JPS6016090B2 - How to pull out lead wires for plastic film capacitors - Google Patents
How to pull out lead wires for plastic film capacitorsInfo
- Publication number
- JPS6016090B2 JPS6016090B2 JP7130178A JP7130178A JPS6016090B2 JP S6016090 B2 JPS6016090 B2 JP S6016090B2 JP 7130178 A JP7130178 A JP 7130178A JP 7130178 A JP7130178 A JP 7130178A JP S6016090 B2 JPS6016090 B2 JP S6016090B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- lead wire
- welding
- capacitor
- movable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Description
【発明の詳細な説明】
<産業上の利用分野>
本発明は電子回路で回路素子として使用されるプラスチ
ックフィルムコンデンサーのリード線引出方法に関する
。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for drawing out lead wires from plastic film capacitors used as circuit elements in electronic circuits.
<従来の技術>
従来のコンデンサー素子は第1図に示すように、コンデ
ンサー素子1を構成するフィルム(誘電体)を介してそ
の両面に電極となるリボン状の金属箔を添わせ、該金属
箱を互に反対方向へ僅かにずらせることで夫々の一側縁
をフィルムの両側緩から露出させてこれを巻回し、金属
箔の両端露出部を夫々素子用電極2,2′とし、これに
リード線3を当て、熔接電極4,4′により加圧しなが
ら通電してスポット熔接するか、或は上記のように電極
2,2′にリード線3を当て、該電極2,2′とりード
線3との接触部を半田付けして構成するものであった。<Conventional technology> As shown in FIG. 1, a conventional capacitor element has a film (dielectric material) constituting the capacitor element 1, and ribbon-shaped metal foils serving as electrodes are attached to both sides of the film (dielectric material). By slightly shifting the metal foils in opposite directions, one side edge of each film is loosely exposed from both sides of the film, and the film is wound. Place the lead wire 3 on the welding electrodes 4, 4' and apply current while applying pressure to perform spot welding, or place the lead wire 3 on the electrodes 2, 2' as described above and separate the electrodes 2, 2'. The contact portion with the lead wire 3 was soldered.
そこで上記スポット熔接によるリード線の引出方法は、
素子用電極2,2′となる金属箔の厚さが6ミリミクロ
ン程度の極薄い金属を巻回することによってできた積層
端にリード線3を添わせ、しかも圧力をかけてから熔接
するものであるが、スポット熔接であるため熔接範囲は
主として熔接電極が接した部分に限られ、従って素子用
電極2,2′とりード線3との熔接強度は低く、しかも
強度にばらつきが生じ易い欠点があった。又、コンデン
サーの容量の違いから熔接部の面が異なりそ結果、夫々
の場合によって熔接の強度は一定せず熔接部の品質管理
が一層困難となり、製品の歩留りの問題や、熔接強度の
ばらつきによる性能上の問題などがあって特別の配慮が
必要である。そればかりでなく、スポット熔接の場合に
は熔接電極の消耗が激しく量産工程における問題点とな
つていた。Therefore, the method of drawing out the lead wire by spot welding is as follows:
A lead wire 3 is attached to the end of the laminate made by winding an extremely thin metal foil with a thickness of about 6 millimeters microns, which becomes the element electrodes 2 and 2', and is welded after applying pressure. However, since spot welding is used, the welding range is mainly limited to the area in contact with the welding electrodes, and therefore the welding strength between the element electrodes 2 and 2' and the lead wire 3 is low, and moreover, the strength tends to vary. There were drawbacks. In addition, the surface of the welded part is different due to the difference in capacitance of the capacitor, and as a result, the strength of the welded part is not constant in each case, making it even more difficult to control the quality of the welded part, which can lead to problems with product yield and variations in welded strength. There are performance issues and special consideration is required. In addition, in the case of spot welding, the welding electrode is severely worn out, which is a problem in the mass production process.
又、上記のスポット熔接とは別に半田付けによる方法も
あるが、この場合にはリード線の接続と同時に、巻回し
た金属箔の端面を広く熔着一体化でき、性能と強度の向
上を図ることはできるものの作業能率が著しく悪くコス
トダウンが困難であつた。In addition to the spot welding described above, there is also a method of soldering, but in this case, at the same time as connecting the lead wire, the end face of the wound metal foil can be widely welded and integrated, improving performance and strength. Although it is possible to do so, the work efficiency is extremely poor, making it difficult to reduce costs.
