記各制御弁の弁開度
を調節することによって各密閉室内の圧力を制御できる
から、個々の推力および過給機全体p軸推力の制御を行
なえるが、これを第4ア、4イ、4つ、4工、4オ、4
力、4キおよび4り図に示す軸推力の調整例によって説
明すれば、タービン翼前後の圧力差と運動量の合成力F
”rtは、第47図において、タービンの反動度によっ
て、’I’ll (反動慶大)からT21 (反動度小
)の範囲で一義的に定寸り、密閉室(A)側からの力F
T2は、第4イ図において、制御弁(VA)45を制御
してT21(前記制御弁全開時)からT22(前記制御
弁全閉時)の範囲の調整が自在であるので、その中間の
T24の設定ができ、捷だ密閉室(B)側からの力FT
8は、第4つ図において、いま、制御弁(VB)が全閉
時には、Ta2(反動慶大、調整前)からTa2(反動
度小、調整前)の範囲で一義的に定まるが、前記制御弁
に(1)密閉室(B)内の圧力PBがガス出口圧力PE
以下の場合(pB≦PE)に該弁が閉で、PB>PEの
場合に該弁を開となる機能、(2)前記密閉室からガス
出口に向うガス流がガス侵入防止ラビリンスパツキン2
8によって制約されているから前記弁(VB )の代シ
に適当形状のオリフィスまたは管路を設置させて制御し
ない無制御機能のいずれかの機能をもたせると、力FT
8を反動度如何によらずに一定の力T88(制御弁(V
B)による調整後)に調整可能であり、したがって、第
4工図に示すように、タービン側の推力FTは、制御弁
(vA)および(VB)の制御調整によって、T48(
反動慶大、FTを可能最小に調整、T48 ” ’rt
t + T21 + T8B )からT44(反動度小
、FT−0に調整、T44 = TL2 +T25 +
 ’raa )の範囲に設定でき、つぎに、圧縮機羽根
車の空気吸込口からの力FBIは、第4オ図において、
圧縮機仕様によって一義的に13ttと定まり、羽根車
背面からの力FB2は、第4力図において、制御弁(v
c)の制御によってB2□(前記弁の全閉時)から82
2(前記弁の全開時)の範囲で調整できるから、その間
のB28.824等の設定が自在であり、したがって、
圧縮機側の推力FBは、第4キ図において、制御弁(V
c )の制御調整によって、B41 (前記弁の全閉時
、B41 = Btt + B21 )からB42(前
記弁の全開時、B42−B11+B22)の範囲で設定
できるから、その間のB4B (B48 ” Bl□十
B28)、B44(B44 ” Bit + B24 
)等の設定が自在である。前述したように、タービン側
の推力FT1および圧縮機側の推力FBは、夫々の制御
弁の制御によって設定できるので、それ等の合力である
過給機の軸推力FTOTが自在に設定でき、いま反動度
の大きい場合の大きい場合を例示すれば、第4り図にお
いて、タービン側推力FT ”KT48のように正(+
)の推力がかかると、圧縮機側推力FBとして前記’r
aaに絶対値が等しく、かつ反対向き、すなわち負(−
)向きの推力B48を選定すれば、軸推力F”ro’r
はM FTOT4B (FTOT4B ”” T4B 
+ B4B )とな9て零値にすることができ、また反
動度の大きい場合を除けば、タービン側推力FTをT4
4のようにそれ自体で零値に調整することができるが、
圧縮機側推力FBは当然B44のように零値に調整され
るので、その合力である軸推力FTOT44となって零
値になる。
Therefore, according to the present invention, the pressure in each sealed chamber can be controlled by adjusting the valve opening degree of each of the control valves, so that the individual thrust and the entire p-axis thrust of the supercharger can be controlled. 4 a, 4 a, 4, 4 engineering, 4 o, 4
To explain this using an example of adjusting the axial thrust shown in the diagrams, the resultant force F of the pressure difference before and after the turbine blade and the momentum
In Fig. 47, ``rt'' is uniquely determined in the range from 'I'll (reaction Keio University) to T21 (low recoil degree) depending on the recoil degree of the turbine, and the force from the closed chamber (A) side. F
In FIG. 4A, T2 can be freely adjusted in the range from T21 (when the control valve is fully open) to T22 (when the control valve is fully closed) by controlling the control valve (VA) 45, so it can be adjusted in the middle. T24 can be set, and the force FT from the sealed chamber (B) side can be set.
8 is uniquely determined in the range of Ta2 (low reaction, before adjustment) to Ta2 (low reaction, before adjustment) when the control valve (VB) is fully closed in FIG. (1) The pressure PB in the sealed chamber (B) is set to the gas outlet pressure PE in the control valve.
