JPS60161490A - Apparatus for producing magnetic fluid - Google Patents

Apparatus for producing magnetic fluid

Info

Publication number
JPS60161490A
JPS60161490A JP1528284A JP1528284A JPS60161490A JP S60161490 A JPS60161490 A JP S60161490A JP 1528284 A JP1528284 A JP 1528284A JP 1528284 A JP1528284 A JP 1528284A JP S60161490 A JPS60161490 A JP S60161490A
Authority
JP
Japan
Prior art keywords
ferromagnetic
magnetic fluid
drum
liquid
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1528284A
Other languages
Japanese (ja)
Other versions
JPS6116793B2 (en
Inventor
Isao Nakatani
功 中谷
Takeshi Masumoto
剛 増本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP1528284A priority Critical patent/JPS60161490A/en
Publication of JPS60161490A publication Critical patent/JPS60161490A/en
Publication of JPS6116793B2 publication Critical patent/JPS6116793B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To convert a ferromagnetic substance to a highly stable colloid, and to obtain a magnetic fluid having excellent thermal and electrical conductivity, by evaporating a ferromagnetic substance with a heater, and contacting the vapor with a liquid containing a surfactant to effect the condensation of the ferromagnetic substance. CONSTITUTION:A crucible 7 is placed in a cylindrical drum 1, and the drum 1 is evacuated to high vacuum or substituted with an inert gas or oxygen gas having low pressure. A ferromagnetic metallic element such as Fe, a ferromagnetic alloy containing a metal such as Cr or a ferromagnetic compound (hereinafter referred to as ferromagnetic substance) 8 is charged in the crucible 7. A liquid 6 containing a surfactant is poured to the bottom of the cylinder 1 as the medium of the magnetic fluid. The drum 1 is revolved, and the liquid 6 is developed over the inner wall of the drum 1 to form a coating film. The vapor of the ferromagnetic substance evaporated by heating is made to condense on said coating film to form a ferromagnetic colloid. The operation is repeated until the objective magnetic fluid is obtained.

Description

【発明の詳細な説明】 本発明は磁性流体の製造装置に関するものである。従来
開発されている磁性流体は、殆んどがマ子を分散相とし
たものが知られている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for producing magnetic fluid. It is known that most of the magnetic fluids that have been developed so far have magnetic fluids as a dispersed phase.

マグネタイトコロイドの磁性流体の製造法としては、 (1) マグネタイトの塊を水、ケロシン等のコロイド
分散媒と表面活性剤の混合溶液中でボールミルを用いて
長時間(5〜20週間)粉砕した後、大きい粒子径のも
のを分離して磁性流体を作る湿式(2) 第1鉄塩と第
2鉄塩の混合水溶液にアルカリを加えてマグネタイト微
粒子を共沈させた後、表面活性剤を用いて解膠させて磁
性流体を作る湿式析出法がとられていた。
The method for producing magnetite colloidal magnetic fluid is as follows: (1) Magnetite lumps are ground for a long time (5 to 20 weeks) using a ball mill in a mixed solution of water, a colloidal dispersion medium such as kerosene, and a surfactant. Wet method (2) to separate large particles and create a magnetic fluid (2) After adding an alkali to a mixed aqueous solution of ferrous and ferric salts to coprecipitate fine magnetite particles, a surfactant is used to create a magnetic fluid. A wet precipitation method was used to peptize the material and create a magnetic fluid.

しかしながら、湿式粉砕法は長い粉砕時間を必要とする
と共に粉砕後粗大粒子を分離する工程を必要とするため
、生産効率が極めて悪い上、粗大粒子の分離による原料
の利用効率も悪いこと。原理的に粉砕粒子の粒子径は広
い範囲に分布されるため、磁性流体の性質の制御、並び
に品質管理が困難であること。またこの方法に適用する
ことができる磁性流体の磁性物質としては、マグネメイ
トのような軟ぐて脆い物質に限定され、ねば力強い金属
または合金には適用し難いこと等の多くの欠点がある。
However, the wet pulverization method requires a long pulverization time and a step of separating coarse particles after pulverization, resulting in extremely low production efficiency and poor raw material utilization efficiency due to the separation of coarse particles. In principle, the particle size of the pulverized particles is distributed over a wide range, making it difficult to control the properties of the magnetic fluid and control its quality. Furthermore, the magnetic material of the magnetic fluid that can be applied to this method is limited to soft and brittle materials such as magnemate, and has many drawbacks such as being difficult to apply to sticky metals or alloys.

