JPS6016194A - Field circuit ground fault monitoring system - Google Patents

Field circuit ground fault monitoring system

Info

Publication number
JPS6016194A
JPS6016194A JP58123340A JP12334083A JPS6016194A JP S6016194 A JPS6016194 A JP S6016194A JP 58123340 A JP58123340 A JP 58123340A JP 12334083 A JP12334083 A JP 12334083A JP S6016194 A JPS6016194 A JP S6016194A
Authority
JP
Japan
Prior art keywords
ground fault
field circuit
generator
leakage current
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58123340A
Other languages
Japanese (ja)
Inventor
Akio Ito
明男 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58123340A priority Critical patent/JPS6016194A/en
Publication of JPS6016194A publication Critical patent/JPS6016194A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/06Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric generators; for synchronous capacitors
    • H02H7/065Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric generators; for synchronous capacitors against excitation faults

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To prevent the erroneous judgement of a ground fault by starting a generator after controlling the temperature or moisture in a generator when becoming the operation value or higher of a field circuit ground fault protecting relay after a leakage current is started. CONSTITUTION:A computer 1 inputs a leakage current I, a temperature K in a generator, a moisture M in the generator and a starting command time t0, and discriminates whether it reaches the top value of a field ground fault protection relay or not after the current I is started at a time t0 on the basis of the temperature K and the moisture M. When discriminated that it reaches the top value, a start command B is fed to device group such as a space heater, and a dehumidifier, thereby controlling so that the leakage current becomes the top value or higher. Then, a main machine starting command A is fed. Thus, the erroneous operation of a field circuit ground fault protecting relay can be prevented.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は発電所の界磁回路において界磁回路の地絡を未
然に検出し、トリップに至らせないことに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to detecting a ground fault in a field circuit of a power plant in advance and preventing it from causing a trip.

〔発明の背景〕[Background of the invention]

発電所、特に水力発電所は、迅速かつ正確な主機の起動
、停止動作が行えることに特長がある。
Power plants, especially hydroelectric power plants, are characterized by the ability to quickly and accurately start and stop the main engine.

特に近年の大容量揚水発電所は、火力、原子力発電所が
何らかの不具合を起こし要求出力を達成できない場合に
バックアップとして起動指令から発電動作まで確実に速
く行えることが要求されている。この水力発電所は建設
地点の地理的条件や運転制御の集中化などによ、シ無大
化が進んでおり、水系毎に親制御所から遠隔集中制御さ
れるようになった。しかし水力発電所の安定な運転を維
持するためには、従来よシ実施されているように定期的
に保守員が巡視点検を行なわなければならない。
In particular, large-capacity pumped storage power plants in recent years are required to be able to reliably and quickly perform the process from start-up command to power generation operation as a backup in case a thermal or nuclear power plant fails to achieve the required output due to some kind of malfunction. Due to the geographical conditions of the construction site and the centralization of operation control, these hydroelectric power plants are becoming increasingly large in size, and each water system is now controlled remotely and centrally from a master control center. However, in order to maintain stable operation of a hydroelectric power plant, maintenance personnel must conduct periodic inspection inspections, as has been done in the past.

この保守点検の省力化を計るため、日常の巡視点検業務
を自動化し、これに設備の異常診断機能をも付加し、事
故の未然防止をも図シたいとの要望が極めて強い。
In order to save labor during maintenance and inspection, there is an extremely strong desire to automate daily patrol inspection work, add equipment abnormality diagnosis functions to this, and prevent accidents from occurring.

ところで、主機の最終的保護の使命を担う保護リレーに
よって、主機が異常動作全継続すると破壊に至ること全
防止するためにトリップシーケンスが組まれている。し
かしこのトリップシーケンスが動作すると、トリップ原
因が除去されるまで主機起動は行えず、水力発電所の使
命である迅速かつ確実な発電は不可能となる。特に無人
の発電所ではトリップシーケンスが動作する以前に異常
動作を認識し、トリップを避けることは困難である。こ
のトリップの大きな要因の1つに界磁回路地絡がある。
By the way, a trip sequence is set up in order to completely prevent the main engine from being destroyed if the abnormal operation continues for a long time by the protection relay, which has the mission of ultimate protection of the main engine. However, when this trip sequence is activated, the main engine cannot be started until the cause of the trip is removed, making it impossible to generate power quickly and reliably, which is the mission of a hydroelectric power plant. Particularly in unmanned power plants, it is difficult to recognize abnormal operation and avoid trips before the trip sequence is activated. One of the major causes of this trip is a field circuit ground fault.