A function in which the valve is closed in the following cases (pB≦PE) and opened in the case of PB>PE; (2) a gas flow from the sealed chamber toward the gas outlet is prevented from gas intrusion by labyrinth packing 2;
8, so if an orifice or conduit of an appropriate shape is installed in place of the valve (VB) to provide one of the uncontrolled functions, the force FT
8 to a constant force T88 (control valve (V
Therefore, as shown in the fourth engineering drawing, the thrust force FT on the turbine side can be adjusted to T48 (after adjustment by B) by control adjustment of control valves (vA) and (VB).
Reaction Keidai, adjust FT to minimum possible, T48 ”'rt
t + T21 + T8B) to T44 (low recoil, adjusted to FT-0, T44 = TL2 + T25 +
'raa), and then the force FBI from the air inlet of the compressor impeller can be set in the range of
The force FB2 from the back of the impeller is uniquely determined to be 13tt by the compressor specifications, and the force FB2 from the back of the impeller is expressed by the control valve (v
c) from B2□ (when the valve is fully closed) to 82
Since it can be adjusted within the range of 2 (when the valve is fully open), settings such as B28.824 between that range can be freely set.
In Fig. 4, the thrust force FB on the compressor side is determined by the control valve (V
By adjusting the control in c), it can be set in the range from B41 (when the valve is fully closed, B41 = Btt + B21) to B42 (when the valve is fully open, B42 - B11 + B22), so B4B (B48 '' Bl□ 10 B28), B44 (B44 ” Bit + B24
) etc. can be freely set. As mentioned above, the thrust force FT1 on the turbine side and the thrust force FB on the compressor side can be set by controlling the respective control valves, so the axial thrust force FTOT of the supercharger, which is the resultant force of these, can be set freely. To give an example of a case where the degree of reaction is large, in the fourth diagram, the turbine side thrust FT is positive (+
) is applied, the compressor side thrust FB is the above 'r
The absolute value is equal to aa and in the opposite direction, that is, negative (-
), the axial thrust F”ro'r is selected.
is M FTOT4B (FTOT4B ”” T4B
+B4B) can be set to zero, and unless the degree of reaction is large, the turbine side thrust FT can be set to T4.
Although it can be adjusted to zero value by itself as in 4,
Since the compressor side thrust force FB is naturally adjusted to a zero value like B44, the resultant force becomes the axial thrust force FTOT44, which has a zero value.