他方、湿式析出法は、鉄塩の共沈反応を利用するため、
マグネタイトなどの強磁性液化物に対象が限られ、広い
範囲の強磁性物への適用が困難である。またこの方法で
得られる微粒子の粒径は100〜200Xの範囲のそろ
ったものとなるが、更にこれよシ小さい粒径のものが得
難い欠点がある。
On the other hand, the wet precipitation method utilizes a co-precipitation reaction of iron salts, so
The target is limited to ferromagnetic liquefied substances such as magnetite, and it is difficult to apply it to a wide range of ferromagnetic substances. Further, although the particle size of the fine particles obtained by this method is uniform in the range of 100 to 200X, there is a further drawback that it is difficult to obtain particles with a smaller particle size.

磁性流体の性能を特徴づける最も重要なノく2メーター
は磁性流体の持つ磁化の大きさである。マグネタイトコ
ロイドを用いた磁性流体は、マグネタイト自身の持つ磁
化の値が小さいため、磁性流体の性能K11度がある。
The most important factor that characterizes the performance of a magnetic fluid is the magnitude of its magnetization. A magnetic fluid using magnetite colloid has a performance of K11 degrees because the magnetite itself has a small magnetization value.

この問題に対する根本的解決策は、本来磁化の大きい鉄
、コノくルト等の強磁性金属、鉄−コバルト合金、鉄−
ニッケル合金等の強磁性合金、あるいはラーベス相化合
物等の強磁性化合物からなるコロイドを用いること。ま
たこの場合、コロイド粒子の粒径を20〜100Xにそ
ろえたものとすることである。
The fundamental solutions to this problem are iron, which has high magnetization, ferromagnetic metals such as conort, iron-cobalt alloys, iron-cobalt alloys, iron-cobalt alloys,
Use a colloid made of a ferromagnetic alloy such as a nickel alloy or a ferromagnetic compound such as a Laves phase compound. Further, in this case, the particle size of the colloidal particles is made uniform to 20 to 100X.

この方向に沿った従来技術としてコノ(ルトカーボニル
(C−(CO)S )をトルエン中で熱分解し、コバル
トコロイドからなる磁性流体を製造する方法が知られて
いる。しかし、この方法によると得られるコバルトコロ
イド粒子の粒径は約200 X程度であり、議いコロイ
ド溶液中では凝集し易い欠点があった。
As a conventional technique in this direction, a method is known in which a magnetic fluid made of cobalt colloid is produced by thermally decomposing conocarbonyl (C-(CO)S) in toluene.However, according to this method, The resulting cobalt colloid particles had a particle size of about 200×, and had the disadvantage that they tended to aggregate in a colloid solution.

本発明はこれらの従来法における欠点をなくすべくなさ
れたもので、その目的は磁化の大きい強磁性金属元素、
強磁性合金ならびに強磁性化合物の微粒子を分散相とし
得られ、しかもそれらの微粒子の粒径を20〜100X
の凝集に対して高い安定性を持つコロイドとなした磁性
流体を容易に効率よく製造する装置を提供せんとするも
のである。
The present invention was made to eliminate the drawbacks of these conventional methods, and its purpose is to use a highly magnetized ferromagnetic metal element,
Fine particles of ferromagnetic alloys and ferromagnetic compounds can be obtained as a dispersed phase, and the particle size of these fine particles is 20 to 100X.
It is an object of the present invention to provide an apparatus for easily and efficiently producing a colloidal magnetic fluid having high stability against agglomeration.

本発明の磁性流体の製造装置を図面に基いて説明すると
、第1図は本発明の磁性流体の製造装置における実施態
様の概要説明図で、第1図の(a)は内周ドラム法、(
b)は外周ドラム法、(c)はベルト法を示す。第2図
は内周ドラム法における一実施態様装置における一部切
断面を示す。
To explain the magnetic fluid manufacturing apparatus of the present invention based on the drawings, FIG. 1 is a schematic explanatory diagram of an embodiment of the magnetic fluid manufacturing apparatus of the present invention, and (a) of FIG. 1 is an inner drum method, (
b) shows the outer drum method, and (c) shows the belt method. FIG. 2 shows a partially cut section of an apparatus according to an embodiment of the inner drum method.