界磁回路地絡保護リレーは界磁回路の絶縁が破壊され、
地絡現象を起こし、主機損傷に至ることを保護している
。具体的には、地絡電流がある一定の値を超えると保護
リレーが異常と判断し、トリップさせている。ところで
、主機停止中には界磁回路の沿面部分等にゴミなどが付
着し、それが湿気を吸い込むことがしばしばある。
Field circuit ground fault protection relays are used when the insulation of the field circuit is destroyed,
This protects against ground faults that could lead to damage to the main engine. Specifically, when the ground fault current exceeds a certain value, the protection relay determines that there is an abnormality and trips it. Incidentally, when the main engine is stopped, dust and the like often adhere to the creeping parts of the field circuit, and this dirt often absorbs moisture.

この場合、そのまま主機を起動させると微少電流が流れ
て地絡と誤判断することが多く、この現象と本来の地絡
現象とを判別検出することは殆ど不可能である。この誤
判断原因を除去するためには界磁回路周辺をスペースヒ
ータ、除湿機等で乾燥させ、湿気を取り微少電流を流れ
にくくすることが考えられるが、これは起動直前に行う
のが最も効果的である。しかし、起動指令時刻は予想で
きないので、現状、スペースヒータ等の起動、停止タイ
ミングは熟練者の判断に頼っており、適切な処理方法は
行われていない。
In this case, if the main engine is started as it is, a minute current will flow and it will often be mistakenly judged as a ground fault, and it is almost impossible to distinguish and detect this phenomenon from the original ground fault phenomenon. In order to eliminate the cause of this misjudgment, it is possible to dry the area around the field circuit using a space heater, dehumidifier, etc. to remove moisture and make it difficult for the minute current to flow, but it is most effective to do this just before startup. It is true. However, since the startup command time cannot be predicted, the timing of starting and stopping space heaters, etc., currently relies on the judgment of experts, and no appropriate processing method is in place.

発電所の無人化に伴い、この界磁回路地絡誤動作全起動
以前に判断し、適切な処理を施し、自動復旧までも行い
たいという要望が最近、ますます増加している。
As power plants become increasingly unmanned, there has been an increasing demand for detecting field circuit ground fault malfunctions before full activation, taking appropriate action, and even automatic recovery.

〔発明の目的〕[Purpose of the invention]

本発明の目的は従来技術の欠点を除去し、界磁回路地絡
全自動監視し、地絡誤判断全防止することにより発電所
の起動、停止を迅速かつ確実に行うことにある。
An object of the present invention is to eliminate the drawbacks of the prior art, fully automatically monitor ground faults in the field circuit, and completely prevent erroneous ground fault judgments, thereby starting and stopping a power plant quickly and reliably.

〔発明の概要〕[Summary of the invention]

本発明では、起動後の漏洩電流の変化を予測し、界磁回
路地絡保護リレーの動作値以上となるときには事前の処
理として例えばスペースヒータを起動させる。
In the present invention, the change in leakage current after startup is predicted, and when the leakage current exceeds the operating value of the field circuit earth fault protection relay, for example, a space heater is activated as a preliminary process.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の一実施例を示す。 An example of the present invention is shown below.

第1図に本発明の監視システム構成図を示す。FIG. 1 shows a configuration diagram of a monitoring system according to the present invention.

本システムの中心となる計算機1に必要な入力データと
しては、漏洩電流値工1発電機内温度K。
The input data required for the computer 1, which is the core of this system, are the leakage current value, the generator internal temperature, and K.

発電機内湿度M、遠方の制御所からの主機起動指令時刻
toがある。これらの中でアナログデータI、に、Mの
値は水力発電機器11内に設けたセンサーの出力信号か
ら変換器10を介して計算機1に入力される。また主機
起動指令時刻toは遠方の制御所から通信制御部1全介
して入力される。
There is a humidity M inside the generator, and a main engine start command time to from a remote control station. Among these, the values of analog data I and M are input to the computer 1 via the converter 10 from the output signal of a sensor provided in the hydroelectric power generation equipment 11. Further, the main engine start command time to is inputted from a remote control center through the entire communication control section 1.