上1−シーたように、この発明は、タービン側L2Lを
制御弁(VA>および(VB)を夫々制御し、また圧縮
機側推力を制御弁(VC)を制御することによって、前
記側推力の合力である過給機軸推力を自在に制御できる
から、その産業上の利用価値が極めて高い。
As mentioned above, the present invention controls the turbine side L2L with the control valves (VA> and (VB), respectively, and controls the compressor side thrust with the control valve (VC), thereby controlling the side thrust. Since the supercharger shaft thrust, which is the resultant force of the

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来排気タービン過給機の要部の縦断側面図
、第2図は、同じくタービンの反動度に対応する過給機
軸推力の値を示す曲線図、第3図は、この発明の実施例
を示す要部の縦断側面図に制御系統を部面した説明図、
第4ア、4イ、4つおよび4工図は、タービン側推力の
調整例を示す曲線図、第4オ、4カおよび4キ図は、圧
縮機側推力の調整例を示す曲線図、第4り図は、過給機
軸推力の調整例を示す曲線図である。 1・・圧縮機羽根車、11・・タービン翼、12@・タ
ービンディスク、13・命ロータ軸、21・・圧縮機側
ジャーナル軸受、22・・タービン側ジャーナル軸受、
23・・圧縮機側推力軸」、24・・タービン側推力軸
受、25・・圧縮機側ラビリンスパツキン、26・舎タ
ービン側ラビリンスパツキン、27・・高圧空気漏洩防
止ラビリンスパツキン、28・Q排気ガス侵入防止ラビ
リンスパツキン、29・・空気漏洩防止ラビリンスバノ
ギン、30@・軸受ケース、31・−高圧空気路、32
・・ノズル入口、33・・ノズル、34・・ガス出ロケ
ーシング、35・・圧縮機ケーシング、36・・空気吸
込口、37・・空気吐出口、38・・タービンケーシン
グ、39・・排気ガス入口、40・・排気ガス出口、4
1・・推力受、42・・空気放出路、43・・制御弁(
VC)、44・・大気放出管、45・・制御弁(VA)
、46・・高圧空気導入管、47・・制御弁(VB)、
48・・排気ガス連通管、49・・圧縮機側軸位置計、
50・・タービン側軸位置計、51・・軸位置発信器、
52・・弁開度発信器、53・・弁開度判効J装置、5
4・・偏差修正器、55・・弁開度コントローラ、56
・・アクチュエータ、(A)・・密閉室、(B)・・密
閉室、(C)・・密閉室。 手続補正書(方式) 昭和59年 5月21日 特許庁長官 若 杉 和 夫 殿 1、事件の表示 特願昭59年16112号2、発明の
名称 排気タービン過給機における軸推力調整装置3、
補正をする者 事件との関係 出願人名 称 三菱重工
業株式会社 4、復代理人 〒100東京都千代田区有楽町−丁目8
番1号日比谷パークビルヂング519号(電話213−
0686)5、補正命令の日刊 昭和59年 4月24
日6、補正の対象 図面 7、補正の内容 #54−7図ないし第4−り図を別紙
のとおり第4−7図 第4−イ 図 7immo土出圧力 pd (mrnl−1g)第4−
ウ図 バ4−1琴口土出圧力 pd(mmHg)第4−1図 11 圧檜機・口上出圧力 P辻(mm?19)第4−オ図 第4−力図
Fig. 1 is a longitudinal cross-sectional side view of the main parts of a conventional exhaust turbine supercharger, Fig. 2 is a curve diagram showing the value of the supercharger axial thrust corresponding to the degree of reaction of the turbine, and Fig. 3 is a diagram of the present invention. An explanatory diagram showing a part of the control system in a longitudinal sectional side view of the main part showing an example of
4A, 4A, 4 and 4 engineering drawings are curve diagrams showing an example of adjusting the thrust on the turbine side; 4th O, 4ka and 4K are curve diagrams showing an example of adjusting the thrust on the compressor side; The fourth diagram is a curve diagram showing an example of adjusting the supercharger axial thrust. 1...Compressor impeller, 11...Turbine blade, 12@-Turbine disk, 13-Rotor shaft, 21...Compressor side journal bearing, 22...Turbine side journal bearing,
23. Compressor side thrust shaft, 24. Turbine side thrust bearing, 25. Compressor side labyrinth packing, 26. Turbine side labyrinth packing, 27. High pressure air leak prevention labyrinth packing, 28. Q exhaust gas. Intrusion prevention labyrinth seal, 29...Air leak prevention labyrinth seal, 30@・Bearing case, 31・-High pressure air path, 32
...Nozzle inlet, 33.. Nozzle, 34.. Gas outlet casing, 35.. Compressor casing, 36.. Air suction port, 37.. Air discharge port, 38.. Turbine casing, 39.. Exhaust gas Inlet, 40...Exhaust gas outlet, 4
1... Thrust receiver, 42... Air discharge path, 43... Control valve (
VC), 44... Atmospheric discharge pipe, 45... Control valve (VA)
, 46... High pressure air introduction pipe, 47... Control valve (VB),
48...Exhaust gas communication pipe, 49...Compressor side shaft position meter,
50...Turbine side shaft position meter, 51...Shaft position transmitter,
52... Valve opening degree transmitter, 53... Valve opening degree judgment J device, 5
4. Deviation corrector, 55. Valve opening controller, 56
...Actuator, (A)...Sealed chamber, (B)...Sealed chamber, (C)...Sealed chamber. Procedural amendment (method) May 21, 1980 Director-General of the Patent Office Kazuo Wakasugi 1, Indication of case: Japanese Patent Application No. 16112 of 1981 2, Title of invention: Shaft thrust adjustment device in exhaust turbine supercharger 3;
Person making the amendment Relationship to the case Applicant Name Mitsubishi Heavy Industries, Ltd. 4, Sub-Agent Address: 8-chome, Yurakucho, Chiyoda-ku, Tokyo 100
No. 1 Hibiya Park Building No. 519 (Telephone 213-
0686) 5, Daily Amendment Order April 24, 1982
Day 6, subject of correction Drawing 7, content of correction #54-7 or 4th drawing are attached as attached.
C Figure B 4-1 Kotoguchi soil extraction pressure pd (mmHg) Figure 4-1 Figure 11 Pressure machine/mouth outlet pressure P Tsuji (mm?19) Figure 4-O Figure 4-Force diagram