第1図(a) において説明すると、横型円筒ドラムl
内部を高真空もしくは低圧の不活性ガスまたは低圧の酸
素ガス雰囲気とする。円筒ドラム2はゆっく多回転また
は往復運動することができるように構成する。円筒ドラ
ムlの内部中央部に例えばベリリア(BeO)、または
アルミナ(AlffiOs)等の耐火物ルツボ7を設置
し、核ルツボ7はタングステン、タンタル等のヒーター
で加熱され、ルツボ中にFe、 Co、Ni、カドミウ
ム等の強磁性金属元素、Cr、Mn、希土類元素の少な
くとも1種の金属を含む強磁性合金または強磁性化合物
8(以下これを総称して強磁性物質と略記する。)を装
填する。加熱は高周波加熱、赤外線またはレーザー加熱
、電子′線加熱、アークプラズマ加熱であってもよい。
To explain in Fig. 1(a), a horizontal cylindrical drum l
The interior is set to a high vacuum or low pressure inert gas or low pressure oxygen gas atmosphere. The cylindrical drum 2 is configured to be able to slowly rotate multiple times or reciprocate. A refractory crucible 7 made of, for example, beryllia (BeO) or alumina (AlffiOs) is installed in the center of the cylindrical drum l, and the nuclear crucible 7 is heated with a heater made of tungsten, tantalum, etc., and Fe, Co, A ferromagnetic alloy or ferromagnetic compound 8 (hereinafter collectively abbreviated as ferromagnetic material) containing at least one metal selected from ferromagnetic metal elements such as Ni and cadmium, Cr, Mn, and rare earth elements is loaded. . The heating may be high frequency heating, infrared or laser heating, electron beam heating, or arc plasma heating.

また円筒ドラム1の底部に表面活性剤を含有する磁性流
体の媒質となる液体6を入れる。該液体を構成する媒質
としては、低蒸気圧の液体例えばアルキルナフタリン、
低蒸気圧の炭化水素、アルキルジフェニルエーテル、ポ
リフェニルエーテル、ジエステル、シリコーン油、フル
オロカーボン油等が挙げられる。ただしこれらに限定さ
れるものではない。また表面活性剤としては、前記媒質
に可溶で、それより表面張力が小さく、かつ強磁性物質
に対して強い吸着性を示す感能基を持つ表面活性剤が好
ましい。例えば、カルボン酸と金属またはアミンとの塩
である石鹸、ソルビタンオレエート、ペンタエリスリッ
トオレエート辱ノ多価アルコール脂肪酸エステル、アル
キルアリルスルホン酸塩、オクタデシルベンゼンスルホ
ネート等のスルホン酸塩、その他リン酸塩、リン酸エス
テル、アミン誘導体などが挙げられる。ただし、これら
に限定されるものではない。
Further, a liquid 6 containing a surfactant and serving as a medium for magnetic fluid is placed at the bottom of the cylindrical drum 1. The medium constituting the liquid includes a low vapor pressure liquid such as alkylnaphthalene,
Examples include low vapor pressure hydrocarbons, alkyldiphenyl ethers, polyphenyl ethers, diesters, silicone oils, fluorocarbon oils, and the like. However, it is not limited to these. The surfactant is preferably a surfactant that is soluble in the medium, has a lower surface tension than the medium, and has a functional group that exhibits strong adsorption to ferromagnetic substances. For example, soaps that are salts of carboxylic acids and metals or amines, sorbitan oleate, pentaerythritol oleate, polyhydric alcohol fatty acid esters, alkylaryl sulfonates, sulfonates such as octadecylbenzene sulfonate, and other phosphoric acids. Examples include salts, phosphate esters, amine derivatives, and the like. However, it is not limited to these.