こうした上記例の欠点を除く為、更に第2図に示すよう
なアーク放電による熔接法がある。In order to eliminate these drawbacks of the above example, there is a welding method using arc discharge as shown in FIG.
その方法は、前記従来例において構成した素子をコンデ
ンサー保持機構9にて支持した後、コンデンサー素子1
の側面部に露出した素子用電極2上の熔綾位置に、リー
ド線3の保持機構を有する可動熔接電極6を、移動機構
7,8によって対置する、一方電極2上における前記熔
接電極6より離れた位置に他の固定熔接電極5を接触せ
しめる。そして両熔接電極5,6に通電、所定熔接部則
ち電極2とりード線3と間にアーク放電を生ぜしめれば
、リード線と電極2は高温となって熔融する。In this method, after the element constructed in the conventional example is supported by the capacitor holding mechanism 9, the capacitor element 1 is
A movable welding electrode 6 having a holding mechanism for the lead wire 3 is placed opposite to the welding position on the element electrode 2 exposed on the side surface of the electrode 2 by means of moving mechanisms 7 and 8. Another fixed welding electrode 5 is brought into contact at a distant position. When electricity is applied to both welding electrodes 5 and 6 to generate an arc discharge between a predetermined welding portion, that is, between electrode 2 and lead wire 3, the lead wire and electrode 2 become high temperature and melt.
次にリード線3を保持する可動熔接電極6を移動機構7
,8の作用によって矢印の方向に移動せしめながら熔接
電源を遮断すると、リード線3は熔融軟化した電極2の
中に加圧埋没し、熔接電極6によって未硬化中の熔接部
の形状を整えて第3図のように形成される。Next, the movable welding electrode 6 that holds the lead wire 3 is moved to the moving mechanism 7.
When the welding power source is cut off while moving in the direction of the arrow by the action of , 8, the lead wire 3 is buried under pressure in the melted and softened electrode 2, and the welding electrode 6 adjusts the shape of the uncured welded part. It is formed as shown in FIG.
第3図において熔融形成された熔接部1川ま電極が完全
に熔融一体化し、リード線3と充分な強度をもって結合
する。In FIG. 3, the welded part 1 and the electrode are completely melted and integrated, and are connected to the lead wire 3 with sufficient strength.
又、コンデンサー素子1の他端についても同様の方法に
よって熔接を行なうものである。Further, the other end of the capacitor element 1 is also welded by the same method.
このような熔接においては前記従来例の方法より更に強
力なりード線3の取付けが可能である。しかし、上記ア
ーク放電によりリード線を取付けたコンデンサーの断面
を子細に見ると第4図のように、リード線3はアーク放
電によって熔融した金属箔1 1、即ち電極2とりード
線3の双方が熔融した金属(主として電極2からなる合
金)にリード線の可動熔接電極6によって強力に押圧さ
れて埋め込まれているが、リード線3の上面は熔接電極
6に接しているために熱放散が大きく、早く冷却する為
に熔接部に空隙12ができる。In such welding, it is possible to attach the lead wire 3 more strongly than in the conventional method. However, if we look closely at the cross section of the capacitor with the lead wire attached due to the arc discharge, as shown in Figure 4, the lead wire 3 is connected to the metal foil 11 melted by the arc discharge, that is, both the electrode 2 and the lead wire 3. is strongly pressed and embedded in the molten metal (mainly the alloy made of electrode 2) by the movable welding electrode 6 of the lead wire, but since the upper surface of the lead wire 3 is in contact with the welding electrode 6, heat dissipation is prevented. A void 12 is formed in the welded portion to allow for large and rapid cooling.
その状態は第5図に示すようにIJ−ド線3の下半周の
みが熔接された状態であり、熔接強度Fの及ぶ範囲はリ
ード線の直径部分だけであるために熔接は完全といえな
かった。<発明が解決しようとする問題点>本発明は上
詫間題点を解決し、リード線と電極との結合強度が充分
に保てるような素子を得ることを目的とする。In this state, as shown in Figure 5, only the lower half of the IJ lead wire 3 is welded, and the welding strength F only covers the diameter of the lead wire, so welding cannot be said to be complete. Ta. <Problems to be Solved by the Invention> An object of the present invention is to solve the above-mentioned problems and to obtain an element in which the bonding strength between the lead wire and the electrode can be maintained sufficiently.