計算機1はCPU2を中核としてシステムプログラムの
格納されているメモリ3.データ全蓄積するメモリ4.
遠方の制御所とデータの授受を行う通信制御部5.前記
アナログデータ1.に、Mを入力するアナログ入力部7
.ディジタルデータを入力するディジタル入力部8.デ
ィジタルデータを出力するディジタル出力部9から成層
、これらのデータの受け渡しは計算機内部インターフェ
ースバス6を介して行われる。
The computer 1 has a CPU 2 as its core, and a memory 3 in which system programs are stored. Memory for storing all data 4.
Communication control unit that exchanges data with a remote control center 5. The analog data 1. Analog input section 7 for inputting M to
.. Digital input section 8 for inputting digital data. The data is transferred from a digital output unit 9 that outputs digital data, and is transferred via a computer internal interface bus 6.

第2図は界磁回路及び地絡検出回路である。FIG. 2 shows the field circuit and ground fault detection circuit.

ACGは発電機、14は界磁回路、13は界磁遮断器、
12は界磁回路地絡を検出し、トリラグシーケンスを起
動する地絡保護リレーである。またroは界磁絶縁抵抗
であシ、正常時は数MΩ以上の抵抗値を示す。保護リレ
ー12の内部には回路保護リレー接点Xl、地絡検出抵
抗rがあり、リレーコイルXと接続される。この検出回
路には常時、外部交it源ACから整流器15を介し、
整流された直流電流を流しておく。保護リレー12は一
端がアースされ、他端が界磁回路と接続されているため
、界磁絶縁抵抗rQが大であればこの回路には殆ど電流
iは流れない。しかし、界磁回路に一担、地絡が起こる
とrQが小となシ、漏洩電流iは大きくなり、リレーコ
イルXが励起され、リレー接点XI l界磁遮断器13
e)!Jツブさせることになる。本発明ではこの従来の
回路に新たに監視システムの入力源として漏洩電流検出
用直列抵抗r1を直列に設け、このrlによって計測し
た値を変換器TIによって計算機の入力レベルに変換す
る。この様にしてまず、漏洩電流値It−計算機に入力
する。
ACG is a generator, 14 is a field circuit, 13 is a field breaker,
12 is a ground fault protection relay that detects a field circuit ground fault and starts a trilag sequence. Further, ro is the field insulation resistance, and exhibits a resistance value of several MΩ or more under normal conditions. Inside the protection relay 12, there are a circuit protection relay contact Xl and a ground fault detection resistor r, which are connected to the relay coil X. This detection circuit is always connected to an external alternating current source AC via a rectifier 15.
Allow rectified direct current to flow. Since one end of the protective relay 12 is grounded and the other end is connected to the field circuit, if the field insulation resistance rQ is large, almost no current i will flow through this circuit. However, if a ground fault occurs in the field circuit, rQ becomes small, leakage current i becomes large, relay coil X is excited, and relay contact XI l field circuit breaker 13
e)! It will make J Tsubu. In the present invention, a leakage current detection series resistor r1 is newly added in series to this conventional circuit as an input source for the monitoring system, and a value measured by this rl is converted to an input level of a computer by a converter TI. In this way, first, the leakage current value It is inputted into the calculator.

第3図は他の入力データである発電機内の温度に1湿度
Mの測定個所である。ACGは発電機、Fは主軸、Eは
水車を示す。ACG内部には回転子17.界磁コイル1
8がちシ、また内部の空洞には空洞内ファンG’に納め
るスペースがある。界磁回路はACG内にあるため、正
確な周囲温度、周囲湿度を計測するために発電機空洞内
に温度、湿度測定装置16を設置する。ここから測定値
を取シ出し、外部に別置となっている変換器T2 k介
して計算機に入力する。
FIG. 3 shows the measurement points of temperature and humidity M inside the generator, which are other input data. ACG is a generator, F is a main shaft, and E is a water turbine. There is a rotor 17 inside the ACG. Field coil 1
8, and there is space in the internal cavity to accommodate the internal cavity fan G'. Since the field circuit is located within the ACG, a temperature and humidity measuring device 16 is installed within the generator cavity to accurately measure ambient temperature and ambient humidity. Measured values are extracted from this and input into a computer via a separate external converter T2k.