円筒ドラム1を回転させると、該液体は円筒ドラムの内
壁に沿って展開し被膜が形成される。この被膜に加熱に
よって蒸発した強磁性物質の蒸気が凝縮φ付着して強磁
体コロイドを生成する。生成した強磁体コロイドは円筒
ドラム底部に運げれ。
When the cylindrical drum 1 is rotated, the liquid spreads along the inner wall of the cylindrical drum to form a film. The vapor of the ferromagnetic substance evaporated by heating condenses and adheres to this film to form a ferromagnetic colloid. The generated ferromagnetic colloid is transported to the bottom of the cylindrical drum.

これを繰返すことによって所望の濃度の磁性流体が得ら
れる。図中、13はルツボ7からの熱輻射による表面活
性剤を含有する液体の温度上昇を防ぐ丸めの断熱板であ
る。また円筒ドラムの外周及び加熱電極部を水冷して液
体の温度上昇を防ぐようにすることが好ましい。
By repeating this process, a magnetic fluid with a desired concentration can be obtained. In the figure, 13 is a round heat insulating plate that prevents the temperature of the liquid containing the surfactant from increasing due to heat radiation from the crucible 7. Further, it is preferable to cool the outer periphery of the cylindrical drum and the heating electrode portion with water to prevent the temperature of the liquid from rising.

第1図(b)は内部を高真空、もしくは低圧の不活性ガ
ス、または低圧の酸素ガス雰囲気とした容器1′中に回
転円筒ドラム1と表面活性剤を含有する液体槽を設置し
、回転円筒ドラムlの下部を液体6に浸し回転させてド
ラム表頁に液体被膜を形成させ、該被膜に強磁性物質の
蒸発物を凝縮させる装置である。
Figure 1(b) shows a rotating cylindrical drum 1 and a liquid tank containing a surfactant installed in a container 1' whose interior is in a high vacuum, low pressure inert gas, or low pressure oxygen gas atmosphere. This is a device in which the lower part of a cylindrical drum 1 is immersed in a liquid 6 and rotated to form a liquid film on the surface of the drum, and evaporated matter of a ferromagnetic substance is condensed on the film.

また、第1図(e)は(b)における回転円筒ドラムI
K代え、ベルト15をローラ16.16′、16″で回
転させたものを使用するものである。
In addition, FIG. 1(e) shows the rotating cylindrical drum I in FIG. 1(b).
Instead of K, a belt 15 rotated by rollers 16, 16' and 16'' is used.

第1図に本発明の実施態様を例示したが、その要旨は高
真空もしくは低圧の不活性ガスまたは酸素ガスの雰囲気
中で、強磁性物質の蒸気を発生させ、表面活性剤を含有
する磁性流体の媒質となる液体の被膜を形成し、この被
膜を循環させながら、前記強磁性物質の蒸気と接触・凝
縮させてコロイド液を連続的に製造する装置にある。従
ってその態様は変更し得られる。
An embodiment of the present invention is illustrated in FIG. 1, and the gist thereof is to generate vapor of a ferromagnetic substance in a high vacuum or low pressure inert gas or oxygen gas atmosphere, and to generate a magnetic fluid containing a surfactant. The apparatus continuously produces a colloidal liquid by forming a film of a liquid serving as a medium, and while circulating this film, it is brought into contact with and condensed with the vapor of the ferromagnetic substance. Therefore, its aspects may vary.

本発明の磁性流体の製造装置によると、次のような優れ
た作用効果を奏し得る。 。
According to the magnetic fluid manufacturing apparatus of the present invention, the following excellent effects can be achieved. .

(1) 強磁性物質を加熱装置によシ蒸発させた蒸気を
表面活性剤を含有する磁性流体の媒質となる液体と接触
・凝縮させてコロイド液とするため、従来法におけるマ
グネタイト、コバルトのほか、他の強磁性金属は勿論、
鉄、コバルト、ニッケル、マンガン、り目ム、ユーロピ
ウム、サマリウム、ガドリウム、ネオジウム、プラセオ
ジウムの少くとも一種以上を含む強磁性合金、並びに強
磁性化合物の磁性流体を製造することができる。
(1) In order to make a colloidal liquid by contacting and condensing the vapor obtained by evaporating a ferromagnetic substance with a liquid that is a medium for a magnetic fluid containing a surfactant, in addition to magnetite and cobalt in the conventional method, , as well as other ferromagnetic metals,
Ferromagnetic alloys and ferromagnetic compounds containing at least one of iron, cobalt, nickel, manganese, lithium, europium, samarium, gadolinium, neodymium, and praseodymium can be produced.