<問題点を解決する為の手段>
巻回形コンデンサーの素子用電極上に、2つの熔接電極
のうち1つの固定熔接電極を直接接触させ、残る1つの
可動熔接電極の前記素子用電極と対向する面に陥没部を
設け且つ該陥没部を跨って該可動熔接電極面に前記コン
デンサー素子のリード線を素子の電極に触れることなく
対向保持させた後、両熔接電極間に一定電圧を印加する
ことにより該可動熔接電極とIJード線との間でアーク
放電を起こさせながら該可動熔接電極を移動させ、素子
の電極にリード線が圧接した時点で放電を中止し、熔接
するようにしてなる。<Means for solving the problem> One fixed welding electrode of the two welding electrodes is brought into direct contact with the element electrode of the wound type capacitor, and the remaining movable welding electrode is placed in direct contact with the element electrode. A concave portion is provided on the surface to be welded, and the lead wire of the capacitor element is held facing the surface of the movable welding electrode across the concave portion without touching the electrode of the element, and then a constant voltage is applied between both the welding electrodes. As a result, the movable welding electrode is moved while causing an arc discharge between the movable welding electrode and the IJ lead wire, and when the lead wire comes into pressure contact with the electrode of the element, the discharge is stopped and welding is performed. Become.
<作用>
コンデンサー素子の側端部に露出した電極と、その直上
に一定間隔をおいて熔接電極にて対向保持されたりード
線との間にアーク放電を起させることにより、放電の際
の発熱によってリード線と、これに対向するコンデンサ
ーの電極とが共に溶解するので、その状態のままで熔接
電極をコンデンサーの電極面に押圧し、電源を遮断する
。<Function> By causing an arc discharge between the electrode exposed at the side end of the capacitor element and the wire held oppositely by a welded electrode at a certain distance above the electrode, the The heat generated melts both the lead wire and the electrode of the capacitor facing it, so the welding electrode is pressed against the electrode surface of the capacitor in this state and the power is cut off.
この時、金属の熔融範囲は熔接電極に陥没部が設けてあ
るので熱伝導による放熱が少ない為にリード線の外側に
まで及び一体化の範囲が広くなり強度が向上する。〈実
施例)
以下本発明について第6図a,b,cに示す実施例につ
いて詳細に説明すると、リード線を保持する可動熔接電
極6の素子用電極と対向する面の一部にリード線3の太
さに比例して定めた寸法の陥没部13を設ける。At this time, since the welding electrode has a recessed part, the metal melting area extends to the outside of the lead wire because there is less heat dissipation due to heat conduction, and the area of integration is widened and the strength is improved. <Embodiment> The embodiment of the present invention shown in FIGS. 6a, b, and c will be described in detail below. The lead wire 3 is attached to a part of the surface facing the element electrode of the movable welding electrode 6 that holds the lead wire. A recessed portion 13 having a dimension determined in proportion to the thickness of the recessed portion 13 is provided.
即ち、該熔接電極6の下端面15におけるリード線3の
チャック部14,16寄りに、該リード線の太さDに比
例した直径Aの半球状陥没部13を設ける。That is, a hemispherical depression 13 having a diameter A proportional to the thickness D of the lead wire is provided on the lower end surface 15 of the welding electrode 6 near the chuck portions 14 and 16 of the lead wire 3.
この場合最も理想的なAの範囲はリード線の線径をDと
すると、1.印〜3.印が良いとの実証が縛られている
。In this case, the most ideal range of A is 1. Mark~3. The proof that the mark is good is tied up.
而して上記可動熔接電極6のチャック部14,16によ
りリード線3を挟持させ、コンデンサーの電極と対向さ
せると共に他の固定熔接電極5をコンデンサーの電極2
上に接触させた後、前記リード線3とコンデンサーの電
極間に約20ミリ秒間通電するとアーク発生時間は約8
ミリ秒間で局部加熱を行ないながら両者を接近させると
、リード線3は熔接電極6の下端面15にて熔接部に押
し付けられて、コンデンサーの電極部に次第に埋め込ま
れていく。Then, the lead wire 3 is held between the chuck parts 14 and 16 of the movable welding electrode 6 and made to face the electrode of the capacitor, and the other fixed welding electrode 5 is connected to the electrode 2 of the capacitor.
When the lead wire 3 and the electrode of the capacitor are connected to each other and current is applied for about 20 milliseconds, the arc generation time is about 8
When the two are brought close to each other while local heating is performed for milliseconds, the lead wire 3 is pressed against the welded part at the lower end surface 15 of the welding electrode 6, and is gradually embedded in the electrode part of the capacitor.