また、もう1つの入力データである主機起動時刻t。は
遠方よシ主機起動指令でONとなるディジタル入力信号
として取シ込み、それによって例えば計算機の演算全開
始する起動タイミングとする。以上の様にしてオンライ
ンで入力データを計算機1へ入力するが、その他に更に
第2図で示しり保護リレー12がトリップとなるリレー
の漏洩電流iに関する設定値(PI]gが必要であり、
第1図で示したデータメモリ4内にあらかじめ格納して
おく。
In addition, another input data is the main engine startup time t. is input as a digital input signal that turns ON in response to a main engine start command from a remote location, and is used as the start timing for starting all calculations of a computer, for example. The input data is entered into the computer 1 online as described above, but in addition, the setting value (PI) g related to the leakage current i of the relay that causes the protective relay 12 to trip is also required, as shown in FIG.
It is stored in advance in the data memory 4 shown in FIG.

次に起動後における漏洩電流値iの変化状況を第4図に
示す。第4図において縦軸は漏洩電流値i、横軸は1=
1.で主機が起動してからの時間経過である。今、曲線
16を例にとると主機停止中における電流値はilであ
ったのが、運転開始後漏洩電流iは増加する傾向を示し
、最大値12まで増える。その後、運転継続すると徐々
に漏洩118iは減少していく。ここでたとえば保護リ
レーの検出判定値(PI)jが(PI:ljtであった
とすると、本例では、実際の地絡の発生が無いにもかか
わらず主機が起動後、誤判断によ、? ) IJツブシ
−ケンスに至る。しかし漏洩電流iの初期値が下がると
17.18の様な曲線となシ、トリップ誤判断にはなら
ない。この曲線群16,17゜18の形状は空洞内温度
に、空洞内湿度Mから決定されるパラメータPによシ定
まる。このように、パラメータPによって、曲線の形状
が異なるため、漏洩電流値iの値が小さくてもトリップ
に至ることが有シうる。
Next, FIG. 4 shows how the leakage current value i changes after startup. In Figure 4, the vertical axis is the leakage current value i, and the horizontal axis is 1=
1. This is the elapsed time since the main engine was started. Now, taking curve 16 as an example, the current value when the main engine is stopped is il, but after the start of operation, the leakage current i shows a tendency to increase and increases to a maximum value of 12. Thereafter, as the operation continues, the leakage 118i gradually decreases. For example, if the detection judgment value (PI)j of the protection relay is (PI:ljt), in this example, even though there is no actual ground fault, after the main engine starts up, due to a misjudgment, ? ) leading to the IJ tube sequence. However, if the initial value of the leakage current i decreases, a curve like 17.18 will be obtained, and a trip error will not occur. The shape of this curve group 16, 17° 18 is determined by the parameter P determined from the temperature inside the cavity and the humidity M inside the cavity. In this way, since the shape of the curve differs depending on the parameter P, it is possible that a trip will occur even if the leakage current value i is small.

そこでこのPの値と■の値を運転開始以前に知っておけ
ば曲縁の形状がわかシ、トリップに至るかどうかが検出
できる。
Therefore, if the value of P and the value of ■ are known before the start of operation, it is possible to detect whether the shape of the curved edge is breaking or causing a trip.

第5図は温度にと湿度MとパラメータPとの関係を示し
た図である。温度Kが篩いほど、また湿度Mが低いほど
Pは小さな値を示し、Kが低いほど、またMが高いほど
Pは大きくなる傾向にあシこの様にしてPは決定される
FIG. 5 is a diagram showing the relationship between temperature, humidity M, and parameter P. P is determined in this manner, with the tendency for P to be larger as temperature K is more sieve and humidity M is lower, and P tends to be larger as K is lower and M is higher.

第1図の計算機1のシステムプログラムメモリ3には第
6図に示すフローチャートがプログラムの形となってメ
モリされている。第6図のフローチャートに従って本シ
ステムは動作し制御、監視を行っている。以下にその動
作を説明する。なお下記番号と第6図中の番号は一致し
ている。
The flowchart shown in FIG. 6 is stored in the system program memory 3 of the computer 1 in FIG. 1 in the form of a program. This system operates, controls and monitors according to the flowchart shown in FIG. The operation will be explained below. Note that the numbers below and the numbers in FIG. 6 match.

(1);計算機は常時、主機の起動指令t0が無いかど
うかを検出している。検出した場合は、その時刻をデー
タメモリ4へ記憶する。
(1); The computer constantly detects whether there is a start command t0 for the main engine. If detected, the time is stored in the data memory 4.