従って、従来法では得られなかった飽和磁化が2000
ガウスを示す磁性流体を得ることが可能であシ、また熱
伝導性並びに電気伝導性の優れたものとなし得る。
Therefore, the saturation magnetization, which could not be obtained with the conventional method, is 2000
It is possible to obtain a magnetic fluid exhibiting Gaussian behavior, and it can also be made to have excellent thermal conductivity and electrical conductivity.

(2) 雰囲気を変えるととKよって、強磁性金属酸化
物からなる硫性流体を創造し得られる。例えば適当量の
酸素雰囲気とすることKよって、従来型のマグネタイト
コロイドからなる磁性流体は勿論、多元素フェライトコ
ロイドからなる磁性流体の製造も可能である。
(2) By changing the atmosphere and K, a sulfuric fluid consisting of ferromagnetic metal oxides can be created. For example, by providing an appropriate amount of oxygen atmosphere, it is possible to produce not only a conventional magnetic fluid made of magnetite colloid but also a magnetic fluid made of multi-element ferrite colloid.

(3)得られるコロイド粒子の粒径は20〜50Xのも
のであり、しかも円筒ドラムの回転数と強磁性物質の蒸
発量を相互に調節することによシその粒径を制御し得ら
れるため、得られる磁性流体は凝集や沈殿を起こしにく
く、高い安定性を示し、低い粘性を持ったものと表る。
(3) The particle size of the colloidal particles obtained is 20 to 50X, and the particle size can be controlled by mutually adjusting the rotation speed of the cylindrical drum and the amount of evaporation of the ferromagnetic substance. The resulting magnetic fluid is unlikely to cause agglomeration or precipitation, exhibits high stability, and appears to have low viscosity.

(4) 均一な粒子のものが容易に得られるため、従来
法における粒子の選別を必要としないため、製造工程が
簡単となると共に、歩止シも高く、生産効率が優れたも
のとなる。
(4) Since uniform particles can be easily obtained, there is no need for particle sorting in conventional methods, which simplifies the manufacturing process, yields high yields, and provides excellent production efficiency.

(5) 磁性流体を連続的に容易に製造することができ
、製造の自動北本容易と表シ、まえ品質管理も容易であ
シ、工業的生産に適する。
(5) Ferrofluid can be easily manufactured continuously, the manufacturing process is automatic, and quality control is also easy, making it suitable for industrial production.

等、従来法では得られない優れた効果を奏し得る。etc., can produce excellent effects that cannot be obtained with conventional methods.

実施例 第2図に示す装置を使用した。lはパイレ・ツタスガラ
ス製のドラムで金―製フラリ2に固定され核ドラム1は
真空回転シール3によシ気密均1紮保ったままプーリー
4によシ毎分2回転の速さで回転させた。この系はフラ
ンジ5を通して高真空に排気した。アルキルナフタリン
28.fとアルキルプロピレンジアミン2fからなる液
6をドラム1の底部に入れた。ドラム1の回転によって
ドラム内壁にその液体を膜状に展開させ再び底部にもど
じ、この過程を連続的に繰シ返した。
Example The apparatus shown in FIG. 2 was used. 1 is a drum made of Pyre Tutus glass and fixed to a metal flurry 2, and the nuclear drum 1 is rotated at a speed of 2 revolutions per minute by a pulley 4 while keeping it airtight through a vacuum rotary seal 3. Ta. The system was evacuated to high vacuum through flange 5. Alkylnaphthalene28. A liquid 6 consisting of F and alkylpropylene diamine 2f was placed at the bottom of the drum 1. By rotating the drum 1, the liquid was spread in a film on the inner wall of the drum and returned to the bottom, and this process was continuously repeated.