この時、可動熔接電極6の下面に保持されたりード線3
の周囲は陥没部13によって空間となっている為にアー
ク放電によって熔融した金属がリード線3の全周を包み
込むように盛り上がり、熔接強度を確実にするために充
分なエージング作用をもちながら「やがて冷却して固ま
る。At this time, the cable wire 3 held on the lower surface of the movable welding electrode 6
Since there is a space around the lead wire 3 due to the recessed part 13, the metal melted by the arc discharge swells up to wrap around the entire circumference of the lead wire 3, and has a sufficient aging effect to ensure weld strength. Cool and solidify.
従って、上記熔接の結果は第7図に示すようになり、コ
ンデンサーの電極2とりード線3とが融合した熔融金属
11がリード線3を完全に包み込んでなだらかな曲線を
描いて周辺に至る。Therefore, the result of the above welding is as shown in Fig. 7, where the molten metal 11, in which the capacitor electrode 2 and the lead wire 3 are fused, completely wraps around the lead wire 3 and reaches the surrounding area in a gentle curve. .
従って「 この場合は第8図に示すように熔接強度Fの
分布面積は従来方法に比べて、非常に広くなるため熔融
強度の絶対値の向上は勿論、ばらつきも少なくなり、品
質が飛躍的に向上する。Therefore, in this case, as shown in Figure 8, the distribution area of the weld strength F is much wider than in the conventional method, which not only improves the absolute value of the melt strength, but also reduces the variation, dramatically improving the quality. improves.
又、第9図は本発明方法の実証によって得たコンデンサ
ーの電極部を示すもので、熔接の盛り上がり部17は、
コンデンサー素子1のリード線3に対して最も強度を必
要とする部分に設けることが望ましし、。尚、第6図a
,b,cにおける電極6の下端面15の部分で陥没部1
3と対向しない部分では従来品同様に盛り上がりは発生
しない。Moreover, FIG. 9 shows the electrode part of a capacitor obtained by demonstrating the method of the present invention, and the raised part 17 of welding is
It is desirable to provide the lead wire 3 of the capacitor element 1 at a portion where the strength is most required. Furthermore, Figure 6a
, b, c at the lower end surface 15 of the electrode 6.
Similar to the conventional product, no swelling occurs in the parts that do not face 3.
<発明の効果>
本発明方法によりリード線を取付けた場合にはコンデン
サーの容量による形状の変更やりード線の太さなど、実
施されるあらゆる組合せに対し安定した強度を得ること
ができる。<Effects of the Invention> When a lead wire is attached by the method of the present invention, stable strength can be obtained for all possible combinations, such as changing the shape depending on the capacitance of the capacitor and the thickness of the lead wire.
又、熔融金属の飛散によるバリの発生がなくなると共に
コンデンサーの電極面を広い範囲に亘つて熔融一体化す
るので無議導特性が一段と向上するなど多くの優れた効
果を有する。In addition, it eliminates the occurrence of burrs due to the scattering of molten metal, and since the electrode surface of the capacitor is melted and integrated over a wide range, it has many excellent effects, such as further improving the nonconducting characteristics.
第1図は従来のスポットによる場合の斜視図、第2図は
従来のアーク熔接による場合の正面図、第3図は従来の
アーク熔接より形成した素子の斜視図、第4図は同上一
部切欠側面図、第5図は同上の部分拡大図、第6図aは
本発明方法の実施に使用する熔接電極の拡大側面図、第
6図bは陥没部の拡大斜視図、第7図は本発明方法によ
り形成された素子の要部切欠側面図、第8図は第7図の
部分拡大図、第9図は本発明方法の実施によって形成し
たコンデンサー素子の斜視図である。
1・・…・コンデンサー、2,2′・・・・・・電極、
3・・・・・・リード線、5,6・・・・・・溶接電極
、13・・・・・・陥没部。
第1図
第2図
第3図
第4図
第5図
第6図(0)
第6図(01
第7図
第8図
第9図Fig. 1 is a perspective view of a device formed by conventional spot welding, Fig. 2 is a front view of a device formed by conventional arc welding, Fig. 3 is a perspective view of an element formed by conventional arc welding, and Fig. 4 is a part of the same as above. FIG. 5 is a partially enlarged view of the same as above; FIG. 6a is an enlarged side view of the welding electrode used in carrying out the method of the present invention; FIG. 6b is an enlarged perspective view of the recessed portion; FIG. FIG. 8 is a partially enlarged view of FIG. 7, and FIG. 9 is a perspective view of a capacitor element formed by the method of the present invention. 1... Capacitor, 2,2'... Electrode,
3... Lead wire, 5, 6... Welding electrode, 13... Recessed part. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 (0) Figure 6 (01 Figure 7 Figure 8 Figure 9
Claims (1)
電極のうち1つの固定熔接電極を直接接触させ、残る1
つの可動熔接電極の素子用電極と対向する面に陥没部を
設け、且つ該陥没部を跨がつて該可動熔接電極面に前記
コンデンサー素子のリード線を素子用電極に触れること
なく対向保持し、両熔接電極間に一定電圧を印加するこ