Claims (1)

【特許請求の範囲】 ■両側軸端に圧縮機羽根車およびタービン翼を突設した
タービンディスクを配設しであるロータ軸の中間に突設
した推力受の両側を夫々推力軸受で、ならびにさらにそ
の両側を夫々ジャーナル軸受で支承させるとともに一1
前記羽根車背面の密閉室を制御弁を介設して大気放出さ
せ、また前記ディスクの圧縮機側の密閉室と圧縮機空気
吐出口とを制御弁を介して、さらに前記ディスクの圧縮
機反対側の密閉室とガス出口とを制御弁を介して夫々連
通させ、前記ロータ軸の両軸端の軸位置計が検出した夫
々の軸位置を発信する軸位置発信器および各制御弁の弁
開度を発信する弁開度発信器を前記両軸位置計の夫々の
計測値が等しくなるように弁開度を設定プロセスにした
がって算出指示する開度判別装置に接続し、ついで各弁
開度検出値と該開度判別装置の弁開度設定値との偏差を
修正する偏差修正器に、さらに前記修正器が修正した偏
差値量に対応して弁開度増減量を設定する弁開度コント
ローラに、またさらに該コントローラの信号によって各
弁の開度増減量を夫々の弁に伝達するアクチュエータに
連続して接続させたことを特徴とする排気タービン過給
機における軸推力調整装置。 ■両側軸端に圧縮機羽根車およびタービン翼を突設した
タービンディスクを配設しであるロータ軸の中間に突設
した推力受の両側を夫々推力軸受で、ならびにさらにそ
の両側を夫々ジャーナル軸受で支承させるとともに、前
記羽根車背面の密閉室を制御弁を介設して大気放出させ
、また前記ディスクの圧縮機側の密閉室と圧縮機空気吐
出口とを制御弁を介して、さらに前記ディスクの圧縮機
反対側の密閉室とガス出口とを制御弁を介して夫々連通
させ、前記ロータ軸の片側軸端の軸位置計が検出した軸
位置を発信する軸位置発信器および各制御弁の弁開度を
発信する弁開度発信器を前記検出軸位置を軸推力が零値
のときの初期軸位置に一致するように弁開度を設定プロ
セスにしたがって算出指示する開度判別装置に接続し、
ついで各弁開度検出値と該開度判別装置の弁開度設定値
との偏差を修正する偏差修正器に、さらに前記修正器が
修正した偏差値量に対応して弁開度増減量を設定する弁
開度コントローラに、またさらに該コントローラの信号
によって各弁の開度増減量を夫々の弁に伝達するアクチ
ュエータに連続して接続させたことを特徴とする排気タ
ービン過給機における軸推力調整装置。
[Scope of Claims] ■ A turbine disk with a compressor impeller and turbine blades protruding from both shaft ends is arranged, and both sides of a thrust bearing protruding from the middle of the rotor shaft are provided with thrust bearings, and Both sides are supported by journal bearings, and one
The sealed chamber on the back side of the impeller is vented to the atmosphere through a control valve, and the sealed chamber on the compressor side of the disk and the compressor air discharge port are connected via the control valve to the air outlet on the compressor side of the disk. A shaft position transmitter that communicates the side sealed chamber and the gas outlet through a control valve, and transmits the shaft position detected by shaft position sensors at both shaft ends of the rotor shaft, and a valve opening of each control valve. A valve opening transmitter that transmits the valve opening is connected to an opening determination device that calculates and instructs the valve opening according to a setting process so that the measured values of the two axis position meters are equal, and then each valve opening is detected. a deviation corrector that corrects the deviation between the value and the valve opening set value of the opening determination device; and a valve opening controller that sets an increase/decrease in the valve opening in response to the deviation value corrected by the corrector. Furthermore, an axial thrust adjustment device for an exhaust turbine supercharger, characterized in that the device is continuously connected to an actuator that transmits an increase/decrease in the opening degree of each valve to each valve according to a signal from the controller. ■A turbine disk with a compressor impeller and turbine blades protruding from both ends of the rotor shaft is installed. Both sides of the thrust receiver protruding from the middle of the rotor shaft are equipped with thrust bearings, and each side of the thrust receiver is equipped with journal bearings. At the same time, the sealed chamber on the back side of the impeller is vented to the atmosphere through a control valve, and the sealed chamber on the compressor side of the disk and the compressor air discharge port are connected via the control valve to the A shaft position transmitter and each control valve that communicate the closed chamber on the opposite side of the disk compressor and the gas outlet via control valves, and transmit the shaft position detected by the shaft position sensor at one shaft end of the rotor shaft. A valve opening degree transmitter that transmits the valve opening degree of the detected shaft position is connected to an opening degree determination device that calculates and instructs the valve opening degree according to a setting process so that the detected shaft position corresponds to the initial shaft position when the shaft thrust is zero value. connection,
Next, a deviation corrector corrects the deviation between each valve opening detection value and the valve opening setting value of the opening determination device, and further increases or decreases the valve opening in accordance with the deviation value corrected by the corrector. Axial thrust in an exhaust turbine supercharger, characterized in that the axial thrust in an exhaust turbine supercharger is connected in series to a valve opening controller that sets the opening, and further to an actuator that transmits an increase/decrease in the opening of each valve to each valve based on a signal from the controller. Adjustment device.
JP1611284A 1984-02-02 1984-02-02 Thrust controller for exhaust turbine supercharger Pending JPS60162002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1611284A JPS60162002A (en) 1984-02-02 1984-02-02 Thrust controller for exhaust turbine supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1611284A JPS60162002A (en) 1984-02-02 1984-02-02 Thrust controller for exhaust turbine supercharger