らせん状に巻いたタングステン線ヒーターの中を通じて
タングステン線ヒーターに電流を流し、コバルト粒子8
を加熱蒸発させた。その電流値は40アンペアであった
。蒸発したコバルト原子は真空中を飛翔し、ドラム2内
壁上部において液体膜面上で凝縮・付着し金属コバルト
のコロイドを生成し、ドラムの回転によルドラム底部の
溜部に至シ磁性流体を生成した。
A current is passed through the tungsten wire heater through the spirally wound tungsten wire heater, and cobalt particles 8
was heated and evaporated. Its current value was 40 amperes. The evaporated cobalt atoms fly in the vacuum, condense and adhere to the surface of the liquid film at the upper part of the inner wall of the drum 2, producing a metallic cobalt colloid, and as the drum rotates, a magnetic fluid is produced in the reservoir at the bottom of the drum. did.

なお、加熱ルツボ7からの輻射熱による加熱を防ぐため
に、ドラム1の何間をノズル11から水を流し冷却し、
回転軸シールはノズル12から低温ガス噴射によシ冷却
すると共に、反射板13を設けて断熱した。またコック
14はコバルト粒子原料、液体の挿入及び生成した磁性
流体の取出し口を封鎖するものである。
In addition, in order to prevent heating due to radiant heat from the heating crucible 7, the drum 1 is cooled by flowing water from the nozzle 11 into several spaces.
The rotary shaft seal was cooled by low-temperature gas injection from the nozzle 12, and a reflective plate 13 was provided to insulate it. Further, the cock 14 is used to block the insertion of the cobalt particle raw material and liquid and the outlet for the produced magnetic fluid.

以上の作動を30分間行うことKより、200ガウス1
00の磁化を持つコバルト磁性流体が得られた。またコ
バルトの量を増したり、他の強磁性合金または強磁性化
合物を使用することによ、!D1600ガウス100程
度の磁化を持つ磁性流体の製造が可能である。
By performing the above operation for 30 minutes, 200 Gauss1
A cobalt ferrofluid with a magnetization of 0.00 was obtained. Also by increasing the amount of cobalt or using other ferromagnetic alloys or compounds! D1600 It is possible to manufacture a magnetic fluid with a magnetization of about 100 Gauss.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施態様を示すもので、第1図の(a)
 (b)及び(e)はそれぞれ、内周ドラム法3、外周
ドラム法及びベルト法における装置の説明図であり、第
2図は実施態様装置の一部切断面である。 lニドラム 1′ 真空容器 2:フランジ 3:真空回転軸シール 4:プーリー 5=フランジ 6:表面活性剤を含有する液体 7:ルツボ 8:強磁性物質原料 9:電流導入端子 lO:電極 ll:冷却水ノズル 12:低温ガス噴射ノズル13:
反射板 14:コック 15:回転ベルト16.16′、16″:ローラー特許
出願人 科学技術庁金属材料技術研究所長し 才1図
The drawings show an embodiment of the present invention, and FIG. 1(a)
(b) and (e) are explanatory diagrams of apparatuses for the inner drum method 3, the outer drum method, and the belt method, respectively, and FIG. 2 is a partially cut section of the embodiment apparatus. 1 Ni drum 1' Vacuum container 2: Flange 3: Vacuum rotating shaft seal 4: Pulley 5 = Flange 6: Liquid containing surfactant 7: Crucible 8: Ferromagnetic material raw material 9: Current introduction terminal 1O: Electrode 1: Cooling Water nozzle 12: Low temperature gas injection nozzle 13:
Reflector plate 14: Cock 15: Rotating belt 16. 16', 16'': Roller Patent applicant Science and Technology Agency, Metals Materials Technology Research Institute

Claims (1)

【特許請求の範囲】[Claims] 1、 内部を高真空もしくは低圧の不活性ガスまたは酸
素ガス雰囲気とした容器中に1強磁性金属元素、強磁性
合金または強磁性化合物の加熱蒸発装置を設置すると共
に、表面活性剤を含有する磁性流体の媒質となる液体を
収容し、該液体の被膜を形成し、その液体被膜を循環さ
せながら蒸発した強磁性金属元素、強磁性合金または強
磁性化合物の蒸気と接触させて凝縮させるようにしたこ
とを特徴とする磁性流体の製造装置。
1. A heating evaporation device for a ferromagnetic metal element, ferromagnetic alloy, or ferromagnetic compound is installed in a container with a high vacuum or low pressure inert gas or oxygen gas atmosphere, and a magnetic material containing a surfactant is installed. A liquid is contained as a fluid medium, a film of the liquid is formed, and the liquid film is circulated and brought into contact with the vapor of the evaporated ferromagnetic metal element, ferromagnetic alloy, or ferromagnetic compound to condense it. A magnetic fluid manufacturing device characterized by:
JP1528284A 1984-02-01 1984-02-01 Apparatus for producing magnetic fluid Granted JPS60161490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1528284A JPS60161490A (en) 1984-02-01 1984-02-01 Apparatus for producing magnetic fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1528284A JPS60161490A (en) 1984-02-01 1984-02-01 Apparatus for producing magnetic fluid