とにより、該可動熔接電極とリード線との間でアーク放
電を起させながら、該可動熔接電極をリード線と共に素
子用電極面に向つて移動させ、リード線が素子用電極面
に圧接した時点で放電を解除し、前記陥没部に対応する
リード線の外側になだらかな盛り上がりが形成されるよ
うにしたことを特徴とするフイルムコンデンサーのリー
ド線引出方法。1 One fixed welding electrode of the two welding electrodes is brought into direct contact with the element electrode of the wound capacitor, and the remaining one
A recessed portion is provided on a surface of each of the two movable welding electrodes facing the element electrode, and the lead wire of the capacitor element is held facing the surface of the movable welding electrode by straddling the recessed portion without touching the element electrode; By applying a constant voltage between both welding electrodes, arc discharge is caused between the movable welding electrode and the lead wire, and the movable welding electrode is moved together with the lead wire toward the element electrode surface. A method for drawing out a lead wire for a film capacitor, characterized in that the discharge is canceled when the wire comes into pressure contact with the element electrode surface, and a gentle bulge is formed on the outside of the lead wire corresponding to the depression.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7130178A JPS6016090B2 (en) | 1978-06-12 | 1978-06-12 | How to pull out lead wires for plastic film capacitors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7130178A JPS6016090B2 (en) | 1978-06-12 | 1978-06-12 | How to pull out lead wires for plastic film capacitors |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54162160A JPS54162160A (en) | 1979-12-22 |
JPS6016090B2 true JPS6016090B2 (en) | 1985-04-23 |
Family
ID=13456688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7130178A Expired JPS6016090B2 (en) | 1978-06-12 | 1978-06-12 | How to pull out lead wires for plastic film capacitors |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6016090B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4535381A (en) * | 1983-11-17 | 1985-08-13 | Illinois Tool Works Inc. | Capacitive device and method of packaging that device |
JPS6132508A (en) * | 1984-07-25 | 1986-02-15 | 松下電器産業株式会社 | Film capacitor |
-
1978
- 1978-06-12 JP JP7130178A patent/JPS6016090B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS54162160A (en) | 1979-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100347232B1 (en) | Thin type thermal fuse and manufacturing method thereof | |
JP2008166457A (en) | Structure of lead terminal of electronic component | |
KR100553968B1 (en) | Heater wire | |
JP3454055B2 (en) | Connection structure and connection method of insulated wire | |
JPS6016090B2 (en) | How to pull out lead wires for plastic film capacitors | |
US4106184A (en) | Method for making fused solid electrolyte capacitor assemblages and a fused capacitor made thereby | |
JP4097806B2 (en) | Manufacturing method of thin temperature fuse | |
JP2000164093A (en) | Thermal fuse and its manufacture | |
JP6817509B2 (en) | Inductor parts and their manufacturing methods | |
JP3304179B2 (en) | Thin fuse | |
JPH0795419B2 (en) | Thin fuse | |
JP6890222B2 (en) | Inductor parts | |
JPH0131673B2 (en) | ||
US2927193A (en) | Method of welding and weld produced thereby | |
JP2563333B2 (en) | Surface heating element | |
JP2524859B2 (en) | Resistance / temperature fuse and manufacturing method thereof | |
JP4112297B2 (en) | Thermo protector and method of manufacturing thermo protector | |
JP2001052582A (en) | Thermal fuse | |
JP2001085274A (en) | Electronic double layer capacitor and its manufacture | |
JP4083471B2 (en) | Thin fuse and method of manufacturing the same | |
JPS62195860A (en) | Manufacture of spiral electrode body | |
JPH0473835A (en) | Thermal fuse and manufacture thereof | |
JPS62268055A (en) | Manufacture of battery with lead terminal | |
JP2001118480A (en) | Thin film temperature fuse | |
JPS6310536B2 (en) |