(■);以降の演算で必要なデータをすべて入力する。(■); Input all the data required for subsequent calculations.

I、に、Mは変換器T1.T2を介したデータであpl
また保護リレー12の検出判定値(PI)jに関しては
あらかじめデータメモリ4に記憶設定されているデータ
を入力する。
I, M are transducers T1. pl with data via T2
Further, regarding the detection judgment value (PI) j of the protection relay 12, data stored and set in the data memory 4 in advance is input.

(DI) ; PはKとMのパラメータであり、KとM
よシ第5図に示した曲線を用いてP’に決定する(■)
;データメモリ4の中にはPによシ異なる種種の特性曲
線を表わすデータがメモリされて(9) いる。その仕組みを第7図に示す。縦軸は第5図で定め
られたパラメータP+の値、横軸には時刻tが割υ付け
られ、一種の行列群になっている。(III)でP+が
決定されるとポインタHにそのPlに相当する列を捜し
める。
(DI) ; P is a parameter of K and M, and K and M
Using the curve shown in Figure 5, determine P'(■)
; Data representing characteristic curves of different types of P is stored in the data memory 4 (9). The mechanism is shown in Figure 7. The vertical axis is assigned the value of the parameter P+ determined in FIG. 5, and the horizontal axis is assigned the time t, forming a kind of matrix group. When P+ is determined in (III), pointer H is searched for a column corresponding to Pl.

その列には起動後の各時刻におけるPlの係数Ptmが
記録されている。上記のメモリ内容Pg〜P 1mを抽
出する。
In that column, the coefficient Ptm of Pl at each time after startup is recorded. The above memory contents Pg to P1m are extracted.

(V) : Pt1〜Ptmに漏洩電流値工をかけると
、第4図に相当する漏洩電流に関する特性曲線16.1
7.18が決定される。実際のメモリ上にはIXP*t
 # lXPt1 、・・・・・・、工×Ptaの値が
記憶される。
(V): When the leakage current value is multiplied by Pt1 to Ptm, the characteristic curve 16.1 regarding leakage current corresponding to Fig. 4 is obtained.
7.18 is determined. IXP*t on actual memory
#lXPt1, . . ., the value of engineering×Pta is stored.

(■);これらI X Ptmの中で最大を示す値、つ
まシ第4図歪2のデータを捜し、抽出する。
(■); Find and extract the maximum value among these I x Ptm, the data of distortion 2 in Figure 4.

(■);このデータが保護リレー12のトリップ値(P
I:+4より大きいかどうかを判定する。
(■); This data is the trip value (P
I: Determine whether it is greater than +4.

(■); (I X Pt++ )whx≧(PI)a
ならこのまま起動するとトリップが予想されているため
(I X Ptm )MムXの値を下げる必要がある。
(■); (I X Pt++ )whx≧(PI)a
If it is started as it is, a trip is expected, so it is necessary to lower the value of MmX (I X Ptm ).

こ(10) のためにはスペースヒータ、除湿機等の機器群に対して
起動指令Bk送り(I X Pt、 :]MAXの値が
下がるまで(I[)〜(■)の演算ステップをくり返す
For this (10), send a startup command Bk to equipment such as space heaters and dehumidifiers (I return.

なお、図中に示さないタイマーによシ本プログラムの起
動からの時間を計測しており、一定時間経ってもプログ
ラム終了が無い場合、スペースヒータ故障、変換器、セ
ンサー等の故障が考えられ、強制的にプログラムを停止
し、警報を発する。
Note that a timer not shown in the diagram measures the time from the start of this program, and if the program does not end after a certain period of time, there may be a space heater malfunction, a malfunction of the converter, sensor, etc. Forcibly stop the program and issue an alarm.

(IX); (IXPt−hAw<(PI:)*ならこ
のまま起動してもトリップは起こらないため、直ちに主
機起動指令Aを送る。
(IX); If (IXPt-hAw<(PI:)*, no trip will occur even if the engine is started as it is, so immediately send the main engine start command A.