Publications (2)

Publication Number Publication Date
JPS60161490A true JPS60161490A (en) 1985-08-23
JPS6116793B2 JPS6116793B2 (en) 1986-05-02

Family

ID=11884498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1528284A Granted JPS60161490A (en) 1984-02-01 1984-02-01 Apparatus for producing magnetic fluid

Country Status (1)

Country Link
JP (1) JPS60161490A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634006A (en) * 1986-06-24 1988-01-09 Nok Corp Production of magnetic fluid
US5587111A (en) * 1990-03-29 1996-12-24 Vacuum Metallurgical Co., Ltd. Metal paste, process for producing same and method of making a metallic thin film using the metal paste
JP2007291443A (en) * 2006-04-25 2007-11-08 National Institute For Materials Science Method for producing colloidal alloy particles
JP2008150630A (en) * 2006-12-14 2008-07-03 National Institute For Materials Science Method for manufacturing fine colloidal particle and equipment for executing it
JP2008266745A (en) * 2007-04-24 2008-11-06 The Inctec Inc Method for manufacturing particulate dispersion and particulate dispersion of metal or metal compound manufactured by using the same
JP2009117797A (en) * 2007-10-17 2009-05-28 Kurimoto Ltd Magnetic viscous fluid and method of manufacturing the same
JP2010189682A (en) * 2009-02-17 2010-09-02 Shinko Kagaku Kogyosho:Kk Colloid of composite metal nanoparticle, composite metal nanoparticle, method for producing colloid of composite metal nanoparticle, method for producing composite metal nanoparticle, and apparatus for producing colloid of composite metal nanoparticle
JP2011173743A (en) * 2010-02-23 2011-09-08 Toyo Univ Method for manufacturing carbon nanotube
JP2014148756A (en) * 2014-04-17 2014-08-21 Shinko Kagaku Kogyosho:Kk Colloid of composite metal nanoparticle, composite metal nanoparticle, method for producing colloid of composite metal nanoparticle, method for producing composite metal nanoparticle, and apparatus for producing colloid of composite metal nanoparticle
JP2015132020A (en) * 2015-04-14 2015-07-23 株式会社新光化学工業所 Multi-metal nano-particle colloid, production method therefor, and carrier in state of supporting metal nano-particle and/or multi-metal nano-particle
JP2016034640A (en) * 2015-10-02 2016-03-17 株式会社新光化学工業所 Composite metal nanoparticle colloid, composite metal nanoparticle, production method of composite metal nanoparticle colloid, production method of composite metal nanoparticle, and apparatus for producing composite metal nanoparticle colloid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352888U (en) * 1989-09-25 1991-05-22