Publications (1)

Publication Number Publication Date
JPS60162002A true JPS60162002A (en) 1985-08-23

Family

ID=11907426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1611284A Pending JPS60162002A (en) 1984-02-02 1984-02-02 Thrust controller for exhaust turbine supercharger

Country Status (1)

Country Link
JP (1) JPS60162002A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1541803A2 (en) * 2003-12-11 2005-06-15 Rolls-Royce Deutschland Ltd & Co KG Bearing relief arrangement in a gas turbine
CN112648068A (en) * 2020-12-22 2021-04-13 潍柴动力股份有限公司 Supercharger state control method and device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1541803A2 (en) * 2003-12-11 2005-06-15 Rolls-Royce Deutschland Ltd & Co KG Bearing relief arrangement in a gas turbine
EP1541803A3 (en) * 2003-12-11 2006-05-24 Rolls-Royce Deutschland Ltd & Co KG Bearing relief arrangement in a gas turbine
CN112648068A (en) * 2020-12-22 2021-04-13 潍柴动力股份有限公司 Supercharger state control method and device
CN112648068B (en) * 2020-12-22 2022-04-05 潍柴动力股份有限公司 Supercharger state control method and device

Similar Documents

Publication Publication Date Title
US5141389A (en) Control system for regulating the axial loading of a rotor of a fluid machine
US4391098A (en) Turbo-compound internal combustion engine
US4203296A (en) Supercharged internal combustion engine
US5281115A (en) Rotary screw machine having thrust balancing means
US9121404B2 (en) Screw compressor unit
KR830001267B1 (en) Axial thrust bearing device
US4756161A (en) Controller for variable geometry type turbocharger
JPS60543B2 (en) Control system of multistage axial flow compressor of gas turbine engine
CN211038755U (en) Thrust balancing system of supercritical carbon dioxide turbine
GB2039610A (en) Controlling an ic engine turbocharger exhaust bypass valve
EP1426579B1 (en) Device for preventing the turbo-charger from over-running
CN110925033A (en) Thrust balancing system and control method for supercritical carbon dioxide turbine
KR20130004403A (en) Vapour turbine and vapour turbine thrust adjustment method
JPS60162002A (en) Thrust controller for exhaust turbine supercharger
EP1908950B1 (en) Pressure balance control for gas turbine engine nozzle
GB1223490A (en) Air compressor surge control apparatus
US4929159A (en) Variable-displacement rotary compressor
GB1031945A (en) Gas turbine load sharing system
JPS60162020A (en) Thrust controller for exhaust turbine supercharger
JPS60147538A (en) Axial-thrust controlling apparatus for exhaust turbocharger
GB1504045A (en) Compressor bleed control for gas turbine power plants
JPS6093124A (en) Intake device of rotary piston engine
JPS61160526A (en) Variable capacity turbocharger
JPH08189302A (en) Thrust automatic adjusting device
JPH11311125A (en) Variable stator blade type turbocharger