なお、第8図にスペースヒータ、除湿機等の取υ付けを
示す。界磁回路周辺の湿度金工げるためには発電機AC
G内にスペースヒータ、除湿機等Cの取シ付けを行うの
が最も良いが、構造的に取り付は不可能な場合は第8図
の例のようにACGの下部にCを取り付ければ効率のよ
い除湿効果がある。(■)で決定されたスペースヒ〜り
、除湿(11) 機の起動指令Bは起動スイッチQlオンさせ、除湿する
Furthermore, Figure 8 shows the installation of space heaters, dehumidifiers, etc. To reduce humidity around the field circuit, use a generator AC
It is best to install space heaters, dehumidifiers, etc. C inside G, but if this is not possible structurally, installing C under the ACG as shown in the example in Figure 8 will improve efficiency. It has a good dehumidifying effect. Space heating and dehumidification determined in (■) (11) The machine startup command B turns on the startup switch Ql and dehumidifies.

本発明では主機停土中に起動がかかった場合の判断を示
しているが、運転中においても本システムは漏洩電流値
全オンラインで計測検出できるため、地絡保護リレーが
動作する以前におこる異常状態の傾向を認識でき、警報
、表示など全トリップ以前に知らせることができ、予防
保全システムへと展開できる。この場合、システム構成
は本発明と同一のハードウェア構成となる。又、本発明
の他の代案として、起動後に保護リレーが地絡検出する
ことが予想されるときは保護リレーを適当な起動後の時
開鎖錠しておくこととしてもよい。
In the present invention, the determination is made when the main engine is started while the main engine is grounded, but even during operation, this system can measure and detect leakage current values completely online, so abnormalities that occur before the ground fault protection relay operates It can recognize trends in conditions and provide warnings and displays prior to every trip, allowing it to be developed into a preventive maintenance system. In this case, the system configuration will be the same hardware configuration as the present invention. As another alternative to the present invention, if it is expected that the protection relay will detect a ground fault after activation, the protection relay may be opened and locked at an appropriate time after activation.

〔発明の効果〕〔Effect of the invention〕

このようにして本実施例では現状の発電所設備に漏洩電
流検出用直列抵抗r1を追加し、温度、湿度を計算機内
部に入力してフローチャートに従い演算判定することに
よシ界磁回路地絡保護リレーの誤動作を防止するととも
に自己復旧の指令金も送り、適切な処理を行えることが
可能となる。
In this way, in this embodiment, a series resistor r1 for leakage current detection is added to the current power plant equipment, temperature and humidity are input into the computer, and calculations are made according to the flowchart to protect the field circuit from ground faults. In addition to preventing relay malfunction, it also sends a command for self-recovery, making it possible to perform appropriate processing.

(12) 本発明によれば界磁回路地絡を自動監視し、地絡誤判断
を防止し、また自己復旧制御も行えることによシ発電所
の起動を迅速かつ確実に行える効果がある。
(12) According to the present invention, field circuit ground faults can be automatically monitored, erroneous ground fault judgments can be prevented, and self-recovery control can also be performed, thereby providing the effect of quickly and reliably starting up a power plant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は監視システム構成図、第2図は界磁回路及び地
絡検出回路、第3図は温度、湿度の測定゛箇所を示す図
、第4図は漏洩電流の起動後の変化状況を示す図、第5
図は温度、湿度とパラメータPとの関係図、第6図は監
視システムフローチャート、第7図はメモリ内データ蓄
積状態を示す図であり、第8図はスペースヒータ、除湿
機等の取り付けである。 1・・・計算機本体、2・・・CPU、3・・・システ
ムプログラムメモリ、4・・・データメモリ、5・・・
通信制御部、6・・・usi内部インターフェースバス
、7・・・アナログ入力部、8・・・ディジタル入力部
、9・・・ディジタル出力部、10・・・変換器、11
・・・水力発電機器、12・・・界磁回路地絡保護リレ
ー、13・・・界磁遮断器、14・・・界磁回路、15
・・・整流器、rl(13) ・・・漏洩電流検出用直列抵抗、T1・・・変換器、■
・・・検出電流、ACG・・・発電機、r(、・・・界
磁絶縁抵抗、Xl・・・リレー接点、AC・・・交流電
源、X・・・リレーコイル、r・・・地絡検出抵抗、i
・・・漏洩電流、■・・・漏洩電流値、K・・・温度、
M・・・湿度、to・・・主機起動時刻、(PI3ノ・
・・リレー動作判定値。 代理人 弁理士 高橋明夫 (14) 第2m 第4図 to へt g、frzt −に 第((fJ
Figure 1 shows the configuration of the monitoring system, Figure 2 shows the field circuit and ground fault detection circuit, Figure 3 shows the locations where temperature and humidity are measured, and Figure 4 shows how the leakage current changes after startup. Figure 5
The figure shows the relationship between temperature, humidity, and parameter P, Figure 6 is a flowchart of the monitoring system, Figure 7 shows the state of data accumulation in memory, and Figure 8 shows the installation of space heaters, dehumidifiers, etc. . 1... Computer body, 2... CPU, 3... System program memory, 4... Data memory, 5...
Communication control section, 6... usi internal interface bus, 7... analog input section, 8... digital input section, 9... digital output section, 10... converter, 11
...Hydroelectric power generation equipment, 12...Field circuit ground fault protection relay, 13...Field circuit breaker, 14...Field circuit, 15
... Rectifier, rl (13) ... Series resistance for leakage current detection, T1 ... Converter, ■
...detection current, ACG...generator, r(,...field insulation resistance, Xl...relay contact, AC...alternating current power supply, X...relay coil, r...ground Fault detection resistance, i
...Leakage current, ■...Leakage current value, K...Temperature,
M...humidity, to...main engine startup time, (PI3 no.
...Relay operation judgment value. Agent Patent Attorney Akio Takahashi (14) 2m Figure 4 to g, frzt - to ((fJ