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634006A (en) * 1986-06-24 1988-01-09 Nok Corp Production of magnetic fluid
US5587111A (en) * 1990-03-29 1996-12-24 Vacuum Metallurgical Co., Ltd. Metal paste, process for producing same and method of making a metallic thin film using the metal paste
US5750194A (en) * 1990-03-29 1998-05-12 Vacuum Metallurgical Co., Ltd. Process for producing a metal paste
US5966580A (en) * 1990-03-29 1999-10-12 Vacuum Metallurgical Co., Ltd. Process for making a thin film using a metal paste
US8287617B2 (en) 2006-04-25 2012-10-16 National Institute For Materials Science Method for producing alloy fine particle colloid
WO2007125968A1 (en) * 2006-04-25 2007-11-08 National Institute For Materials Science Process for producing colloid of fine alloy particle
JP2007291443A (en) * 2006-04-25 2007-11-08 National Institute For Materials Science Method for producing colloidal alloy particles
JP2008150630A (en) * 2006-12-14 2008-07-03 National Institute For Materials Science Method for manufacturing fine colloidal particle and equipment for executing it
JP2008266745A (en) * 2007-04-24 2008-11-06 The Inctec Inc Method for manufacturing particulate dispersion and particulate dispersion of metal or metal compound manufactured by using the same
JP2009117797A (en) * 2007-10-17 2009-05-28 Kurimoto Ltd Magnetic viscous fluid and method of manufacturing the same
JP4675398B2 (en) * 2007-10-17 2011-04-20 株式会社栗本鐵工所 Magnetorheological fluid and method for producing magnetorheological fluid
JP2010189682A (en) * 2009-02-17 2010-09-02 Shinko Kagaku Kogyosho:Kk Colloid of composite metal nanoparticle, composite metal nanoparticle, method for producing colloid of composite metal nanoparticle, method for producing composite metal nanoparticle, and apparatus for producing colloid of composite metal nanoparticle
JP2011173743A (en) * 2010-02-23 2011-09-08 Toyo Univ Method for manufacturing carbon nanotube
JP2014148756A (en) * 2014-04-17 2014-08-21 Shinko Kagaku Kogyosho:Kk Colloid of composite metal nanoparticle, composite metal nanoparticle, method for producing colloid of composite metal nanoparticle, method for producing composite metal nanoparticle, and apparatus for producing colloid of composite metal nanoparticle
JP2015132020A (en) * 2015-04-14 2015-07-23 株式会社新光化学工業所 Multi-metal nano-particle colloid, production method therefor, and carrier in state of supporting metal nano-particle and/or multi-metal nano-particle
JP2016034640A (en) * 2015-10-02 2016-03-17 株式会社新光化学工業所 Composite metal nanoparticle colloid, composite metal nanoparticle, production method of composite metal nanoparticle colloid, production method of composite metal nanoparticle, and apparatus for producing composite metal nanoparticle colloid

Also Published As

Publication number Publication date
JPS6116793B2 (en) 1986-05-02

Similar Documents

Publication Publication Date Title
JPS60161490A (en) Apparatus for producing magnetic fluid
US4599184A (en) Process for producing ferromagnetic liquid
JP2009249702A (en) Magnetic alloy powder, and method for producing the same
Kazama et al. Metastable Fe nitrides with high Bs prepared by reactive sputtering
JP2009068077A (en) Alloy material, magnetic material, method for manufacturing magnetic material, and magnetic material manufactured by the method
US5024854A (en) Method of manufacturing perpendicular type magnetic recording member
Laville et al. Mictomagnetism in a new BaO. Fe 2 O 3. B 2 O 3 glass.
Bac et al. Synthesis of Fe–Ni invar alloy nanopowder by the electrical explosion of wire in the liquid
US4753675A (en) Method of preparing a magnetic material
JPH10256528A (en) Method for generating layered aluminum fine particles and its application
US5277977A (en) Ferromagnetic stabilized ultrafine spherical hexagonal crystalline Fe2
JPS634006A (en) Production of magnetic fluid
US20190338401A1 (en) METHOD FOR PRODUCING MnAL ALLOY
US3271709A (en) Magnetic device composed of a semiconducting ferromagnetic material
Matsumoto et al. Preparation of YIG fine particles by mist pyrolysis
JPH02180003A (en) Ferromagnetic ultrafine particle and manufacture thereof, and magnetic recording medium and thermo magnetic recording medium
US11673813B2 (en) Methods and apparatus for synthesis and magnetophoretic fractionization size-selection of magnetic nanoparticles from a solution
JPH06151145A (en) Magnetic fluid to be used for confirmation of underground cracking
JP2819699B2 (en) Manufacturing method of magnetic fluid
Shevchenko et al. Granular thin film deposition by simultaneous spark erosion and sputtering
Kaito et al. Experimental demonstration of formation of magnetite and wustitefine grains
Liu et al. Physical methods for the synthesis of MNPs
Serdio et al. Synthesis and characterization of NiCr self-assembled nanorings
Amakasu et al. Temperature Dependence of Flicker Noise of p‐n‐p Junction Transistors
CN117840422A (en) Manganese-based amorphous nanocrystalline composite powder and preparation method thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term