Claims (1)

【特許請求の範囲】[Claims] 1、発電機界磁回路の界磁地絡電流を測定して主機起動
後に地絡保護リレーが動作することを事前に検出し、発
電機内温度又は湿度の制御後に発電機起動することを特
徴とする界磁回路地絡監視システム。
1. It measures the field ground fault current in the generator field circuit, detects in advance that the ground fault protection relay will operate after starting the main engine, and starts the generator after controlling the temperature or humidity inside the generator. field circuit ground fault monitoring system.
JP58123340A 1983-07-08 1983-07-08 Field circuit ground fault monitoring system Pending JPS6016194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58123340A JPS6016194A (en) 1983-07-08 1983-07-08 Field circuit ground fault monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58123340A JPS6016194A (en) 1983-07-08 1983-07-08 Field circuit ground fault monitoring system

Publications (1)

Publication Number Publication Date
JPS6016194A true JPS6016194A (en) 1985-01-26

Family

ID=14858139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58123340A Pending JPS6016194A (en) 1983-07-08 1983-07-08 Field circuit ground fault monitoring system

Country Status (1)

Country Link
JP (1) JPS6016194A (en)

Similar Documents

Publication Publication Date Title
CN106200535B (en) The control method and device of infrared humidifier in water tank
KR102052854B1 (en) On-site pump system automatic control methode and apparatus
JP2014530988A (en) Method for controlling a wind turbine generator
KR101586830B1 (en) Turbine power sistem equipped with operation means in emergence and the operation method
EP2906823B1 (en) Wind turbine generators
CA2497887A1 (en) Gate supervising system
KR100820936B1 (en) A control system and a control method combined of manned/unmanned substation
JPS6016194A (en) Field circuit ground fault monitoring system
US6735496B1 (en) System and method of monitoring multiple control loops in a heater system
JP5714367B2 (en) Field circuit insulation degradation monitoring device, insulation degradation monitoring method, and insulation degradation monitoring program
CN117074809A (en) Metering equipment state tracking and anomaly monitoring model based on knowledge graph
CN108843549B (en) Control method of water pump
CN113206545B (en) Power plant station inspection method and device
KR20100088172A (en) Fault daignostics system for generator and control method thereof
JP7035826B2 (en) Distributed power supply unit, its control method and abnormality judgment method
CN111026097A (en) Fault self-diagnosis and early-warning method for inspection robot
WO2014027462A1 (en) Energy management device, and energy-management-device control method
JP7240820B2 (en) Control device, power generation equipment, control method, and program
CN110411056A (en) The judgement and processing method that heat pump unit water tank temperature sensing package loosens
CN113659175B (en) Self-diagnosis method and device for fuel cell stack and electronic equipment
CN110470928A (en) It is a kind of for substation/electrical power distribution automatization system online test method
CN103869851A (en) Fan control box for open-type capacitor room and control method of fan control box
US20080051915A1 (en) Power System Component Protection System for Use With an Induction Heating System
CN117287854B (en) Water heater fault positioning analysis method and system based on big data on-line monitoring
CN112177962B (en) Safe operation method, system and equipment for mine main ventilator